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Simple Summary: The increasing interest in implementing artificial intelligence in radiomic models
has occurred alongside advancement in the tools used for computer-aided diagnosis. Such tools
typically apply both statistical and machine learning methodologies to assess the various modalities
used in medical image analysis. Specific to prostate cancer, the radiomics pipeline has multiple facets
that are amenable to improvement. This review discusses the steps of a magnetic resonance imaging
based radiomics pipeline. Present successes, existing opportunities for refinement, and the most
pertinent pending steps leading to clinical validation are highlighted.

Abstract: The management of prostate cancer (PCa) is dependent on biomarkers of biological
aggression. This includes an invasive biopsy to facilitate a histopathological assessment of the
tumor’s grade. This review explores the technical processes of applying magnetic resonance imaging
based radiomic models to the evaluation of PCa. By exploring how a deep radiomics approach
further optimizes the prediction of a PCa’s grade group, it will be clear how this integration of
artificial intelligence mitigates existing major technological challenges faced by a traditional radiomic
model: image acquisition, small data sets, image processing, labeling/segmentation, informative
features, predicting molecular features and incorporating predictive models. Other potential impacts
of artificial intelligence on the personalized treatment of PCa will also be discussed. The role of
deep radiomics analysis-a deep texture analysis, which extracts features from convolutional neural
networks layers, will be highlighted. Existing clinical work and upcoming clinical trials will be
reviewed, directing investigators to pertinent future directions in the field. For future progress to
result in clinical translation, the field will likely require multi-institutional collaboration in producing
prospectively populated and expertly labeled imaging libraries.

Keywords: artificial intelligence; radiomics; radiogenomics; prostate cancer; Gleason score; magnetic
resonance imaging
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1. Introduction

Prostate cancer (PCa) is the most common non-skin cancer in men, presenting a
global healthcare challenge [1,2]. Management strategies range from active surveillance,
a definitive surgical intervention, or a radiotherapy approach, which may entail years of
antiandrogen therapy. Selecting how to manage these patients is heavily dependent on
the PCa grade, a biomarker for its underlying biological aggressiveness. A patient with
low risk PCa is likely to do well regardless of the management strategy employed [3]. In
contrast, high risk PCa carries a significant likelihood of treatment failure even if a more
intense and prolonged therapy is undertaken [4].

Presently, PCa is diagnosed and its grade is evaluated via invasive biopsy. The
biopsied specimen is assessed by a pathologist to establish the grade. The grade itself is
most commonly reported as the Gleason score (GS), a sum of two ordinal classifiers of
the most predominant grades visualized by the pathologist, typically ranging from 6 to
10 [5]. More recently, GS values have been standardized by the International Society of
Urological Pathology (ISUP) into an ordinal classifier ranging from 1 to 5 instead—the
Grade Group [6]. As both are reported in the radiomics literature, it is worthwhile to
note that while lower values predict for lesser lethality, similar values are not necessarily
exchangeable between the two scales (i.e., Table 1).

Table 1. Summary of Gleason score (GS) and International Society of Urological Pathology (ISUP)
group.

Gleason Score 6 (3 + 3) 7 (3 + 4) 7 (4 + 3) 8 (4 + 4; 3 + 5; or
5 + 3)

9 (4 + 5; 5 + 4) or
10 (5 + 5)

ISUP Grade Group 1 2 3 4 5

However, prostate biopsies have multiple known limitations. Biopsy is frequently
not reflective of the true grade [7], which may be due to sampling error [8], interobserver
variability [9], and/or expertise [10]. Reported biopsy risks include pain, bleeding, erectile
dysfunction, and infection [11–14]. Finally, biopsy also incurs costs secondary to assess-
ments by multiple specialists and the patient’s other indirect expenses.

Imaging technologies partially address issues with sampling error. Combining mag-
netic resonance imaging (MRI) with ultrasonography (US)-guided biopsies [15–17] can
facilitate sampling of the most suspicious regions. Multiparametric MRI (mpMRI) has
advanced this approach; an MRI-targeted biopsy is less likely to miss more advanced
PCa [18–20] and decreases the frequency of repeat biopsies [21]. Clinically, the European
Association of Urology strongly suggests that imaging modalities, such as mpMRI, be
considered prior to proceeding to biopsy when the pretest probability of prostate cancer
being present is low [22].

Radiomic models offer a non-invasive reproducible method to assess PCa aggres-
siveness. Imaging characteristics, called textures or features, extracted from the labeled
region of mpMRI can be utilized as an input for conventional classifier models [23,24].
Such radiomic models must select the most informative features using feature selection
technique(s), otherwise the results may be biased by overfitting [25]. While this strategy has
been well demonstrated in multiple malignancies [23,26–28], the underlying understanding
of the most informative features and predictive models remains limited [29].

The growing interest in AI techniques and their applications in medicine [30], has
carried over to computer-aided diagnostic (CAD) systems to detect, grade, and introduce
other classifications of PCa [31–36]. So far, the term of radiomic with AI represents the
features extraction and interpretation of hidden quantitative imaging data to be used for
CAD [37]. To date, there has been a focus on conducting proof of concept studies. Radiomic
models have been used to discriminate low from higher-grade PCa [38,39], directly predict
the GS [23,24,40,41], lesion identification [42,43], and plan radiotherapy [44–46]. More
recently, radiomic models have been utilized to predict genetic characteristics, a field
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known as radiogenomics. These studies have explored the potential in characterizing a
PCa’s underlying biological aggression [47–52].

