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1 INSERM, U1043, Toulouse, France, 2 CNRS, U5282, Toulouse, France, 3 Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse,

France, 4 Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of

America, 5 Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America

Abstract

CD8 T cells protect the host from disease caused by intracellular pathogens, such as the Toxoplasma gondii (T. gondii)
protozoan parasite. Despite the complexity of the T. gondii proteome, CD8 T cell responses are restricted to only a small
number of peptide epitopes derived from a limited set of antigenic precursors. This phenomenon is known as
immunodominance and is key to effective vaccine design. However, the mechanisms that determine the immunogenicity
and immunodominance hierarchy of parasite antigens are not well understood. Here, using genetically modified parasites,
we show that parasite burden is controlled by the immunodominant GRA6-specific CD8 T cell response but not by
responses to the subdominant GRA4- and ROP7-derived epitopes. Remarkably, optimal processing and immunodominance
were determined by the location of the peptide epitope at the C-terminus of the GRA6 antigenic precursor. In contrast,
immunodominance could not be explained by the peptide affinity for the MHC I molecule or the frequency of T cell
precursors in the naive animals. Our results reveal the molecular requirements for optimal presentation of an intracellular
parasite antigen and for eliciting protective CD8 T cells.
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Introduction

CD8 T cells play a critical role in immune-mediated protection

against intracellular apicomplexan parasites. Antigenic determi-

nants recognized by CD8 T cells are short peptides of 8 to 10

amino acids presented by class I molecules of the major

histocompatibility complex (MHC I). Antigenic peptides are

typically degraded by cytosolic proteasomes, transported into the

endoplasmic reticulum (ER), trimmed by ER-resident aminopep-

tidases and loaded on peptide-receptive MHC I molecules [1].

The spectrum of peptides that can theoretically be presented by a

given MHC I is far larger than the peptides that actually elicit

CD8 T cell responses. Furthermore, not all the peptide-MHC I

complexes that can be recognized are equal: rather they elicit a

hierarchy of specific CD8 T cells. This phenomenon of ‘‘selection

and ranking’’ is termed immunodominance. Immunodominant

peptide-MHC I elicit the most abundant cognate T cell

populations, whereas subdominant peptide-MHC I induce less

abundant T cells (reviewed in [2,3]). Knowledge of the

mechanisms that enhance immunogenicity and determine im-

munodominance hierarchy is central to design of optimal

vaccines.

Mechanisms of immunodominance have been widely studied in

the context of viral infections. The dominant position in the

hierarchy has been positively correlated with 1) efficiency of

peptide generation by the antigen processing pathway, e.g. due to

proteasomal activity [4], ER aminopeptidase activity [5] or the

nature of epitope-flanking sequences [6]), 2) antigen abundance

[7], 3) ability of the antigen-presenting cells (APCs) to stimulate T

cells, e.g. dendritic cells (DCs) versus non-professional APCs [8], 4)

MHC binding affinity [4,9] and 5) size of the naı̈ve pool of specific

T cells [9,10,11]. This latter parameter is increasingly being

considered as a good predictor of immunodominance hierarchy,

although, like the other parameters, it does not seem to be absolute

[12].

During infection by intracellular parasites, the parameters that

promote immunogenicity of a protein and that determine T cell

immunodominance remain largely unknown. Unlike viruses,

parasite-derived antigens are not synthesized by the host cell

translation machinery, thus bypassing a preferential linkage

between protein synthesis and MHC I presentation [13].

Moreover, except for antigens that may be directly injected into

the host cytoplasm (e.g. T. gondii rhoptry proteins), most antigens

from parasites that live in vacuoles are segregated from the cytosol
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by one or more membranes. We hypothesize that, despite the

greater genomic complexity of apicomplexan parasites relative to

viruses [14], these key differences could determine the limited

number of hitherto characterized antigenic peptides from Plasmo-

dium yoelii [15] Theileria annulata [16] or T. gondii [17] parasites.

