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Abstract: Fe-based scaffolds are of particular interest in the technology of biodegradable implants
due to their high mechanical properties and biocompatibility. In the present work, using an elec-
troexplosive Fe nanopowder and NaCl particles 100–200 µm in size as a porogen, scaffolds with a
porosity of about 70 ± 0.8% were obtained. The effect of the sintering temperature on the structure,
composition, and mechanical characteristics of the scaffolds was considered. The optimum parame-
ters of the sintering process were determined, allowing us to obtain samples characterized by plastic
deformation and a yield strength of up to 16.2 MPa. The degradation of the scaffolds sintered at 1000
and 1100 ◦C in 0.9 wt.% NaCl solution for 28 days resulted in a decrease in their strength by 23% and
17%, respectively.

Keywords: Fe nanopowder; scaffold; sintering; degradation; strength

1. Introduction

Musculoskeletal system diseases and injuries are the main causes of disability in the
population, so their treatment is a global health priority [1]. Implantable devices are widely
used to treat musculoskeletal diseases, injuries, and traumas [2]. Traditional technologies
have made it possible to develop and obtain implantable materials with greater reliability
and durability, but rejection and unexpected degradation of the implants are still serious
problems in surgery [3]. Bioresorbable implants are an attractive alternative to traditional
permanent orthopedic implants for bone repair [4–9]. The advantage of biodegradable
implantable devices known as scaffolds is the slow degradation after performing the
function of mechanical support of growing bone tissue [10,11].

Scaffolds based on polymers [12,13], ceramics [14,15], metals [16], and composite
materials [17–19] are currently under development. Metals and metal composites have high
plasticity and mechanical strength, which makes them highly promising materials for load-
bearing orthopedic implants [20,21]. Among the metals capable of biodegradation in the
body (Fe, Mg, and Zn), Fe has significantly higher values of mechanical properties. Fe is also
a component of many enzymes and proteins which are necessary for metabolic processes.
In neutral and alkaline media, in the case of iron corrosion, cathode depolarization by
oxygen occurs and hydrogen is not released, in contrast to the corrosion processes of
magnesium alloys [7,22]. In this case, the formed hydroxide (OH−) ions interact with
the Fe2+ ions released into the solution, resulting in iron (II) hydroxide followed by the
conversion to iron (III) hydroxide in the presence of water and air oxygen. Numerous
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studies on cytotoxicity and biocompatibility testify to the possibility of the use of Fe-based
materials as biodegradable implants [23–26].

The main disadvantage of Fe implants is their low corrosion rate in the body [27–29].
This problem is solved by the use of various additives in the materials that accelerate the
biodegradation of Fe implants. Fe-35Mn alloy (35 wt.% Mn), being a solid solution of Mn
in γ-Fe (austenite), has been shown to have a higher corrosion rate compared to pure Fe
(0.44 mm/yr versus 0.2 mm/yr) [28]. An increase in the corrosion rate of Fe-based alloys
has been achieved by adding fine particles of noble metals [29]. These particles act as
cathodes in relation to Fe and promote micro-galvanic corrosion, contributing to the active
degradation of the Fe matrix. Uniform introduction of Ag nanoparticles on the surface of
Fe causes a 2.5-fold increase in the rate of Fe degradation [30].

An increase in the rate of Fe corrosion can also be achieved using particles that enhance
the anodic dissolution of Fe. Fe oxide is capable of significantly increasing the anodic disso-
lution of Fe [31]. This can be used to accelerate the degradation of Fe implants. Moreover,
Fe oxide, as well as Fe, is a biocompatible species and is widely used in medicine [32].

It should be noted that sintering is one of the obligatory stages in obtaining scaffolds
from powder materials [4,7,14,16]. Varying the sintering modes can not only influence the
magnetic, structural, and dosimetric properties [33,34] but also significantly change the
mechanical properties of the materials [35].

In the present work, the use of an electroexplosive Fe/Fe3O4 nanopowder to create
highly porous scaffolds was investigated for the first time. The nanopowder’s structural,
physical, and mechanical properties depending on the sintering modes were studied, as
well as the effect of degradation in 0.9 wt.% NaCl solution on the composition, surface
structure, and mechanical properties of the scaffolds.