This narrative review synthesizes the current standards and state-of-the-art appli-
cations of radiomics for the classification of PCa. This includes our identification of the
radiomic features with the greatest present significance and a description of the relation
between metrics, techniques, and MRI sequences.

2. Multiparametric MRI (mpMRI) of Prostate Cancer

mpMRI is a type of non-invasive imaging integrating traditional anatomical sequences-
triplanar T2-weighted images (T2W) and perfusion imaging, namely the diffusion-weighted
images (DWI) with apparent diffusion coefficient maps (ADC) and T1-weighted imaging
(T1W) for the generation of dynamic contrast-enhanced images (DCE) [53]. Alternative
MRI sequences have also been evaluated for the PCa imaging, such as proton magnetic
resonance spectroscopic imaging (MRSI) [54]. Owing to the greater acquisition time and
extensive post-processing data required by MRSI, the DWI and DCE series are a preferred
method to evaluate patients suspected of having PCa or stage those with biopsy-proven
disease [55].

There is not a uniform consensus that mpMRI is required. Expertly interpreted bipara-
metric MRI, which forgoes inclusion of DCE images, has been observed to be adequate to
detect clinically significant PCa in a prospective cohort study [56]. A retrospective cohort
study has suggested that the advantage of adding DCE may be of the greatest yield in the
peripheral zone, the most common region for PCa to develop [57]. Regarding the radiomics
pipeline, mpMRI offers a potential advantage at the level of feature extraction as well (see
Section 3.5). With additional images to extract data from, there would be an increased
likelihood of extracting a radiomic feature of significant predictive value.

Human interpretation of mpMRI, when incorporating a combined interpretation of
T2W, DWI, and/or DCE series, can facilitate PCa detection. Clinically, mpMRI is used for
tumor detection, active surveillance, and to aid in management decisions [53,58]. Though
retrospective work may suggest a high specificity and sensitivity [59], a meta-analysis has
been performed in populations with a higher pretest probability of having PCa. Pooled
estimates observed that the sensitivity may be comparably high (82–96%) though specificity
is likely far lower (33–71%) [60,61]. Positive predictive values of 98% have been obtained
in limited retrospective series, but these high levels of fidelity only allowed for relatively
rudimentary classifications (i.e., PCa versus benign) [62]. A more thorough investigation
via meta-analysis observed that the positive predictive values ranged significantly between
studies, ranging from 35 to 50% [60,63]. Appreciating the moderate clinical confidence
imparted by these metrics, there would be an understandable need for technology that
could allow for a reliable non-invasive prediction of the presence of malignancy and its
grade. Important to note is the limits to generalizing these existing studies, as they speak
to the evaluation of specific nodules rather than the whole prostate.

Heterogeneous mpMRI image composition presents further difficulties, largely due to
a substantially diverse implementation of equipment across institutions [64]. To facilitate a
standardized assessment of PCa, the European Society of Urogenital Radiology (ESUR)
developed Prostate Imaging Reporting and Data System (PI-RADS) in 2012 [65–67], which
was updated in 2015 (i.e., PI-RADS v2 [66]) and more recently in 2019 (i.e., PI-RADS
v2.1 [68]). The output of this evaluation is an ordinal risk score between 1 and 5. Though
PI-RADS allows for acceptable interobserver variability at expert centers [69], it does not
address the issue in community settings [70]. Importantly, while it may allow for some
reliable distinction between low- and high-grade malignancies [60,61,71], there has not
been a demonstration that human interpretation reliably ascertains the GS. PI-RADS also
does not overcome issues regarding the multifocality nor temporal and spatial intratumoral
heterogeneity of PCa [23,72–74]. While PI-RADS sets multiple imaging standards, greater
standardization of additional image acquisition details is necessary if the field is advancing
to implement imaging characteristics not discernible by human evaluation. This requires
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a common acquisition protocol to standardize the image and avoid the heterogeneity in
imaging quality.

Furthermore, other factors could alter mpMRI image acquisition on a daily or patient-
to-patient basis, such as distortion related to the local magnetic field inhomogeneities due
to rectal air or metal implants [75]. Diagnosis based on mpMRI suffers from interobserver
variability, influenced by experience [76], and subtleties in differentiating benign and
premalignant lesions that may closely resemble PCa [77]. Studies of AI-based radiomics
have suggested that these models may become a reliable and informative biomarker
complementary to human interpretation of mpMRI [23,24,31].

3. Radiomics Pipeline for Predicting Tumor Grade
3.1. Basic Flowchart

Several studies have utilized a standard pipeline for radiomic analysis, including the
following main steps: image acquisition, segmentation (or labeling), feature extraction,
feature selection, and statistical and predictive modeling [41,78–81]. Figure 1 illustrates
the process of radiomic analysis as it pertains to identifying signatures for establishing the
PCa grade group, as previously implemented by Chaddad et al. [23,24]. The product is a
radiomic signature (a vector), which includes the most predictive features as its elements.
This section outlines the application of radiomics for predicting a specific biomarker, the
grade group, though a similar pipeline could be applied to predict a different clinical or
molecular biomarker.