In the present study, we addressed the causes and consequences

of immunodominance during T. gondii infection. T. gondii is a

widespread intravacuolar parasite that can cause severe disease in

humans [18]. T. gondii replicates in a specialized parasitophorous

vacuole (PV) and CD8 T cells play a protective role, especially

against toxoplasmic encephalitis which is caused by the persistence

of cysts in the brain [19]. We previously identified a decamer

peptide (HF10, derived from the GRA6 protein) presented by the Ld

MHC I molecule and recognized by a large CD8 T cell population

during toxoplasmosis [17]. Two other epitopes, also presented by

Ld, have been reported: the ROP7-derived IF9 and the GRA4-

derived SM9 peptides [20]. Although the source antigens for each of

these epitopes are contained in T. gondii secretory organelles, the

GRA6-specific response appeared immunodominant based on its

magnitude [17]. The molecular mechanisms for the potent

immunogenicity of GRA6-derived HF10 epitope are not known.

We generated transgenic parasites that do or do not express the

GRA6-derived HF10 epitope and established that even in the

absence of the immunodominant GRA6-specific CD8 T cell

response, the subdominant GRA4 and ROP7 responses remain

poorly immunogenic and fail to protect mice from toxoplasmosis.

We show that the location of the epitope at the C-terminus of the

GRA6 antigenic precursor is a critical parameter that allows

efficient processing, determines immunodominance and provides

protection during chronic stage.

Results

A transgenic model to investigate parasite
immunogenicity

In order to study the pathophysiological consequences of HF10

immunodominance, we generated parasites that do or do not

express the GRA6-derived HF10 epitope. We took advantage of

the genetic diversity among three common T. gondii strains (type I,

II and III). While the GRA4-derived SM9 and ROP7-derived IF9

peptides are conserved (data not shown and ToxoDB.org), the

GRA6-derived HF10 peptide is polymorphic between type II and

type I/III strains. Within the last 10 residues of GRA6, four non-

synonymous single-nucleotide polymorphisms differentiate the

type II sequence (HF10: HPGSVNEFDF) from the type I/III

sequence (HY10: HPERVNVFDY) (Fig. 1A and Fig. S1 in Text

S1). We noted that instead of a phenylalanine (F), the C-terminal

residue in GRA6III is a tyrosine (Y), a residue not expected to be

an appropriate anchor residue for Ld binding [21]. To evaluate the

ability of HF10 and HY10 to bind to Ld, we used an MHC I

stabilization assay. TAP-deficient RMA-S cells display empty,

unstable MHC I molecules and addition of exogenous peptides

that can bind to MHC I can stabilize their expression on the cell

surface, as read out by flow cytometry. Expression of Ld on the

surface was stabilized by addition of HF10 at a 1000-fold lower

concentration compared to HY10 (Fig. 1B), which confirmed its

poor Ld binding capacity.

Given that a type III strain like CEP, expresses HY10 (and not

HF10), we inferred that it would provide a useful ‘‘HF10-null’’

background to analyze immunodominance in vivo. Therefore we

engineered CEP parasites to stably express type II or (as a control)

type I versions of GRA6 (designated CEP+GRA6II and CEP+
GRA6I respectively). To facilitate tracking of parasites and

infected cells, we used a CEP strain previously modified to express

the GFP and the luciferase reporter genes [22]. We assessed the

amount of transgenic GRA6 protein expressed by CEP+GRA6II

and CEP+GRA6I parasites by immunoblot, using an antibody

that detects all forms of GRA6 (I, II and III). The slower migration

of GRA6II allowed us to discriminate between endogenous

GRA6III and transgenic GRA6II. We confirmed expression of

GRA6II, at slightly higher levels as compared to endogenous

GRA6III in the same parasites. Transgenic GRA6I and endoge-

nous GRA6III were undistinguishable thus precluding a precise

analysis of the GRA6I transgene level. (Fig. 1C). Next, we infected

B10.D2 mice (H2d MHC haplotype) with CEP+GRA6II and

CEP+GRA6I parasites and 3 weeks post-infection, we measured

the CD8 T cell response induced by HF10 and HY10 peptides. As

observed with the type II Pru strain [17], nearly 25% of CD8 T

cells from CEP+GRA6II-infected spleens produced IFN-c in

response to HF10 peptide. In contrast, no response was detected

above background in CD8 T cells from CEP+GRA6I-infected

mice after restimulation with the HF10 or HY10 peptides (Fig. 1D).