2. Materials and Methods
2.1. Preparation of Fe Nanopowder

The technique of Fe nanopowder preparation has been described in detail previ-
ously [36]. To prepare the Fe nanopowder, an Fe wire (99.8%) with a diameter of 0.3 mm
and a length of 65 mm was exploded by a high-current impulse at a voltage of 28.5 kV and
a capacitance of 1.6 µF in argon (2 × 105 Pa). The high-current impulse flowed through
the wire when the discharge arrangement was operating. Under the action of the current
impulse, the wire’s explosive destruction took place. An aerosol containing nanoparticles
was taken out of the explosion chamber and precipitated in the hopper. After a nanopowder
batch was prepared, the hopper was disconnected from the setup, and the nanopowder
was passivated with air oxygen for 24 h.

2.2. Preparation of Fe Scaffolds

NaCl particles 100-200 µm in size obtained using the vibratory sieve shaker SS2000
(Powteq, Beijing Grinder Instrument Co., Ltd., Beijing, China) were used as the porogen.
The porogen was mixed with the Fe nanopowder in the proportion 61 wt.% Fe/39 wt.%
NaCl (the density of the composite was 4.803 g/cm3) using a Shaker mixer SM 2.0 Turbula
(Vibrotechnik, St. Petersburg, Russia). The stirring time at a bowl rotation frequency of
40 Hz was 30 min. At this proportion, the volume fraction of Fe was 30%. As a result of
mixing rounded particles of NaCl coated with Fe, nanoparticles were formed (Figure 1a).
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Figure 1. Image of the porogen (NaCl) and Fe nanoparticle mixture (a), and sintering modes for the
samples (b): 1–800 ◦C; 2–900 ◦C; 3–1000 ◦C; 4–1100 ◦C.

Before sintering, the powder mixture was prepressed on a hydraulic press, T61210B
(AE&T, Guangzhou, China), at a sample load of 1.2 N. Two types of samples were prepared:
(1) disks 10 mm in diameter and 1 g in weight; (2) beams 60 mm long, 4 mm wide, and
5 g in weight for the three-point bending test. The powder mixtures were sintered in a
vacuum furnace, Nabertherm RHTC 80-230/15 (Nabertherm, Lilienthal, Germany), at
temperatures of 800 ◦C, 900 ◦C, 1000 ◦C, and 1100 ◦C. The sintering modes are shown in
Figure 1b. Scaffold porosity P (%) was determined taking into account the diameter d (mm),
height h (mm), and mass m (g) of the sintered samples according to Formulas (1) and (2):

P = 100 − m × 100
mt

(1)

mt =
ρFe × π × d2 × h

4 × 10
(2)

where mt is the mass of the sintered Fe sample at the measured values of d and h, Г; ρFe is
the Fe bulk density (7.874 g/cm3).

2.3. Experimental Techniques

The morphology and the particle size distribution of the nanoparticles were characterized
by transmission electron microscopy (TEM) using a JEM-2100 microscope (JEOL, Tokyo, Japan).

Gravimetric studies were performed using an analytical balance, Acculab ALC-110d4
(Sartorius Group, Johnson Avenue Bohemia, NY, USA), with the geometric dimensions of
the sintered samples being measured using a caliper and micrometer.

The phase composition and lattice parameters of the nanopowders and scaffolds
were studied using an XRD-6000 diffractometer (Shimadzu, Tokyo, Japan) using CuKα

radiation with a secondary monochromator (λ = 1.542Å) at 45 kV and 35 mA. The scans
were performed in a 2θ range of 20–90 with a scan speed of 2◦/min and scanning time of
1 s. The effect of the scaffold sintering temperature on the crystallite size was determined by
plotting the Williamson–Hall equation. The microstructure of the samples and the fracture
surface were studied using the scanning electron microscopes Tescan VEGA 3 and LEO
EVO 50 (Zeiss, Oberkochen, Germany) equipped with an integrated system of energy-
dispersive X-ray analysis (EDX). The size of microstructural elements, pores, and grains of
the sintered samples was determined by the intercept method according to ASTM E112.
The structure of the scaffolds was also examined by computed tomography (CT) using the
X-ray inspection system YXLON Cheetah EVO (YXLON International GmbH, Hamberg,
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Germany). The three-point bending strength was determined using a DVT GP universal
testing machine (Devotrans, Istanbul, Turkey) according to the ASTM E290 method.

2.4. Immersion Test

Scaffold degradation was studied in 0.9 wt.% NaCl solution. For this purpose,
preweighed samples 60 mm × 4 mm × 5 mm in size were placed in 100 mL of NaCl
solution and incubated at 37 ◦C for 28 days with periodic shaking. The NaCl solution was
replaced once a week upon washing the samples with deionized water. After 28 days, the
samples were removed, washed with deionized water, and dried at 120 ◦C for 2 h. After
that, the samples were weighed, a three-point bending test was carried out, and the fracture
surface microstructure and phase composition were determined.