Figure 1. Flowchart of the standard radiomics model. (1) Multiparametric MRI (mpMRI) image acquisition. (2) Segmentation:
tumor labeling-green/white contour. (3) Imaging features extraction using shape, texture, and/or deep features derived from
convolution neural network layers. (4) Clinical, radiomic features, molecular data for statistical analyses, based significance test
and classifier models, to identify relevant features for predicting the clinical outcome (e.g., Gleason score).

First, a database of a large number (e.g., preferred to be greater than 1000) of medical
images (mpMRI) is prepared so that a set of standardized images can be subject to radiomic
analysis with minimal bias [82–84]. The number of imaging features number is preferred
to be equal or less than the number of samples. Prospective works validating a specific
threshold of MRI images are lacking, though related work with computed tomography
imaging has supported that thousands of medical images would likely be required [85].
Second, segmentation of images identifies regions of the image thought to be PCa as
regions of interest (ROIs). Segmentation may be accomplished, manually or semi/fully
automatically. Third, feature extraction records imaging features (e.g., standard features:
shape descriptors, histogram statistics, texture; deep features, etc.) in one or more separate
vectors for subsequent analysis. Fourth, radiomic features have their predictive capacity
estimated (e.g., what is the relative importance of different radiomic features). Finally,
univariate analysis (e.g., significance test, Spearman correlation, etc.) and multivariate
analysis (e.g., models of classification and regression: random forest and logistic regression



Cancers 2021, 13, 552 5 of 21

models) characterize models that exploit the earlier imaging features to predict the PCa.
This final step should be done in a validation cohort of patients to demonstrate some
measure of generalizability of the newly generated radiomics model.

In addition to radiomic features, clinical and molecular variables can readily be
included in the eventual prediction model. Such details are thought to benefit predictions
of the GS [86] but are also included in the radiogenomic studies. In these cases, imaging
features are modeled to predict molecular characteristics (e.g., androgen resistance) or are
combined with multiple biological features (e.g., genomics, proteomics, and metabolomics)
to better predict a PCa’s potential aggressiveness.

Given the multidisciplinary expertise required to validate the different aspects of the
radiomics pipeline, collaboration is essential. For example, oncologists will have input
as to the clinical parameters to model and format of the output, radiologists can provide
expert segmentation of the ROIs, molecular scientists may contribute genomic or proteomic
variables, biomedical scientists can translate the clinical dilemma into a scientific question
addressable by a machine-learning based approach, and those with statistical expertise
can appropriately model the variables for the desired outcome. The interaction between
disciplines is numerous, necessitating clear communication so that the eventual output has
the potential to resolve the actual clinical question.

3.2. Image Acquisition

MRI radiomics have demonstrated the potential to discern the PCa grade [23,24,86–88]
or guide management approaches [45,89] from the abundance of clinical data acquired at
each scan. However, reproducibility is a significant issue at different stages of the radiomics
pipeline, with few studies investigating this question [41,78]. At present, it is unknown if a
radiomic model can be generalized to other patients imaged with the same scanner. While
some imaging features are felt to remain stable between image acquisition events, more
elegant solutions, such as image normalization, have failed to address the issue.

To investigate this problem, attention must be paid to the reported processing configu-
ration in radiomics studies (or an emphasis must be placed on its reporting by potential
peer reviewers and editors). Standardization of MRI image acquisition across vendors
(e.g., Siemens, GE, Philips, Hitachi, etc.) offers an ambitious solution to reduce this vari-
ability, but understandable conflicts in revealing corporate intellectual property may limit
complete transparency. Machine inherited artifacts and the discrepancy between scanners’
measurements are also acknowledged in the field of breast cancer (e.g., utilizing X-ray
scanners) [90]. Pending studies must address the issue of radiomic feature stability, investi-
gating if some features can remain stable between imaging events, so that collaboration
and eventual widespread clinical implementation can be fostered.

3.3. Image Quality Assessment and Standardization

When images are acquired using multiple MRI scanners with various acquisition
parameters (e.g., echo time, repetition time, flip angle, etc.), image quality can be very
different. To first ensure that the acquired images are of sufficient quality, numerous
methods have been proposed [91]. The most popular is intensity normalization, which
uses a histogram of MRI images based on the background intensity only without the
requirement of prior knowledge to assess image quality [92].

To develop a radiomics model that appropriately compares its acquired data, inputs
must be standardized. Typical variations between MRI scanner models could be revealed
in the following image parameters: pixel size, slice spacing, image contrast, slice thickness,
patient location or variations introduced by reconstruction algorithms. By resampling to
a standard resolution, typically 1 mm3 voxel resolution and an image size of 256 × 256
× slices (or 512 × 512 × slices, i.e., slices represent the third image dimensions) voxels,
many of the aforementioned parameters will be standardized. Following this, signal
intensities within each image are linearly transformed (normalized) to either the [0, 1]
or [0, 255] range. There are also many other approaches to normalization-Gaussian and
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Z-score normalization are two common alternatives [93,94]. The normalization process
will impact the values of the different radiomic features, influencing the information
represented by each image and potentially interobserver reliability [95]. As multiple
groups strive to optimize this process, an approach proposed in other disease sites [96]
and AI-implementing clinical studies [97] forms a collaborative group to standardize a
methodology to allow for ongoing intergroup comparison and collaboration.

