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Abstract: The intestinal barrier, composed of the luminal microbiota, the mucus layer, and the
physical barrier consisting of epithelial cells and immune cells, the latter residing underneath and
within the epithelial cells, plays a special role in health and disease. While there is growing knowledge
on the changes to the different layers associated with disease development, the barrier function also
plays an important role during aging. Besides changes in the composition and function of cellular
junctions, the entire gastrointestinal physiology contributes to essential age-related changes. This is
also reflected by substantial differences in the microbial composition throughout the life span. Even
though it remains difficult to define physiological age-related changes and to distinguish them from
early signs of pathologies, studies in centenarians provide insights into the intestinal barrier features
associated with longevity. The knowledge reviewed in this narrative review article might contribute
to the definition of strategies to prevent the development of diseases in the elderly. Thus, targeted
interventions to improve overall barrier function will be important disease prevention strategies for
healthy aging in the future.
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1. Introduction

In recent years, the function of the intestinal barrier has received increasing scientific
attention as more and more intra- and extra-intestinal diseases, such as irritable bowel
syndrome, inflammatory bowel diseases such as Crohn’s diseases, type 1 diabetes, colorec-
tal cancer, acute inflammation-related diseases such as sepsis, and allergic diseases, were
found to be associated with a dysfunctional intestinal barrier (for an overview, see [1–3]).
The results of various animal studies demonstrated a link between intestinal barrier dys-
function and aging. For instance, aged monkeys had poorer intestinal barrier function,
increased systemic inflammation, and higher microbial translocation compared to young
animals [4,5]. In Drosophila models, intestinal barrier dysfunction has been shown to predict
the approaching death of flies [6]. In this review, we want to explore whether intestinal
barrier dysfunction and the accompanying alterations to the intestinal microbiota composi-
tion are driving factors for the increasing proinflammatory status during aging known as
inflammaging.

Inflammaging was first described by Franceschi et al. in 2000 as a combination of a
reduced ability to deal with stressors and the resulting increase in proinflammatory milieu
(Figure 1) (for an overview, see [7]). More recently, inflammaging was defined as a “chronic,
sterile, low-grade inflammation” that occurs during aging (for an overview, see [8]). A
similar concept is metaflammation, describing a metabolically driven inflammation caused
by nutrient excess (for an overview, see [9]).
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Figure 1. Concept of inflammaging. Due to immunosenescence associated with changes in the innate
and adaptive immune response, inflammatory pathways are increasingly activated, leading to a
constant low-grade inflammatory state also termed inflammaging (modified after [10]). Abbreviations
used: Up-arrow—increased; down-arrow—reduced; MHCII—major histocompatibility complex II;
IFN-I—type-I interferon; DC—dendritic cell; NK—natural killer cell; BCR—B-cell receptor; Th1—
type 1 T helper cell; PAMPs—pathogen-associated molecular patterns; DAMPs—damage-associated
molecular patterns.

2. Composition of the Intestinal Barrier in Health

The intestinal barrier is a highly complex structure composed of several layers that
interact and influence each other (Figure 2).

Figure 2. Schematic drawing of the intestinal barrier. The intestinal barrier includes a microbial,
biochemical, physical, and immunological barrier. While the biochemical barrier consists of mucins
and antimicrobial peptides, the physical barrier is composed of the epithelial monolayer with, e.g.,
enterocytes, goblet cells, enteroendocrine cells, Paneth cells, and microfold cells (M cells). Within the
lamina propria, different immunological cells interact with the intestinal barrier, e.g., macrophages,
dendritic cells, T cells, or mast cells. IgA: Immunoglobulin A. Modified after [3,11,12] and created
with BioRender.com (accessed on 16 February 2022).

BioRender.com
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Due to the major role of the intestinal barrier in preventing bacterial toxins and
pathogens from the intestinal lumen entering into circulation, an impaired barrier func-
tion or even minor changes in the regulation of the epithelial, microbial, biochemical, or
immunological barrier might contribute to aging-associated decline as well as disease
development (see Sections 3–5). In the following Section, key components of this complex
structure thought to be also critical in the aging-associated decline of intestinal barrier
function are briefly described.

2.1. Intestinal Epithelial Layer

The gastrointestinal (GI) tract is the largest surface of the human body exposed to the
external environment. Therefore, it not only fulfils functions such as food digestion, but
also acts as a key line of defense, allowing for the selected survival of microbiota ingested
but also prevalent in the GI tract and the entry of nutrients. Epithelial cells collaborate with
immune and stromal cells to fight off pathogens, limiting their contact with the epithelium.
Together with a stable microbiota, the mucus layer acts as first line of defense against
external injuries [12,13]. Besides the pathogenic defense, the microbiota contributes to
digestion of food and the production of vitamins, and promotes the development of the
immune system [14,15]. Studies in germ-free mice demonstrated that intestinal microbiota
affects the number of Peyer’s patches and lymphoid follicles and the general number of
immune cells, e.g., IgA-producing plasma cells or CD8+ and CD4+ T cells [16].