We conclude that CEP strains are ‘‘HF10-null’’ and suitable for

assessing the immunogenicity of various transgenes.

Strong immunodominance of HF10 response but no
immunodomination over IF9 and SM9 responses

We used these transgenic parasites to confirm the immunodo-

minance hierarchy among the 3 known natural peptides presented

by Ld and to analyze the consequences of HF10 absence on T cell

responses to the other antigens. Four weeks post-infection, we

examined the T. gondii-specific CD8 T cell response in the spleen

using peptide-loaded Ld dimers (Fig. 2A). As expected, a large

fraction of HF10-specific CD8 T cells were detected only in

CEP+GRA6II-infected mice (9.5%+/23.7%, mean +/2 s.d.,

p = 1024). The IF9-specific CD8 T cells were found at a much

lower frequency (0.9+/20.8%, p = 0.11) and SM9-specific CD8 T

cells were hardly detectable. Interestingly, even in the absence of

HF10 (such as in CEP+GRA6I-infected mice), the frequencies of

IF9- and SM9-specific CD8 T cells did not increase, suggesting

that the subdominant status of IF9 and SM9 was not the result of

Author Summary

Toxoplasma gondii is a widespread intracellular parasite
that can cause severe disease in immunocompromised
individuals and lead to fetal abnormalities if contracted
during pregnancy. Establishment of protective immunity
relies on CD8 T cells, which recognize antigenic peptides
presented by MHC class I molecules on the surface of T.
gondii-infected cells. Intriguingly, while the proteome of
T. gondii is large, CD8 T cell responses target a very
limited set of peptides. These peptides can be ranked
according to the magnitude of the associated CD8
response (from immunodominant down to subdomi-
nant). Yet, little is known about the rules that define their
immunogenicity and the hierarchy of the associated T
cell responses. Using a panel of genetically modified T.
gondii where the GRA6 dominant antigen was mutated,
we show that the C-terminal location of the epitope
within the source antigen is the critical parameter for
immunodominance. Interestingly, when placed at the C-
terminus of GRA6, the subdominant status of an epitope
can be overturned. Our results unravel the mechanisms
that make parasite antigens accessible for the MHC I
presentation pathway. They may help to ameliorate
natural immune responses and improve vaccine design
against intravacuolar pathogens.

Epitope Location Controls Protection to T. gondii
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competition (also called immunodomination) exerted by HF10-

specific T cells. Similar results were obtained when we assessed

IFN-c production by effector CD8 T cells following in vitro

restimulation (Fig. 2B). Likewise, the epitope-specificity of CD8 T

cells in brain infiltrates showed the same HF10.IF9.SM9

hierarchy (Fig. 2C).

While the above experiments define the immunodominance

hierarchy among already known epitopes, unknown epitopes

could also play a role in the parasite-specific response. To analyze

the entire repertoire of T. gondii-specific CD8 T cells, we used

parasite-infected, rather than peptide-pulsed, APCs to restimulate

T cells ex vivo. The magnitude of IFN-c response elicited by

parasite-infected macrophages (Fig. 2D) was no higher than that

observed after peptide restimulation (see Fig. 2B). Thus, CD8 T

cells of other specificities do not play a major role in our

experimental model system.