3.4. PCa Segmentation

To investigate PCa imaging features via a standard radiomic analysis, an ROI cor-
responding to the tumor volume-region must first be segmented. Manual (or semiauto-
matic) segmentation is usually performed by specialized clinicians (i.e., diagnostic radiol-
ogists) [98]. The process of manual segmentation is subject to inter-rater variability, due
to heterogeneity in the segmentation methodology employed between clinicians [99] and
due to occasional physical fatigue. A common strategy used to overcome this inter-rater
variability issue is incorporating the overlapping/common ROI of 2–3 segmentations, also
called masks or labels, as the ground truth.

Many tools are available for segmentation, such as the publicly accessible 3D Slicer [100]
or ITK-SNAP [101]. Once the ROI has been defined across all of the mpMRI images, there
must then be a coregistration step that matches the tumor mask to the remaining mpMRI
sequences (e.g., T2W, ADC, DCE, etc.), often by using the same segmentation tool [102,103].
This coregistration process is performed slice by slice on a single MRI sequence, known as
the reference image. Most frequently, this is an axial T2W sequence. Any bias introduced
due to an error in registration (alignment) is referred to as an image distortion inherent to
DWI and the use of different image spatial resolution. Alternatively, the coregistration step
has been foregone by segmenting each MRI-sequence individually, minimizing the potential
for distortion [23]. Investigations comparing the consequences of distortion on the ultimate
clinical classifier hold merit, validating the need for ROI localization with the highest fidelity.

Another segmentation strategy is fully automatic segmentation. The relative success of
automatic segmentation is typically expressed as a Dice score or Dice similarity coefficient
(DSC), quantifying the degree of overlap between the predicted mask and the ground
truth [104]. DSC values range from 0 to 1, with a DSC of 1.0 communicating that there
is a perfect overlap of the predicted segmentation and the truth, the ideal score. Values
decrease as there is more discordance between the two, with a DSC of zero communicating
there is no overlap. This approach has been demonstrated using classifier models with the
prostate labeled on mpMRI images (i.e., T1W and T2W). For instance, the unsupervised
learning utilized fuzzy c-means clustering was used for partitioning data into groups to
achieve an average DSC of 0.91, relative to manual segmentation [105].

Advanced deep learning algorithms have deployed convolutional neural network
(CNN) to segment the ROI corresponding to a PCa [106–114]. The most common model
used is the U-Net architecture, which is proposed for fully automatic segmentation of PCa
with a DSC of ≥0.89.

Without knowing where the limitations in segmentation exist, as a machine-learning
based process does not necessarily have a predictable pattern in its “error”, it awaits further
segmentation studies to determine if such DSCs are clinically adequate. If the continued
refinement of CNNs has these values approach 1.00, the chance of any residual difference
being clinically meaningful is low. To validate such an assumption, clinical studies will
be essential.

3.5. Image Feature Extraction

Extracting image features from the ROI is arguably the principal step in radiomic
analysis. Image features summarize the image information by elements vector to then
be analyzed and/or be used as inputs for classifier models. Specifically, the imaging
features encode the characteristics of the ROIs to describe their heterogeneity. Most types
of imaging features will be based on their texture (e.g., gray-level co-occurrence matrix
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(GLCM), neighborhood gray-tone difference matrix (NGTDM), neighboring gray-level
dependence matrix (NGLDM), gray-level run-length matrix (GLRLM), etc.) [115,116], shape
(known as morphological features) [38], histogram-based descriptors [116], or features
derived from deep CNN [117].

Among other novel imaging features based on texture computation, the joint intensity
matrix (JIM) has been suggestive of greater predictive capacity for the GS. JIM derived
features encode the spatial relationships of pairs of voxels derived from the corresponding
pair of MRI sequences [23]. This approach outperforms models based on standard GLCM-
derived features alone, which are only extracted from a single MRI sequence [24]. Showing
great potential is a recent study describing how deep CNNs can generate deep texture
features in PCa [117] or benign disease cases [118]. The ability to generate a multitude of
features increases the likelihood of discovering imaging characteristics representative of
the GS. This pipeline model was expanded by Chaddad et al., adapting multiple 2D CNN
models to generate deep texture features in prostatic mpMRIs, generating a robust model
for predicting the GS [88].

3.6. Feature Analysis and Prediction Model Construction

The features extracted from each image are aggregated as a vector, which is then sub-
jected to further analysis. Either all or a preselected features are evaluated for their potential
to be a non-invasive marker (alternatively, an indicator) associated with a clinical variable
(e.g., molecular markers [50], GS [23], survival [119], and risk of breast cancer [90,120]). The
term, radiomics, is representative of the various associations between an imaging feature
and the clinical variable of interest. Similarly, radiogenomics specifically investigates the
potential associations between imaging features and characteristics typically attributed
to the genomics domain and its immediate derivatives (e.g., genotypes, gene expression
profiles, and protein expression).