The epithelial cell layer constitutes the core of the intestinal barrier. Cells found
in this layer develop from pluripotent intestinal stem cells located in the crypts, which
differentiate into a variety of cell types [17]. In human small intestine epithelial cells have
a turnover of approximately 3.5 days [18]. The intestinal epithelial layer is composed of
a multitude of different cell types, e.g., enterocytes, enteroendocrine cells, goblet cells,
Paneth cells, or microfold cells (M cells) (Figure 2), all contributing to the complex interplay
of nutrient absorption, while maintaining the mucosal barrier to avoid the permeation
of bacterial toxins or pathogens and the secretion of immunological mediators (for an
overview, see [19–22]).

Intestinal epithelial cells are tightly connected through junctional complexes composed
of tight junctions on the apical side and adherence junctions and desmosomes towards
the basolateral side (for an overview, see [23]). Accordingly, tight junctions are thought
to be key components in the control of the paracellular transport in both the small and
large intestine of the resulting semipermeable barrier (also see [22]). This semipermeable
barrier facilitates the passage of ions and other substances, while the translocation of
noxious molecules, such as bacterial toxins, is very limited [13,22–24]. Studies have shown
that tight junctions are composed of transmembrane proteins, e.g., claudins, occludin, or
junctional adhesion molecules, which interact with peripheral membrane proteins (e.g.,
Zonula occludens, ZO-1) (for an overview, see [24]). Results of in vitro studies also suggest
that ZO-1 is linked to the cytoskeleton of the epithelial cell via F-actin [25]. It has been
shown in vitro that the interaction between the actin–myosin cytoskeleton and the tight
junction complex is critical in maintaining the paracellular barrier’s integrity, and this is
mainly regulated by myosin light chain kinase (MLCK) [26]. These findings are supported
by in vitro studies demonstrating that the activation of myosin light chains (MLC) by MLCK
restructures the perijunctional F-actin and results in a reorganization of occludin and ZO-1,
which increases permeability [27]. Moreover, the post-translational phosphorylations of
occludin are critical for the opening and sealing of tight junctions, influencing the intestinal
barrier function [28]. Depending on the site of phosphorylation, tyrosine phosphorylation
attenuates the occludin–ZO-1 interaction, resulting in destabilized tight junctions, while
the serine and threonine phosphorylation of occludin contributes to an intact tight junction
assembly [29–31]. Furthermore, in vivo and in vitro studies recently demonstrated that
post-translational nitration might result in a ubiquitin-dependent proteolytic degradation
of tight junctions [32]. The results obtained in occludin knock-out mice suggest that
while these mice suffer from histological abnormalities in various tissues, they exhibit
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morphologically intact tight junctions in intestinal tissue [33]. These studies suggests
that tight junction complexes are complex units and that other mechanisms may also be
critical in regulating intestinal barrier function. For instance, enteroendocrine cells secreting
peptide hormones, such as ghrelin, peptide YY, cholecystokinin, and glucagon-like peptide
1, in response to nutrient exposure at the luminal side of the intestine (for an overview,
see [34]) also secrete glucan-like peptide-2 [35]. The latter peptide has been shown to
enhance intestinal barrier function through mechanisms involving the MLCK/pMLC
signaling cascades [36,37]. Further studies are needed to fully elucidate the complex
interplay underlying intestinal barrier function beyond tight junctions.

2.2. Biochemical Barrier and Immunological Barrier

The mucus layer coats the intestinal epithelial cells [12,13]. The main components are
glycosylated mucin proteins, such as the mucin-2 being produced by goblet cells, [38,39].
Studies in mucin-2 knock-out mice demonstrate that these mice not only develop colitis,
but also suffer from an impaired intestinal barrier function, underlining the role of mucus
in maintaining intestinal homeostasis [40]. Besides the secreted mucins, there are also
transmembrane mucins, which carry out barrier and signaling functions (for an overview,
see [39]). The mucus layer is supported by the secreted antimicrobial peptides produced by
secretory Paneth cells, contributing to the maintenance of the intestinal homeostasis (for
an overview, see [41]). This is in line with studies in transgenic mice showing a reduced
number of Paneth cells and the increased penetration of the intestinal barrier by commensal
as well as pathogenic bacteria [42].

Bacteria-specific immunoglobulin (Ig) A, secreted by B-cells, further adds to a de-
creased penetration of bacteria and supports the mucosal barrier. The secretion of antigen-
specific IgA is triggered by dendritic cells, which can be activated by epithelial M cells
(located in follicle-associated lymphoid tissue as part of Peyer’s patches), contributing to
antigen sampling and uptake from the intestinal lumen (for details please refer to [43,44]).
A loss of IgA was suggested to be associated with an impaired intestinal barrier function
in vivo [45]. However, M cells might also act as an entrance for pathogens (for an overview,
see [44]).