Figure 1. Type III transgenic T. gondii to study parasite immunogenicity. (A) Schematics of GRA6 protein from type I/III and type II T. gondii.
C-terminal amino acid sequence is shown. (B) Surface labeling of peptide-loaded Ld analyzed by flow cytometry on TAP-deficient RMA-S.Ld cells left
unpulsed or pulsed with increasing concentrations of HF10, HY10 or a control Dd-restricted AI9 peptide. Shown is the mean fluorescence intensity
(MFI) in arbitrary units (a.u.). Data representative of 2 independent assays. (C) Western blot analysis of GRA6 (upper panel) and SAG1 (lower panel) in
type II Prugnaud (Pru), control CEP (a resistant HXGPRT+ clone which did not integrate the transgene), CEP+GRA6II and CEP+GRA6I clones. Data
representative of 4 independent experiments. (D) Ex vivo IFN-c intracellular staining of splenocytes from B10.D2 mice 3 weeks post-infection with
CEP+GRA6II (upper plots) or CEP+GRA6I (lower plots), restimulated in vitro with HY10 or HF10. Numbers represent the percentage of IFN-c+ out of
CD8+ cells. Plots show one representative mouse out of 3 per group.
doi:10.1371/journal.ppat.1003449.g001

Epitope Location Controls Protection to T. gondii
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Taken together, our data demonstrate that the presence of

GRA6II in the parasites triggers a strong and dominant HF10-

specific CD8 response in the spleen and brain of chronically

infected animals but does not negatively affect (‘‘immunodomi-

nate’’) the subdominant SM9 and IF9 responses.

Expression of HF10 epitope results in diminished parasite
burden

We have previously reported that immunization of H2d mice

with HF10-loaded bone marrow-derived dendritic cells protects

against lethal type II parasite challenge [17]. We predicted that

presence of HF10 may decrease parasite burden. To test this

hypothesis, we took advantage of the luciferase expression to

analyze parasite dissemination by bioluminescence imaging in

BALB/c mice (H2d). Regardless of the presence of HF10, all

strains were cleared by day 13 (Fig. 3A,B). CEP+GRA6II parasites

appeared to be cleared slightly earlier than control CEP

(HXGPRT+) and CEP+GRA6I parasites, although this difference

did not reach statistical significance (Fig. 3A,B). In addition,

parasite signal in the brain was detected only in mice infected with

control CEP or CEP+GRA6I and was never observed with

CEP+GRA6II (Fig. S2 in Text S1). This suggested that the control

of parasitemia by HF10-specific T cells may be more effective at

the chronic stage, when parasites are found mostly as brain cysts.

When we measured parasitemia in chronically infected B10.D2

mice at 4 weeks post-infection, we found a significantly higher

proportion of splenocytes harboring parasites in CEP+GRA6I-

infected mice (Fig. 3C). Accordingly, the number of brain cysts in

CEP+GRA6I-infected mice was nearly 5 times higher than in mice

infected with the HF10-expressing parasites (Fig. 3D). These

results could not be attributed to an intrinsic growth difference

between clones since they behaved comparably in a plaque assay in

vitro (Fig. S3A in Text S1). Furthermore, the influence of HF10 on

cyst number was visible only in B10.D2 mice and not in C57BL/6

mice, which have a different MHC haplotype (H2b) and therefore

do not elicit HF10-specific T cells (Fig. S3B in Text S1).

Combined, the data show that the HF10-specific response has a

modest protective effect on parasite control during acute

toxoplasmosis but is essential for controlling parasite load during

chronic infection.

Peptide affinity for Ld and naı̈ve T cell frequency cannot
explain HF10 immunodominance

To uncover possible causes of HF10 immunodominance, we

used the MHC I stabilization assay described above (see Fig. 1B)

and compared the affinity for Ld of HF10 to other Ld-restricted

peptides. These other peptides were derived either from T. gondii

(SM9, IF9), from a mouse minor antigen (QL9) or from a mouse

cytomegalovirus protein (YL9) (Fig. 4A). HF10 affinity appeared

,10-fold higher than that of IF9, QL9 and YL9 but fell in the

same range as the T. gondii subdominant peptide SM9. Therefore,

the dominance hierarchy did not correlate with peptide affinity for

MHC I.