Aggregated features are then screened for candidates with the greatest likelihood to
have a meaningful association with the clinical variable of interest. Typically accomplished
via univariate analysis, imaging features are normally first assessed for rudimentary
associations; namely, do they differ when the clinical variable changes (e.g., T-test and
Wilcoxon test) or does the extent of that difference have a linear association with variations
in the clinical variable (e.g., the Spearman correlation rank between the ROI’s entropy and
the PCa’s GS). Once adjusted for the confidence in these estimates to correct for multiple
sampling, often via the relatively strict Holm–Bonferroni correction [121], there will often
be a limited number of candidate radiomic features remaining. The remaining features
with the greatest and sufficient predictive capacity will be later in a multivariate model,
being modeled with other radiomic features or clinical variables. Though the specifics of
the predictive modeling are immensely diverse, the process of imaging feature extraction,
evaluation, and implementation is representative of a standard radiomic model.

Predictive models [122,123] can incorporate covariates from a variety of sources
(e.g., clinical, molecular, and radiomic [124]) to predict a clinical outcome. Deep learning
models (e.g., CNNs) form a specific approach that is directly applied on images to extract,
select features, and predict the class (classification) or a value (regression) in an automated
fashion. Examples in the PCa literature have observed that this deep learning approach
detects malignant lesions [125], predicts the GS [126], and segments the ROI [127,128].

A key limitation of deep learning approaches is the vast number of sample images
required to robustly train a model (i.e., thousands of labeled data sets), presenting an often-
insurmountable barrier to clinical translation. An approach to circumvent this limitation
has been proposed to construct CNNs pretrained in other settings and then apply them
to the clinical setting of interest [118,129–132]. In PCa specifically, Chaddad et al. used this
approach to predict the GS with robust outcomes albeit with a smaller publicly available
data set [88]. The established CNNs were trained on brain MRI data and used to generate
multiscale texture of PCa images. Shannon entropy function is then used to encode the CNN



Cancers 2021, 13, 552 8 of 21

features and transform them to a set of informative features called deep entropy features
(DEFs) that were used as inputs to random forest classifiers to predict the GS of PCA.

Table 2 reports on the recently published works utilizing mpMRI to predict the GS.
The inclusion of more classifying options by Jesen et al. [133] and Chaddad et al. [88]
may be associated with the seemingly greater area under the ROC curve (AUC) values,
implying some value to this approach. Common to many studies, frequent radiomic
features used in GS predictions were based on texture (e.g., histogram, GLCM, NGTDM,
and GLSZM), shape/morphological (e.g., volume and surface), and clinical markers (e.g.,
age and treatment modality). This is consistent with a recent survey that reports a median
AUC value of 79% (IQR—interquartile range: 0.77–0.87) for PCa classifications [87].

However, metrics based on the true negative rate (i.e., background voxels correctly
classified as cancer-negative) are affected by problems of class imbalance, which may
occur if there is a large imbalance in the number of voxels within each class [134,135]. The
aforementioned implementation of ROC curves and accuracy, commonly employed in the
biomedical literature, suffer from such bias. To circumvent this bias, alternatives include
precision–recall curves and DSCs instead [136].

Table 2. Summary of the area under the ROC curve (AUC) value for recently published papers related to GS prediction
using radiomic signature derived from mpMRI of prostate cancer (PCa).

Reference Feature Methods GS ≤ 6 GS = 7 GS ≥ 7 GS ≥ 8 GS ≤ 7

Chaddad et al. [88] Deep entropy features 88.82 87.45 82.28 93.03 84.72

Woznicki et al. [86]
1 Standard features + Shape
+ PI-RADS + PSAD + DRE

88.9 - 84.4 - -

Li et al. [137]
1 Standard features +

Clinical
- - 98.00 - -

Min et al. [138] 1 Standard features + Shape 82.30 - - - -

Chaddad et al. [24] 1 Standard features 83.40 72.71 77.35 - -

Cuocolo et al. [38] Shape 78.00 - - - -

Chaddad et al. [23] Joint intensity matrices (JIM)
+ GLCM 78.40 82.35 64.76 - -

Toivonen et al. [139] GLCM + LBP + HOG +
Gabor + Haar + filters 88.00 - - - -

Jesen et al. [133] 1 Standard features 85.00 89.00 94.00 86.00 83.00

Cao et al. [140] FocalNet - 81.00 79.00 - -
1 Standard features: Histogram + gray-level co-occurrence matrix (GLCM) + neighborhood gray-tone difference matrix (NGTDM) + Gray
Level Size Zone Matrix (GLSZM), PSAD: prostate specific antigen density; DRE: digital rectal examination.