3. The Aged Intestine: Alteration of Intestinal Barrier
3.1. Digestion and Absorption

The digestion and absorption of foods and drinks is a complex, multistage process
depending on several endogenous factors, such as enzymes, GI motility, entero-endocrine
hormonal activity, and the enteric nervous systems. Exogenous factors, such as food
composition, but also microbial metabolite availability have been shown to affect digestion
and absorption (for an overview, see [46,47]). Similar to many other physiological functions,
the gastrointestinal function is also affected by degenerative processes and declines with
aging. As also reviewed by others [48–51], olfactory, gustatory, and visual food perceptions,
along with salivation and oral as well as dental health, decline in the third stage of life (for
an overview, please also see [48]). Along with diminished appetite, which is associated
with increased concentrations in appetite-related hormones, such as peptide-YY, leptin,
and cholecystokinin, this is one of the key factors for malnutrition in older individuals
above the age of 65 [52]. Motility and enzymatic and absorptive performances in the more
distal part of the GI tract, e.g., the stomach and small and large intestines, have been
suggested to be altered in the elderly, too (for an overview, see [48]). Some older studies
reported an increase of 30–40% in gastric emptying time for solid and liquid foods in the
elderly [53–55], which seemed also to be related to the presence of frailty [56]. The basal
and stimulated secretion of pepsin, critical for protein digestion, was shown to decline
with older age (~40% when comparing > 68–98-year-old humans with 18–34- and 35–64-
year-old individuals) [57]. In contrast, in the small intestine, motility and transit time
seem to be mainly unaffected by aging, while for the colon, reports are contradictory (for
an overview, please see [48]). This might be related to the fact that colonic transit time
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can be affected by environmental factors, including physical activity and psychological
and behavioral factors [58]. Furthermore, the digestion and absorption of nutrients in
the elderly may also be affected by the quantity and activity of enzymes involved in the
digestion of sugars, proteins, and fats such as saccharidases, proteases, and various lipases,
which are shown to be altered in the elderly [59,60]. At least in rodents, the uptake of
sugars and lipids seems to be altered, with the expression of fructose transporter Glut5
having been reported to increase, while glucose transporter Glut2 and lipid uptake and
the expression of I-FABP have been shown to decrease [61–63]. Studies assessing sugar,
amino acid, and lipid transporters in young and elderly humans are, to our knowledge,
very limited or still missing. Holt et al. and Salles et al. reported in their reviews that
lipid digestion and absorption in humans in general is well preserved in the elderly (for
an overview, please see [64,65]). However, multi-drug intake, frequently observed in
the elderly, might additionally influence the gastrointestinal barrier function and impact
immune-mediated disease [66]. Still, drug intake is not only found in old-aged individuals,
as recently reported in an Austrian population-wide study on anti-acid drug use [67].

3.2. Mucus and Mucosal Turnover

As mentioned above, the epithelium of the GI tract is a matter of constant and rapid re-
newal. Additionally, while cell proliferation and differentiation are affected in many organs
of the human body, studies in elderly animals and humans suggest that the architecture of
the intestinal epithelium in the small intestine is not markedly affected by aging [68,69]. It
has been discussed that a hyperproliferative state balancing an increased rate in enterocyte
apoptosis could be underlying this lack of morphological change in the small intestine
(for an overview, see [48]). Accordingly, the total surface area available for digestive and
absorptive processes in the small intestine seems not be markedly affected by aging. Studies
in animals suggest an increased proliferation of colon mucosal cell proliferation along with
decreased apoptosis [70].

In healthy older individuals, the thickness of the gastric and duodenal mucus layer
is not altered [71]. In the ileum of old-aged mice, the number of goblet cells per villus
displaying larger mucin granules may even be higher [72]. Tremblay et al. report a reduced
expression of ileal α-defensins and lysozyme, two antimicrobial peptides produced by
Paneth cells [72]. In old-aged mice, the thickness of the colonic mucus layer was reported
to be reduced when compared to young animals, and this loss in elderly mice could be
restored by supplementing Lactobacillus plantarum WCFS1 [73]. Furthermore, animal studies
suggest that the effects of aging on the mucus layer in the GI tract may be affected by the sex
of the host and that male mice may be more susceptible to aging-associated changes to the
mucus layer than female animals [74]. In the same study, it was shown that, even in female
mice with an ovariectomy, these sex-specific differences were still prevalent. Additionally,
protein glycosylation is affected by aging. Together with the findings that the mucus layer
may be critical in shaping the immunological properties of immune-competent cells, such
as dendritic cells in the GI tract [75–77], it is discussed that changes in the glycosylation
pattern of mucus in the GI tract might contribute to the alterations in the microbiota profile
found in the elderly (please also see [78]). Further studies are needed to evaluate the
impact of a changed mucus composition on aging-associated alterations to intestinal barrier
function and microbiota composition.