3. Results and Discussion
3.1. Nanoparticle Characterization

The nanopowder used to create the scaffold was represented by spherical nanoparticles
(Figure 2a) with an average size of 68 nm (Figure 2b). The particles were covered by a
2–5 nm-thick non-continuous oxide layer (Figure 2c). X-ray diffraction measurements
revealed the presence of αFe and Fe3O4 phases (Figure 2d).
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Figure 2. TEM images (a,c), particle size distribution (b), and XRD pattern (d) of Fe/Fe3O4 nanopar-
ticles. The red line on (b) corresponds to the log—normal distribution fit.

3.2. Preparation of Scaffolds and Their Characterization

XRD phase analysis of the samples after sintering with a porogenic agent (NaCl) at
temperatures of 800–1100 ◦C showed that at 800 ◦C, the αFe and NaCl phases were present
in the sample (Figure 3a). Increasing the sintering temperature to 900 ◦C led to the pyrolytic
removal of the NaCl pore-forming particles, and the phase composition of the investigated
samples was represented by non-stoichiometric Fe oxide Fe0.918O [37] and αFe phases
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(Figure 3b). The samples sintered at 1000 and 1100 ◦C showed a similar phase composition
(Figure 3c,d).
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Figure 3. XRD pattern of Fe/FeO scaffolds obtained at a sintering temperature of 800 ◦C (a),
900 ◦C (b), 1000 ◦C (c), and 1100 ◦C (d).

As a result of sintering, the size of the Fe crystallites as determined by the Williamson–
Hall method decreased from 99 nm to 65 nm with increasing sintering temperature. The
decrease in the size of the Fe crystallites may be due to an increase in the homologous
temperature, approaching the temperature range of the sintering mechanism change from
solid phase to liquid phase. At the same time, the low duration of isothermal dwelling and
the same duration of cooling of the studied samples were insufficient for recrystallization
grain growth. This fact can affect the character of the deformation behavior and strength of
the samples.

According to the scanning electron microscopy (SEM) data, the scaffold obtained had
a porous surface with macropores of different geometries formed due to pyrolytic removal
of NaCl particles (Figure 4). The microstructure of the sample obtained at 800 ◦C was
represented by sintered spherical particles of the source nanopowder (Figure 4a, inset).
Increasing the sintering temperature led to the coalescence of the particles and the disap-
pearance of interparticle pores. Scaffold sintering at 900 ◦C resulted in the formation of a
grain structure with grain sizes of 5–10 µm, with 1-5 µm particles distributed along the
boundaries (Figure 4b, inset). The formation of the oxide occurred along the boundaries
of the Fe grains, which is due to the high concentration of defects and the presence of
impurities released at the boundaries in the process of prolonged heat treatment [38,39].
According to the data of SEM-EDX analysis in the mapping mode, the particles at the grain
boundaries were enriched with oxygen (Figure 5a), which, together with the results of
the XRD phase analysis, allowed them to be identified as FeO. Increasing the sintering
temperature to 1000 ◦C led to the growth of Fe grains to ~20 µm and an increase in the
size of FeO particles to 4 µm (Figure 4c inset and Figure 5b). At the scaffold sintering
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temperature of 1100 ◦C, there was a further increase in the size of the FeO particles to
~10 µm (Figure 4d inset and Figure 5c).
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The oxygen content determined by SEM-EDS analysis in the mapping mode did not
change significantly and, depending on the sintering temperature of the scaffold, ranged
from 4 to 6 wt.% (Figure 5). Thus, the sintering of Fe nanoparticles forming the scaffold
resulted in the gradual fusion of Fe particles followed by the formation of large Fe grains.
The Fe oxide layer at the surface of the initial nanoparticles moved to the periphery of the
formed Fe grains. An increase in the sintering temperature promoted the growth of Fe
grains and the sintering of oxide particles.
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Figure 5. SEM-EDS analysis of Fe/FeO scaffolds obtained at a sintering temperature of 800 ◦C (a),
900 ◦C (b), 1000 ◦C (c), and 1100 ◦C (d).

The porosity of the samples obtained at temperatures of 900–1100 ◦C was 70 ± 0.8%
(Table 1). The decrease in the mass and geometric dimensions of the samples with an
increase in the sintering temperature from 900 to 1100 ◦C may be related to the entrainment
of material in the vacuum sintering process.

Table 1. Mass, geometric dimensions, and porosity of scaffolds after sintering.