4. Prostate Cancer Radiogenomics

Radiogenomics integrates imaging features to predict specific genomic characteristics,
offering the potential to direct PCa therapy selection (i.e., a predictive biomarker) and guide
informed decision-making (i.e., a prognostic biomarker [141]. There is a significant clinical
impetus for advancing the field of radiomics in this direction. For example, the presence of
specific double-strand DNA break deficiencies (i.e., BRCA 1 or 2) can predict the benefit
of certain classes of drugs in metastatic castrate-resistant PCa [142]. Conversely, ad hoc
analyses of a smaller phase II trial has suggested that specific genetic markers for a PCa’s
genomic integrity (e.g., ATM, BRCA1/2, RB1, and TP53) could predict when aggressive
local treatment of a metastatic disease may not enable a safe deferral of initiating symp-
tomatic lifelong endocrine therapy [143]. Among ongoing randomized trials, prospective
investigations of radiogenomic signatures could potentially allow for the identification of
early androgen resistance, selecting populations that may (or may not [144]) benefit from
intensification with novel androgen receptor axis therapies [145].
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There has been a vast multitude of genetic characteristics identified as potentially
relevant biomarkers in phylogenetic analyses [146,147] and our maturing understand-
ing of epigenetics [148]. There is also significant discussion surrounding how additional
biomarkers of a PCa’s molecular function could assist in determining how aggressive
to be in the setting of early metastatic disease. There would be great value in delineat-
ing where an advanced PCa is in its natural history [149]. Different uncertainties and
management strategies exist for potentially curable high-risk PCa versus oligometastatic
hormone-sensitive disease, where long-term outcomes are being actively explored, versus
an advanced castrate-resistant malignancy with a more rapid and inexorable course.

Radiogenomics has been studied more extensively in other malignancies, including
central nervous system oncology (e.g., identifying high grade [28,150] and lower-grade
gliomas [151]), lung cancer [152], and other tumors [153,154]. In PCa, investigations of a
single gene have best characterized phosphatase and tensin homolog (PTEN) expression,
a tumor suppressor of the AKT/PKB pathway [155]. Examples have included imaging
features and the GS of a peripheral zone PCa having a weak but significant-association
with PTEN expression [156] or that low ADC values correlated with PTEN expression,
while PTEN expression was negatively correlated with the presence of lymph node in-
volvement [157].

With advances in genome sequencing, there have been efforts instead to model the
genomic profile of a PCa with the assistance of radiomic features, rather than studies
characterizing just a limited genetic profile. Earlier studies utilized mpMRI alone in a small
number of patients—six participants in two notable cases. The first related 49 conventional
radiomic features to the GS and 65 genes evaluated among commercially available prostate
cancer genomic assessments [124]. This exploratory study observed multiple radiomic
features had significant correlations with gene expression. The second study profiled
both abnormal and normal regions of their prostates with whole-exome DNA sequencing,
identifying the mutational burden of cancer-associated genes profiled by the geographic
region. Their radiogenomic modeling could separate GS 3 + 4 from GS 4 + 5 cancers,
distinguishing potentially intermediate-risk from high-risk disease, but not predict the
mutational load by region.

Radiogenomic signatures may be able to predict comprehensive PCa gene expression
profiles from biopsy samples, rather than just their single gene constituents [158]. Since such
gene expression has recently been suggested to not be as vulnerable to sampling bias/tumor
heterogeneity as previously thought [159] and that PIRADS classification can predict for
gene expression [160], the signal that prostate radiogenomics could potentially predict and
identify validated genechip results is becoming more plausible. Retrospective works have
suggested that dichotomous classifications (i.e., high or low scores) of the decipher genetic
risk profile could be predicted from mpMRI with modest confidence (AUC = 0.80–0.84)
and may be more reliable than predictions of the GS [161,162]. Other relevant explorations
with positive signal have been of radiomic signatures, which distinguish the genomic
profiles associated with high-risk pathological variants (e.g., intraductal carcinoma), [163]
or hypoxic lesions of PCa [164].

Additional clinical sources of data have enriched radiogenomic analyses by combining
novel functional imaging (prostate specific membrane antigen positron emission tomog-
raphy/computer tomography (PSMA PET/CT)) or more classical clinical features with
mpMRI [165]. Among five patients, there were multiple radiomic signatures in the index
lesions that correlated with the number of copy number alterations, a measure of the PCa’s
mutational load and underlying biological aggression [166]. Such a clear correlation was
not observed by the earlier studies, which utilized mpMRI alone, though a contrast to the
copy number alterations in normal tissue was not provided. The utility of PSMA PET/CT
has also been supported by its ability to detect PTEN-loss with hopeful sensitivity (0.80)
and specificity (0.77) among prostatectomy patients [167]. In a separate retrospective study
of 298 prostate cancer patients that had undergone prostatectomy, they utilized earlier
established conventional radiomic features [124] to predict the tumor grade. Unlike the
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other studies referenced in this selection, this was not an example of a radiomics model
predicting genetic expression. They observed that by combining known genomic, radiomic,
and clinical features, they improved the accuracy of their predictive model for the definitive
tumor grade [47], also demonstrating possible evolution in the technical definition of the
term radiogenomics.

An interesting clinical feature, which has spurred subsequent questions in radio-
genomic analyses, is the visibility of a lesion on mpMRI. It has been appreciated that a
greater proportion of lower grade PCa may be occult on mpMRI, relative to higher risk
disease [168,169]. Multiple retrospective radiogenomic studies have supported that visible
mpMRI lesions, and the genes that predict for visibility, do indeed represent a greater risk to
the patient [163,170,171]. However, it is crucial to explore the nature of these infrequent but
higher-risk occult mpMRI—what if the highest risk lesions would not even be segmented
in the radiomics pipeline because they are not detectable?