3.3. Intestinal Immune System

Aging is associated with marked alterations of the immune response, also often re-
ferred to as immunosenescence [79]. While often used to describe the general decline in
immune function in later stages of life, the word more correctly describes the changes asso-
ciated with the aging of the immune system, to which senescent immune cells contribute
(for an overview, also see [79]). In the following section, some of the key facts reported
in recent years regarding aging-associated changes to the intestinal immune system are
summarized. Recently, it was shown in a Japanese cohort of healthy individuals aged
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35–81 years that the concentration of the Paneth cell α-defensin human defensin 5 (HD5) in
feces was significantly lower in the elderly (age > 70 years) than in middle-aged individuals
(age < 70 years) [80]. Paneth cell α-defensins have been suggested to be involved in the
regulation of the intestinal microbiota composition [81]. Furthermore, antigen-specific T
cell and B-cell responses that are critical in the protection against pathogens have been
proposed to be affected by aging [82]. Booth et al. compared the T cell responsiveness of
elderly people with younger individuals (>60 vs. <60 years of age) and reported that in
tissue resident memory T cells (TRM) in ileum tissue, cellular characteristics, function, and
number are affected by aging [83]. Furthermore, as reviewed by Galletti et al. [84], in aging
mice, the induction of tolerance as well as the humoral response to the oral administration
of ovalbumin are decreased. Our own data suggested that oral immunizations induced both
allergen-specific IgG1 and IgG2a in aged animals, while adult animals preferentially devel-
oped IgG1. Of interest, when gastric digestion was impaired, both age groups developed
comparable levels of allergen-specific IgE upon oral immunizations [85]. The alterations of
oral tolerance and intestinal immune response might be related to a decrease in dendritic
cells, as well as changes in the architecture of Peyer´s patches and a dysregulation of T cells.
Kato et al. reported that in aged mice, feeding them OVA produced selected T(h)2- but
no T(h)1-type cytokines in CD4(+) T cells from Peyer’s patches [86]. Moreover, the ability
of mucosal dendritic cells in small intestine of old mice to stimulate TGFβ secretion and
differentiate CD4(+) LAP(+) T cells was also reported to decline [87]. In the same study,
the frequencies of regulatory-type IEL subsets, such as TCRγδ(+) and TCRαβ(+)CD8αα(+),
were shown to be lower in the gut mucosa of aged mice. Kobayashi et al. reported that
in old-aged mice (18 months of age), M-cell density in the follicle-associated epithelium
is reduced and that, subsequently, the ability to transcytose particle luminal antigens is
decreased [88]. The results of our own studies show that aging in mice is associated with
a decrease in F4/80 positive cells and NOx in the small intestine, suggesting that the
number of macrophages, and maybe also the production of reactive nitrite species, may be
altered [89]. Changes in the macrophage responses in mice in relation to aging-associated
changes of intestinal barrier function were confirmed by others [90].

Not all components of the intestinal immune system are altered by aging, and further
studies are warranted to assess how the resulting changes in the immunological interplay
in the intestinal mucosa affect intestinal microbiota composition and barrier function, as
well as the different gut–peripheral tissue axis.

3.4. Intestinal Barrier and Junction Proteins

While the gross architecture of the small intestinal epithelium seems rather unchanged,
even at older age, studies in humans and animals assessing intestinal permeability and
tight junction proteins suggest that aging is associated with a loss of tight junction proteins
in the small and large intestine. Already in the 1980s, Hollander et al. reported that older
age in rats is associated with an increased permeability to larger macromolecules [91].
Studies in non-human primates, such as aged baboons, reported a reduced expression of
the tight junction proteins ZO-1, occludin, and junctional adhesion molecule-A (JAMA),
leading to an increased permeability for horseradish peroxidase [92]. In contrast, in the
human ileum, the expression of ZO-1, occludin, and JAMA-1 mRNA and protein was not
altered in older individuals (aged 67–77 years) when compared to younger controls (20–40
or 7–12 years). Moreover, the permeability to macromolecules was not different between
age groups [93]. However, in this study, intestinal permeability was assessed using an ex
vivo approach. As mentioned above, tight junction proteins, such as occludin, are regulated
through phosphorylation [28–31]. Data on the effects of aging on phosphorylation of tight
junction proteins are still scarce. Interestingly, changes to intestinal integrity with aging
have also been proposed in non-vertebrates, including Drosophila and C. elegans (for an
overview, see [94–96]).