No. Sintering Temperature m, g d, mm h, mm P, %

1 800 0.815 ± 0.017 9.94 ± 0.03 3.61 ± 0.07 44 *

2 900 0.560 ± 0.014 9.26 ± 0.03 3.43 ± 0.05 69.2

3 1000 0.524 ± 0.012 9.24 ± 0.02 3.40 ± 0.04 70.8

4 1100 0.514 ± 0.011 9.21 ± 0.02 3.27 ± 0.04 70.0
*: porosity including residual NaCl.

The shrinkage of the samples in this temperature range also did not change. The pores
in the sample sintered at 800 ◦C were partially filled with NaCl, the share of which was
about 25 wt.% (determined by the calculation method). Taking into account the residual
porogen content, the porosity of the samples obtained at 800 ◦C was about 44%.

The average macropore size of the samples corresponded to the average particle
size of the porogen used and decreased from 233 µm to 154 µm with increasing sintering
temperature (Figure 6). At the same time, when the sintering temperature increased to
1000 ◦C and 1100 ◦C, several distribution modes appeared in the histograms (Figure 6c,d).
These changes in the pore structure were due to the action of several diffusion mechanisms
in the sintering process, leading to an increase in the average size of the micropores as a
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result of their mutual coalescence, and a reduction in the size of the macropores, being the
internal drain of unlimited capacity for vacancies because of their volume shrinkage [40].
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Figure 6. Pore size distribution on the surface of the scaffolds sintered at (a) 800 ◦C; (b) 900 ◦C;
(c) 1000 ◦C; (d) 1100 ◦C.

Two- and three-dimensional images reconstructed from the XRD tomography (Figure 7)
allowed a qualitative assessment of the ratio of material to pores in the scaffold. In the
resulting grayscale measurement plane, greater densities of attenuated pixels show brighter
regions representing a dense solid. Thus, after pyrolytic removal of the NaCl particles, a
strong framework of sintered nanoparticles was formed, being stable at temperatures up
to 1100 ◦C.



Materials 2022, 15, 4900 9 of 14

Materials 2022, 15, x FOR PEER REVIEW 9 of 14 

particles, a strong framework of sintered nanoparticles was formed, being stable at tem-

(a) (b) (c)

Figure 7. Representation of the image reconstruction via CT. (a) Porous sample at 1100 °C, (b) 2D 

cross-sectional images, and (c) 3D rendering of the sample. Disc diameter, 9.5 mm. 

3.3. Mechanical Properties of Scaffolds 

Figure 8 shows typical strain curves of the studied samples as well as the depend-

ences of the three-point bending flexural modulus and the modulus of elasticity on the 

sintering temperature. The stress–strain relationships of the samples sintered at 800 °C 

and 900 °C can be characterized as linear-elastic with subsequent brittle fracture, which is 

consistent with the data of other authors investigating porous metals and cermets [41,42]. 

The deformation curves of samples sintered at 1000 °C and 1100 °C have a plastic defor-

mation stage followed by a yield stage. The yield strength of the sample sintered at 1000 

°C was 14.8 MPa, with that of the sample sintered at 1100 °C being 16.2 MPa.

(a) (b)

Figure 8. Bending stress–strain curves (a) and yield stress and flexural elastic modulus (b) of the 

samples. 

Although the samples sintered at 900 °C had the highest ultimate strength, they 

showed the lowest relative strain. Brittle deformable materials are known to be unsuitable 

Figure 7. Representation of the image reconstruction via CT. (a) Porous sample at 1100 ◦C,
(b) 2D cross-sectional images, and (c) 3D rendering of the sample. Disc diameter, 9.5 mm.

3.3. Mechanical Properties of Scaffolds

Figure 8 shows typical strain curves of the studied samples as well as the dependences
of the three-point bending flexural modulus and the modulus of elasticity on the sintering
temperature. The stress–strain relationships of the samples sintered at 800 ◦C and 900 ◦C can
be characterized as linear-elastic with subsequent brittle fracture, which is consistent with
the data of other authors investigating porous metals and cermets [41,42]. The deformation
curves of samples sintered at 1000 ◦C and 1100 ◦C have a plastic deformation stage followed
by a yield stage. The yield strength of the sample sintered at 1000 ◦C was 14.8 MPa, with
that of the sample sintered at 1100 ◦C being 16.2 MPa.
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Figure 8. Bending stress–strain curves (a) and yield stress and flexural elastic modulus (b) of
the samples.