Subsequent characterizations of the genomic profiles of mpMRI visible or invisible
lesions have revealed biases in our potential other radiomic studies, as the invisible lesions
will not have been included. For example, a retrospective study of 62 PCa lesions noted that
among 5 evaluated genes, all CHD1 overexpressing lesions were invisible to mpMRI [172].
A comprehensive retrospective study of intermediate-to-high risk PCa patients utilized
genomic, epigenomic, and transcriptomic data to appreciate trends among 43 prostate core
samples from 6 different patients compared to both malignant and benign nodules [173].
Though limited in number, three out of six cores in mpMRI invisible lesions contained at
least one mutation thought to be representative of a more advanced disease state from
robust phylogenetic studies (e.g., multiple DNA repair genes) [146].

Though it would not address the issue of bias introduced from earlier studies, there is
reassurance offered from a retrospective study, which produced a radiogenomic signature
for tumor visibility among 10 patients with 26 PCa lesions [174]. The resultant nine-gene
signature generated was modestly sensitive and very specific, 75 and 100% respectively
(AUC = 0.88) for mpMRI visible lesions and did not seem to be prognostic for poor
outcomes. This radiogenomics study did however emphasize the need to develop a
method to evaluate invisible mpMRI lesions.

As this review continues to suggest directions for scientific exploration, attention
should be drawn to present gaps in the radiogenomic literature. To date, there is no pub-
lished prospective work on the utility or validity of radiogenomics. Next, the number of
potentially clinically relevant biomarkers is likely to expand as various other -omic profiles
(e.g., Metabolomics and proteomics) gather the evidence necessary to felt to complement
our assessment of PCa. To date, the radiomic features used in these analyses have not
evaluated the yield of deep radiomic features. Finally, models that consist of biomarkers of
multiple sources (e.g., clinical, radiomic, and genomic) have repeatedly demonstrated im-
proved predictive capacity. Appreciating these relative deficits can help the field appreciate
where the most pertinent radiogenomic inquiries can be pursued.

5. Barriers and Strategies for Clinical Translation

Outside of technical refinement and a greater volume of imaging data, there remain
significant issues of bias and generalizability that must be overcome before predictive
radiomic models can be clinically implemented in the initial assessment of PCa. The issue
of generalizability pertains to both heterogeneity in image acquisition parameters and un-
certainty surrounding the stability of imaging features [78]. A prospective study, conducted
to respect consortium guidelines [66,97], will be required to address the generalizability
issue. It must demonstrate that the radiomic model is sufficiently resilient to instability in
its radiomic features following serial assessments. Given the present state-of-the-art, such
a study is unlikely to suggest that radiomic models are ready for clinical implementation
to be positive. To advance the radiomics field, the study would need to discover novel
radiomic features that remain stable between serial assessments—a feasible outcome given
the success of CNNs in this role [88]. If sufficient stable features were identified, this
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would lead organically to a multicenter validation study that could demonstrate intra- and
interpatient radiomic feature stability.

Complicating matters is the quality of the gold standard. The majority of PCa ra-
diomic studies treat prostate biopsy as the gold standard evaluation of the GS, as per the
clinical guidelines, which utilize biopsy results to determine a management strategy [175].
Unfortunately, in approximately 30% of patients undergoing radical prostatectomy, the
presurgical prostate biopsy has been found to not be representative of the ground truth.
Potential sources of this error were outlined earlier [8]. It is also worth highlighting that
a degree of precision may be lost in studies that implemented systematic biopsy, rather
than a targeted biopsy. In the former, the label applied to the segmented PCa may be
inappropriately generalized from an adjacent cancer. The addition of an MRI-targeted
biopsy is likely to increase the specificity of the biopsy for detecting clinically significant
prostate cancer [176].

Given that the vast majority of the PCa radiomics literature is based on biopsy, the
field has been predisposed to a significant bias. This could eventually be overcome with
sufficient data, but the resource cost would be higher. The most likely resolution will be
radiomic models validated on PCa biopsy results being externally validated on patient’s
who proceeded to prostatectomy. If this is found not to be feasible, one could expect that
prospective evaluations of imaging feature stability could exclusively feature prostatec-
tomy patients. This approach will also have its limitations, as patient’s that proceed to
prostatectomy may have different imaging features than those that are managed by active
surveillance or radiotherapy-based management strategies.

A similar risk of bias exists at the level of PCa segmentation. Typically, radiomic
analyses will only consider the molecular features (e.g., the GS and mutation status) of
an index lesion, which is deemed the most aggressive site and likely origin of metastatic
potential [177]. However, PCa is a multicentric disease. While recent work has sug-
gested that this could allow for sampling of the whole gland to provide data to extract
biomarkers [159], there is no data to suggest if the segmentation of all prostatic nodules
or the whole gland could provide more (or less) reliable and relevant radiomic features.
Segmentation of the whole gland could also lead to works that allow for the detection of
more occult non-clinically significant PCa, allowing for non-invasive active surveillance
approaches. Future prospective works would benefit from stating the intent to investigate
such uncertainties a priori, allowing this potential source of observer bias to be challenged
with greater methodological rigor.

Finally, there must also be a consideration for the limits of human understanding.
The deep entropy radiomic features referred to earlier represent imaging characteristics
without an intuitive function to a human user. Traditional rationalizations of covariate
inclusion in a model imply that each covariate must have a role in the biological pathway
to arrive at the clinical outcome. Based on the “black-box” nature of a CNN, there will not
be an interpretable rationale why a selected imaging feature is associated with a clinical
outcome [88], an ongoing initiative is now trying to address what is known as explainable
AI (XAI) [178–180]. There will remain some residual uncertainty as to the viability of all
such deep features, which may hinder later efforts of knowledge translation or medical
device approvals.