This loss of tight junction proteins and the increased permeability of macromolecules in
rodents [91,97,98] was shown to be associated with elevated bacterial toxin levels, especially
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bacterial endotoxin in diseases of various etiologies (for an overview, see [12,99]). The
results of our own group suggest that the aging-associated changes in intestinal microbiota
composition are also associated with increased bacterial endotoxin levels in the portal and
peripheral blood [89,100] and with an increased expression of Toll-like receptors in the liver
(see Section 5). Kühn et al. prevented the loss of tight junctions and increased intestinal
permeability by altering the availability of intestinal alkaline phosphatase, which may not
only result in less frailty, but also extend lifespan [98]. The results of several in vivo and
in vitro studies suggest that in the aging-related loss of intestinal barrier function, changes
in stem cell proliferation and the alterations of immune cells and the composition of mucins,
as well as changes in intestinal microbiota, may be critical factors [78,88]. Other alterations
of intestinal stem cells, including chronic activation and misdifferentation, may also be
critical in the development of intestinal barrier dysfunction in aging [78,101]. Herein,
the excessive formation of reactive oxygen species through both extrinsic and intrinsic
measures, including a “Warburg-like reprogramming” [102], seem to be relevant, as shown
by results obtained in studies using Drosophila. A changed mucus layer, e.g., changes
in the glycosylation pattern of mucins [78], in anti-microbial peptides [72], and in levels
of soluble immunoglobulin A [103–105], as well as the prevalence of immune cells, e.g.,
M cells [88] and T cells [106], have also been associated with aging-associated intestinal
barrier dysfunction (for an overview, see [78]). Results of in vitro studies in Caco-2 cells
suggest that TNFα may alter MLCK protein levels, which are involved in the regulation
of tight junction proteins in the small intestinal epithelium [107,108]. Interestingly in
our own studies, older age in mice was associated with lower NOx and F4/80 mRNA
expression, suggesting that TNFα may not predominantly stem from macrophages in the
small intestinal tissue [89]. However, to date, the molecular mechanisms underlying the loss
of tight junction proteins and, subsequently, the increased permeability and translocation
of bacterial toxins in elderly has not been clarified.

4. The Microbiome in the Aging Intestine

From lifespan experiments in animals [109,110] to the analysis of the microbiome
over the human lifespan (for an overview, see [111,112]) and of centenarians [113,114], a
plethora of evidence shows that the microbiome is not only associated with diseases, e.g.,
gastrointestinal diseases such as IBS (for an overview, see [115]) and IBD (for an overview,
see [116]), diabetes, metabolic liver disease [117], and allergies (for an overview, see [118]),
but also aging (for an overview, see [119]) and inflammaging (for an overview, see [8]).

When evaluating the microbiome, two factors are commonly considered that have
a substantial impact on health and disease: stability and diversity, with a more stable
and diverse microbiome generally being associated with better health (for an overview,
see [120]). Starting with birth [121], the individual microbiome is subject to change through-
out life [111,122]. The greatest alterations occur during our infancy when the personal
microbiome is in its developing stage. This stage is followed by the adult microbiome,
which has the highest stability. With further aging, the microbiome becomes again less
stable (Figure 3) [123] (and for an overview, see [111,124,125]).
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Figure 3. Stability of microbiota composition over the lifetime. During one’s lifetime, not only does
the microbial composition change, but so too does its stability and diversity, which contributes to a
more resilient microbial composition in adults (modified after [126]).