Although the samples sintered at 900 ◦C had the highest ultimate strength, they
showed the lowest relative strain. Brittle deformable materials are known to be unsuitable
for operation under cyclic and shock loads, and the microcracks formed under these
operating conditions lead to a drastic decrease in the residual strength. This limits the use
of the scaffolds sintered at 900 ◦C as implants.
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SEM observation of the samples sintered at temperatures of 1000 and 1100 ◦C showed
that the microstructure of the fracture surface was characterized by the presence of inter-
crystalline microcracks and fractures on relatively thin pore walls (Figure 9). Since the
investigated samples were prepared by compacting powders followed by sintering at a
relatively low Fe homology temperature, this deformation behavior is due to the changing
stages of solid-phase sintering, when the formation of interparticle necks and then a strong
porous framework is followed by continued consolidation and recrystallization growth of
the grain. One would expect that samples sintered at temperatures above 900 ◦C should
have a higher tensile strength. However, particle coalescence and Fe grain growth lead to a
dramatic change in deformation behavior, which negatively affects the maximum strength
while also increasing the ultimate strain until the yield strength is reached. It should be
noted that the bending yield strength of the samples obtained at 1000 and 1100 ◦C was
slightly lower than that of scaffolds with a porosity of 62.3% and significantly exceeded the
yield strength of scaffolds with a porosity of 82.3% and of the pure Fe obtained in [21], also
corresponding to the parameters of trabecular bone [43].
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Figure 9. SEM images of the typical fracture surface microstructure of the samples obtained at 1000
and 1100 ◦C. Arrows indicate intercrystalline microcracks.

3.4. Degradation of Scaffolds

Intensive corrosion of the samples accompanied by the release of Fe oxides was
observed in the process of the degradation of scaffolds sintered at 1000 and 1100 ◦C in
0.9 wt.% NaCl solution, with the decrease in the weight of the samples over 28 days not
exceeding 2%. This is due to the formation and accumulation of degradation products in
the form of lamellar structures in the pore space of the scaffolds, which cannot be removed
by washing (Figure 10a).

The XRD data show the presence of Fe oxides FeO and Fe3O4 in the samples. Quantita-
tive XRD phase analysis showed the content of the oxide phases to be 55–65% (Figure 10b).

A decrease in strength properties was also observed for the scaffolds after degradation
in 0.9 wt.% NaCl solution. Three-point bending tests showed that the strength of the sample
sintered at 1000 ◦C decreased by 23%, and that of the sample sintered at 1100 decreased by
17%. At the same time, the changes in Young’s modulus were insignificant and within the
error range of the values demonstrated by the test specimens before degradation (Figure 11).
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Figure 10. Typical SEM images (a) of the scaffold surface after degradation in 0.9 wt.% NaCl solution,
and diffractograms (b) of the samples sintered at 1000 ◦C (1) and 1100 ◦C (2) after degradation in
0.9 wt.% NaCl solution.
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Figure 11. Bending stress–strain curves for scaffolds after degradation in 0.9 wt.% NaCl solution.

The results obtained show the possibility of using this approach to create Fe-based
macroporous scaffolds with high mechanical strength. The use of Fe nanoparticles makes
it possible to reduce the sintering temperature by 100–200 ◦C compared to micron-sized
Fe particles [4]. Fe oxide isolated on the boundary of Fe grains during the sintering of
scaffolds can contribute to the anodic dissolution of Fe in accordance with the mechanism
described previously [31] and reduce the degradation time of the material in the body.

4. Conclusions

To obtain porous Fe-based scaffolds, an electroexplosive Fe nanopowder and 200 µm
NaCl particles as a porogen agent were used. Pyrolytic removal of the porogen from
the pressed particle mixture at a temperature of 900 ◦C and above was found to obtain
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samples with 70% porosity and high mechanical strength. At the same time, the increase in
the sintering temperature to 1000 and 1100 ◦C contributed to an increase in the ultimate
deformation capacity until the yield strength was reached, which was 14.8 MPa and
16.2 MPa, respectively. The degradation of scaffolds in 0.9 wt.% NaCl solution resulted
in the oxidation of Fe with the formation of FeO and Fe3O4 lamellar structures, which
amounted to 55–65 wt.% on the surface after 28 days. The bending strength in this case
decreased by 23% and 17% for scaffolds sintered at 1000 and 1100 ◦C, respectively. Among
the main advantages of the obtained scaffolds in comparison with their analogues are
the high strength properties at a lower sintering temperature and the high porosity. The
presence of FeO particles on the surface of scaffolds can accelerate the degradation due to
the galvanic effect. To assess the possibility of using the developed scaffolds as orthopedic
implants, further studies in the field of medicine are required.
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