Despite the prevailing influence of AI-based solutions (e.g., deep/machine learning)
in the research community, the clinical use of such algorithms when it comes to predict-
ing individual risk for any malignancy is still limited [181]. Increasing the detection of
aggressive prostate cancer while decreasing unnecessary (false positive) biopsies was the
rationale for an initiative that mildly penetrated the clinical settings in Scandinavian coun-
tries. The Stockholm 3 model (STHLM3) was derived from statistical inference algorithms
and approximate-Bayesian computation, presenting an alternative to PSA testing.

With the adoption into routine clinical use in 2016, over 55,000 Swedish men were
recruited to study the model’s efficacy [182,183]. It was then validated on nearly 10,000 men
in Sweden, Norway, and Finland. Subsequent validation tests were carried out in Germany,
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the Netherlands, and the UK. Although, STHLM3 is a shallow example of machine learning,
it is acceptable. In contrast, deep learning is still far from being widely adopted clinically but
its potential yield is large. Instilling trust in deep learning approaches remains contingent
on the reassurance of at least two issues, the establishment of the ethical AI/deep machine
learning framework and the XAI accomplishment.

The dilemma that we face in most cases is that the best performing AI models are the
least explainable due to the “black-box” decision of these models. Unlike in clinical settings,
this has not presented a barrier to many commercial manufacturing outlets, where smart
wearable devices have seen great consumer interest in the lay public. For risk prediction
of chronic diseases, for instance, AI ethical standards and XAI are very important aspects
to allow for the wide adoption of AI-based solutions. This raises another close term that
is not to be confused with XAI-interpretability. Interpretability is the ability of an AI
system to establish a cause–effect relationship. In contrast, the ability of this system’s
inner parameters (i.e., deep learning usually exhibits millions of hidden parameters [88])
to explain its decision is its explainability [179].

6. Next Steps Involving AI with Radiomics

The specific radiomic applications for PCa will closely follow the clinical demands of
the field, necessitating a multidisciplinary approach to understanding the underlying tissue
characteristics, their relationship with -omics data, and the underlying computer science.
Based on recently published work [86,88], incorporating additional clinical features can
improve the quality of the model. Since the heterogeneity of PCa zones is dissimilar, it will
likely be of value to observe the precedent set by PI-RADS and generate radiomic models
specific to each zone [71]. As to clinical features, including relevant details to prostate
cancer staging (e.g., T stage, PSA, and PSA doubling time) or tumor grade (e.g., finasteride
use, ethnicity, and age) should be an ongoing consideration.

A pertinent example that did not benefit from the implementation of AI was the earlier
referenced STHLM3 study, which benefitted from incorporating multiple clinical, biochemi-
cal, and radiological biomarkers [183]. Similarly, the radiogenomic models were seemingly
improved with additional clinical data sources, but utilized conventional radiomic features
in their modeling [47,157,165,182]. Enriching such models with deep radiomic features is a
promising setting for study.

The greatest challenge is likely to be the generation of multicenter, large-sample,
randomized-controlled clinical trials to validate a sufficiently stable model. Contributing
to public datasets, such as The Cancer Genome Atlas (TCGA) [184], the Cancer Imaging
Archive [185], and the Quantitative Imaging Network [186] will expedite earlier validation
studies of radiomic models while improving generalizability. There is awareness of the
considerable ethical concerns surrounding anonymization and informed consent of these
Big Data investigations [187], with consensus guidelines prompting broad suggestions on
how approaches to these issues should be documented [97,188].

A pragmatic next step would be refining the work to label the ROI through a deep
learning approach (e.g., UNet, etc.) [127,189–191] and potentially implementing domain
adaptation [192]. Moreover, there would be a greater amount of data available, as not
every imaging data set would require biopsy data as well. Clinicians would be required to
provide the ground-truth ROI in the labeling of the data sets. Deep learning models would
be well suited to scale-up these large data sets to improve their performance.

The addition of new imaging modalities will expand the role of radiomics. The ability
of PSMA-PET/CT to differentiate PCa from other soft tissues has already demonstrated
superior performance in staging high-risk PCa, compared to CT and bone scan [193].
As these imaging techniques become more widely available, we will gain the ability
to implement AI-based radiomic models that can incorporate data rich mpMRI, novel
modalities, and hope for a collaborative big-data approach. The combination of all these
directions will guide us closer to offering non-invasive personalized medicine.
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7. Conclusions

This review highlighted the promising role of radiomics in predicting the GS in PCa.
In a step-by-step fashion, the implementation of a radiomic pipeline was detailed alongside
pertinent concerns. The fledgling role of AI-based approaches in predicting the GS was
described, with suggested directions for future studies. By applying the potential power of
these AI-based approaches to specific standardized prospective clinical studies, which can
address concerns for imaging feature stability, the field of radiomics has the potential to
undergo clinical translation in the near future. Until that time, the key challenge remains to
ensure that the scientific community retains access to high-quality clinical and radiological
resources so that the field has sufficient data to continue to mature.
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