Difficulties arise when comparing the taxonomical diversity of microbiota between in-
dividuals. The microbiota composition is highly susceptible to exogenous and endogenous
factors, meaning that making comparisons between different study populations is a difficult
task. It is currently impossible to make universally valid statements about the average
healthy microbiome. While the taxonomical composition is highly diverse, the metabolic
pathways of the microbiome of healthy individuals are much more comparable [127]. As
several bacterial species are able to perform the same biological function, the functional
core hypothesis suggests that the bacterial species themselves are interchangeable, as long
as the gene for the core metabolic pathways are present (for an overview, see [120,128]). Not
surprisingly, the developing microbiome of children shows not only compositional, but also
functional differences compared to adults [129]. This might also be applicable to the elderly.
Several studies have shown that the microbiome of centenarians differs in composition
and metabolic pathways compared to other age groups. Biagi et al. reported a generally
less diverse microbiome in centenarians compared to young and non-centenarian elderly.
Herein, especially, facultative anaerobes from the phylum Proteobacteria, such as species
from Escherichia, Haemophilus, Klebsiella, Proteus, Pseudomonas, etc., and additionally Bacillus
and Staphylococcus, were found to be increased in fecal samples. Eubacterium limosum was
reported to be increased 15-fold in centenarians, and the authors suggested that E. limosum
and relative species might be characteristic for centenarians [113]. Kim et al. also reported
differences in the microbiome compositions of centenarians compared to younger age
groups of the same region [130]. They observed differences in the average phyla composi-
tion, with centenarians (aged 95 to 108 years) having a greater phyla diversity than younger
age groups (aged younger than 80 years). Compared to non-centenarian elderly (aged
67 to 79 years), centenarians showed, on a phylum level, a higher relative abundance of
Verrucomicrobia and, on a genus level, a higher relative abundance of Akkermansia, Clostrid-
ium, Collinsella, Escherichia, and Streptococcus, but a lower abundance of Faecalibacterium
and Prevotella. Compared to adults (aged 26 to 43 years), centenarians showed a higher
relative abundance of Proteobacteria and Actinobacteria, in addition to Verrucomicrobia.
The abundance of Proteobacteria was also higher in non-centenarian elderly than in adults,
suggesting an increase in the share of Proteobacteria with age in this study population.
Results from a study comparing Bifidobacterium strains isolated from the feces of healthy
young-to-middle-aged adults (30–40 years old) and elderly (>70 years of age) revealed
that the adhesive ability of the human Bifidobacterium microbiota was reduced with the
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increasing age of the host [131]. Centenarians had more microbiota with pathways in the
phosphatidylinositol signaling system, glycosphingolipid, and N-glycan biosynthesis [130].
A 2021 study observed that the microbiome of Japanese centenarians is not only enriched
by species from Alistipes, Parabacteroides, Bacteroides, Clostridium, and Methanobrevibacter
compared to young and elderly controls, but also by bacterial species in possession of
genes with certain rare metabolic pathways in the bile acid metabolism (e.g., Clostridium
scindens) [114]. Compared to young controls and non-centenarian elderly, levels of primary
bile acids were decreased, but those of their metabolites (secondary bile acids) increased,
which is unique to centenarians. The level of the bile acid isoalloLCA was increased, which
was reported to show potent antimicrobial activity against Gram-positive bacteria. The
study also observed that short-chain fatty acid (SCFA) levels were decreased and branched
SCFA and ammonium levels were increased. The authors suggested that this might be
caused by a reduced abundance of SCFA-producing strains, while the amino acid metabo-
lizers increased, likely due to a reduced upper intestinal proteolytic capacity in the elderly.
In contrast, old mice were reported to have increased ratios of primary to secondary bile
acids in the liver, serum, and intestines, but the ratio was reduced by microbiota remodeling
via co-housing with younger animals [132]. Under regular conditions, more than 90% of
the bile acids (primary bile acids) are synthesized in the hepatocytes, while under 10%
(secondary bile acids) are produced in the gut through metabolization by the microbiota.
Secondary bile acids have also been reported to have strong antimicrobial activity [114,133]
(and for an overview, see [133]) and are able to inhibit bacterial overgrowth. Bile acids
have several roles besides the support of dietary lipid absorption, as they are able to ac-
tivate pathways regulating the metabolism of bile acids, lipids, and carbohydrates and
inflammatory processes (and energy expenditure) via the receptors farnesoid X receptor
and G protein-coupled membrane receptor 5 [133]. Bile acid homeostasis, therefore, plays
an important role in the maintenance of physiological conditions. It has further been
suggested that bile acid composition and metabolism, as well as microbiota-associated
digestive capacities, decrease with increasing age in humans [134–136].

In animal studies, it could be observed that inflammaging is associated with the gut
microbiome. Compared to young mice, older animals are reported to have higher levels of
inflammatory cytokines, such as systemic IL-6 [90,137] and TNFα [90,138], and higher fecal
lipocalin-2 levels, indicating intestinal inflammation [137]. Older mice also had a greater
diversity than young animals, and a significant difference in composition between old and
young mice was observed [137]. An elegant mouse study by Thevaranjan et al. was able to
link inflammaging to the microbiome [90]: old mice were observed to have higher IL6 and
TNFα levels not only compared to young controls, but also compared to germ-free animals.
Of interest, the anti-bacterial capability of the macrophages was reduced in old wild type
mice compared to young, germ-free and old TNFα knock-out mice. The authors suggested
that the higher TNFα levels in old mice results in the impairment of the macrophages
and is caused by the microbiota, as the macrophages of aged TNFα knock-out mice or
germ-free mice were not impaired in their anti-bacterial activity. Furthermore, they also
observed that intestinal permeability increased with mouse age. The author suggested that
inflammaging is dependent on the microbiota. By colonizing young and old germ-free mice
from young and old donors, microbiota composition and an aged microbiome contribute
to inflammaging. Thevaranjan et al. also reported that a higher proportion of germ-free
mice lived to the age of 600 days than their conventional counterparts. Results of the same
study also suggest that aging-associated intestinal microbiota dysbiosis and the increase
in TNFα found in old-aged mice may be involved in the increased intestinal permeability.
The transferal of an aged microbiome to young and old germ-free mice indicates that
the aged microbiome can induce increased levels of several Th cell subsets in the spleen,
inflammation in the small intestine, and characteristics of immunosenescence. TNF-α levels
were increased in groups with the aged microbiome [138]. Furthermore, aging-associated
changes in the intestinal microbiota shown to accompany aging in several species, including
humans [89,139–142], have been linked to a chronic activation of the JAK/Stat signaling
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cascades. It has been suggested by studies in model organisms that the inhibition of these
pathways may prevent not only dysbiosis, but also age-related metaplasia [140].

5. Consequences of Aging-Associated Alteration of Intestinal Microbiota and Barrier
Function: The Liver and the Brain as Examples

The alterations found at the level of intestinal microbiota composition and intestinal
barrier function in aging have been proposed to be interlinked with aging-associated
decline in other organs. In the following section, some of the key findings on the interaction
of aging-associated alterations at the level of the gut and the liver, the latter being also often
referred to as the “metabolic control center”, as well as the brain as the key regulator of
cognition and superordinated center of physiological control, are summarized.

5.1. Liver

The results of several epidemiological studies suggest that aging is an independent risk
factor for the development of liver-related diseases [143]. Indeed, it has been suggested that
impairments of hepatic function, e.g., the ability to clear substances such as bacterial toxins
that enter the organism through the GI tract, may contribute to the age-related increased
susceptibility to disease development of many other organs [144]. Older age (>65 years)
by itself may be associated with elevated liver enzymes, even in the absence of any overt
disease [145]. The results of studies in various species, including humans, suggest that a
loss of liver volume, decreased hepatic blood flow, and morphological changes, including
changes of volume of hepatocytes and the accumulation of dense bodies, are the results
of aging [143,146,147]. Data on aging-associated alterations of liver structure and function
are still contradictory. Ogrodnik et al. [148] suggested that old age in mice is associated
with the development of hepatic steatosis. In our own studies, we found very limited to no
accumulation of fat in the liver; rather, old age was associated with the development of
inflammation and fibrosis in the liver [89,100]. Despite a continuously increasing number
of studies, it has not yet been fully clarified whether or not aging intrinsically compromises
the liver in humans and animal models.

Due to its anatomical location receiving a more or less ’unfiltered’ blood from the
gut, the liver is confronted not only with nutrients, but also many xenobiotics, as well
as bacterial toxins and metabolites stemming from the intestinal microbiota, along with
endocrine mediators. This allows for a rather direct communication between the gut and
the liver. However, the so-called gut–liver axis is a bi-directional exchange pathway (for an
overview, also see [149]). The liver communicates with the gut through the synthesis of
bile acids released in the intestine via the biliary tact. Changes to the intestinal microbiota
composition, but even more so an increased permeability of the intestinal barrier, have
been shown to be associated with aging (see Sections 3–5). This leads to changes in the
exposure of the liver towards bacteria-derived metabolites and toxins, which in turn
can lead or add to the activation of signaling cascades, and herein especially the Toll-
like receptor-dependent signaling cascades in the liver. The latter have been proposed
to add to the pro-inflammatory state found in older age. Indeed, we recently showed
that not only is the expression of toll-like receptor 4 (TLR4) induced in older-aged mice,
but so too are other TLRs in the liver [89,100]. Furthermore, the genetic deletion of the
lipopolysaccharide binding protein (LBP), thought to be required for the recognition of
bacterial endotoxin [150], was associated with a damping of aging-associated changes in
the liver tissue. The studies of Chung et al. [151] further suggest that the livers of old-aged
rats are more susceptible to LPS, with a more pronounced LPS-dependent upregulation
of pro-inflammatory IL-1β/inflammasome pathways in the liver. Furthermore, it also
has been shown that a supplementation of intestinal alkaline phosphatase found in the
intestinal brush border dampens aging-associated increases in liver enzymes [98]. Further
studies are needed to fully understand the interplay of the gut and liver in aging-associated
liver decline.
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5.2. Brain

During aging, not only are the liver and other organ systems affected by aging-related
changes. For instance, cognitive aging is also part of the normal aging process and is
accompanied by, e.g., slowed down reaction process or mild short-term memory loss, while,
e.g., knowledge and acquired skills seem to persist [152,153]. Aging is an independent risk
factor for neurodegenerative disease [154]. Almost 16.5% of the European population aged
≥65 years suffers from cognitive impairments [155], while a recently published systematic
review on the global prevalence of cognitive impairments resulted in values ranging from
5.1 to 41% in people older than 50 [156]. Nearly ~7.1% of the European population suffer
from dementia [157], for which cognitive impairments count as a kind of transitional state,
and which is, e.g., estimated in the US to account for 13.6% of deaths [158]. However, the
cause and molecular mechanisms of age-associated cognitive impairments are complex
and still not fully determined. Aging-associated cognitive decline is described as a multi-
factorial process in which mitochondrial dysfunction, the accumulation of dysfunctional
and aggregated molecules, an impaired lysosome and proteasome function, and neuronal
calcium homeostasis, as well as impaired DNA repair, contribute to cellular and molecular
mechanisms in brain aging (for an overview, see [159]). In recent years, alterations of the
so-called “gut–brain–axis” (for an overview, see [160]) increasingly receive attention and
are discussed to be involved in aging-associated cognitive impairments.

Lee et al. demonstrated that gnotobiotic mice receiving an aged microbiome suffered
from depressive-like behavior and impaired short-term and spatial memory [161]. Com-
pared to younger controls, it has been shown that 15-month-old C57BL/6 mice suffered
from cognitive impairments, which were accompanied by altered microbiota composition
and an impaired intestinal barrier function [162]. This is also in line with findings of studies
in senescence-accelerated mouse models [163,164]. Wu et al. further showed that the im-
paired intestinal barrier function in old-aged mice is associated with a loss of tight junction
proteins in the small intestine and an increased concentration of bacterial endotoxins in
the blood. In this study, TLR4-dependent signaling cascades were induced in both the
intestine as well as brain tissue [162]. Spatial memory was enhanced in old-aged TLR4 KO
mice compared to wild-type mice of a similar age in a sex-dependent manner [165]. The
systemic inflammation associated with the increased translocation of bacterial (endo)toxins
(for an overview, see [166]) has been discussed to further contribute to cognitive impair-
ment during the aging process in humans [167]. Indeed, as demonstrated in the study
of Lin et al., older, healthy adults (~71.2 years) suffer more from increased inflammatory
markers (e.g., IL-6) associated with cognitive age-related deficits than younger (~22.3 years)
participants [167]. This hypothesis is further supported by studies performed in old mice
suffering from memory defects and impaired cognition due to acute inflammations, as
well as in mouse models of neurodegeneration [168,169]. Old patients with prodromal
Alzheimer’s disease suffer from increased LPS levels [170] and altered microbiota composi-
tions [171,172]. Targeting the intestinal microbiota composition with probiotics or single
bacterial species, e.g., Akkermansia muciniphila, in mice with cognitive deficits has been
found to protect the intestinal barrier and improve cognitive functions [164,173]. This has
been shown not only with mild cognitive impairments, but also in several studies in mouse
models of Alzheimer´s disease (AD) (the most common form of dementia), as well as in
patients with AD reported to have altered microbiota composition [163,174–178], which
is associated with decreased diversity and altered composition [176]. So far, no single
strain of bacteria has been identified to be crucial during the development of cognitive
impairments [179]. While only being a case report, it was shown in a 90-year-old patient
with AD that a fecal microbiome transfer (FMT) used to treat a Clostridioides difficile infection
was associated with an improved cognitive function test [180]. While the modulation of the
gut microbiota via FMT has gained increasing interest for the treatment of Clostridioides
difficile infection, inflammatory bowel diseases, obesity, metabolic disease, and, as was
lately even suggested, cancer therapy (for an overview, see [116,181,182]), its application
in age-related diseases still needs further research. First clinical trials in old AD patients
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treated with a probiotic milk (Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium
bifidum, and Lactobacillus fermentum) for 12 weeks also demonstrated positive effects on cog-
nitive function, assessed by a mini-mental state examination [183]. However, as discussed
in a recently published meta-analysis of randomized controlled trials, the study situation
on the effects of probiotics in patients with dementia is not yet clear [184].

Beside the pathway mediated through an activation of the immune system, further
mechanisms are thought to link the microbiome to the central nervous system. As reviewed
by Sampson et al., a direct activation of the vagus nerve or alterations of the produc-
tion and release of neurotransmitters, hormones, or other metabolites (e.g., serotonin or
SCFA) was able to cross the blood–brain barrier (for an overview, see [185]). This by no
means precludes that, similarly to the intestinal barrier, the blood–brain barrier by itself
is altered during aging [186], contributing to the increased LPS levels found in brains of
old-aged mice [162]. Further studies are necessary to delineate the molecular mechanisms
affecting the gut–brain axis and, subsequently, their contribution to cognitive dysfunction
during aging.

6. Future Perspectives

As summarized in this review, the gastrointestinal epithelial barrier, with its multiple
layers and its various function, is affected by the physiological aging process. However, as
its role in healthy aging or disease development becomes increasingly evident, attempts
to restore the barrier function, e.g., through modulation via microbiota modifications,
supplementing strains such as Lactobacillus plantarum [187] or their metabolites [188,189], are
of special interest. Besides microbiota modulation through probiotic strains or postbiotics,
the current and future treatment of epithelial barrier dysfunction could include nutritional
interventions and also bioactive pharmaceutical molecules, biologicals, or mucoprotectants
(for an overview, see [190]). Recently, the disease-preventive effect of the zonulin antagonist
larazotide acetate was demonstrated for the prevention of arthritis [191]. In the future,
targeted epigenetic and miRNA approaches might also be employed in the restoration of
disrupted epithelial barriers (for an overview, see [190]). We are far from understanding
the detailed pathways of intestinal barrier dysfunction contributing to aging. With ongoing
demographic changes, healthy aging supported by optimal mucosal barrier functionality
will become increasingly important and needs the specific focus of research efforts in
the future.
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