We next assessed whether abundance of peptide-specific T cells

in the repertoire of naı̈ve mice may control immunodominance.

We employed a tetramer-based enrichment procedure [23,24] to

enumerate naı̈ve T cells isolated from spleen and lymph nodes of

uninfected mice and specific for each of the 3 epitopes. Numbers

of T cell precursors were analyzed by flow cytometry after gating

on a population of live dump2 (dump = B220, F4/80, MHC II)

CD3+ CD8a+ cells (Fig. S4 in Text S1). Surprisingly, we observed

an inverse correlation between the number of naı̈ve T cells per

mouse and the immunodominance (Fig. 4B), with the frequency of

HF10-specific CD8 T cells around 10- and 3-fold lower than

SM9- and IF9-specific CD8 T cells respectively (Fig. 4C). Thus the

immunodominance of HF10 cannot be explained by a high

starting precursor frequency of specific T cells.

Location of HF10 at GRA6 C-terminus determines
presentation efficiency and parasite control

Having ruled out two plausible hypotheses, we wondered

whether HF10 immunodominance might be related to processing

efficiency. We noted that HF10 is located at the very C-terminus

of GRA6II, a position that may facilitate processing since no C-

terminal cut is required. To test the importance of epitope

position, we changed the C-terminus of HF10 by extending

GRA6II with one or more amino acids.

We first transfected C-terminally extended versions of GRA6II

in mouse fibroblasts. Extensions were either single amino acids

(lysine, K ; leucine, L ; proline, P) or several residues such as the

GRA6I/III-derived HY10 peptide or the entire GFP. We used

CTgEZ.4 T cell hybridomas, a b-galactosidase-inducible reporter

cell line [17], to read-out HF10 presentation. The response of

CTgEZ.4 T cells was mildly decreased (GRA6II-K), severely

disrupted (GRA6II-L) or totally abrogated (GRA6II-P, GRA6II-

HY10, GRA6II-GFP) (Fig. 5A). These data suggest that the C-

terminal location determines optimal processing and presentation

of the HF10 peptide when the precursor protein is expressed

ectopically by the antigen-presenting cell.

To assess the impact of HF10 position in T. gondii, we used CEP

parasites expressing longer versions of GRA6II, extended either by

a leucine (GRA6II-L) or by the HA tag (GRA6II-HA). First, we

verified that transgene levels were comparable by Western blot

(Fig. 5B). To investigate whether these additional C-terminal

residues might perturb GRA6 transport, we took advantage of the

HA tag and evaluated the subcellular distribution of transgenic

GRA6-HA, as compared to total GRA6. Analysis of the overlap

between HA and the GRA2 and GRA5 dense granule proteins in

extracellular tachyzoites (Fig. S5A,B in Text S1) and in infected

fibroblasts (Fig. S5C,D in Text S1), indicated that GRA6II-HA is

packaged in the dense granules and secreted in the vacuolar space,

as known for wild-type GRA6 [25]. Although the distribution of

GRA6II-L could not be directly assessed, we inferred from the

above data that the extra leucine did not alter protein transport

either. When used to infect bone marrow-derived macrophages

(BMDMs), the CEP+GRA6II-L and CEP+GRA6II-HA transgenic

Figure 2. Immunodominance, but not immunodomination, of the GRA6II-derived HF10 peptide during chronic stage. For all panels,
B10.D2 mice were infected with the indicated parasite strains and analyzed 4 weeks post-infection. (A) Spleen cells stained ex vivo with the Ld DimerX
loaded with the GRA6II-derived HF10, ROP7-derived IF9 or GRA4-derived SM9 peptide. Each symbol represents one mouse, horizontal lines represent
the mean +/2 SEM. Data pooled from 3 independent experiments. (B) Ex vivo IFN-c intracellular staining of spleen cells restimulated with the HF10,
IF9 or SM9 peptide. Bars represent the mean +/2 SEM. Data pooled from 3 independent experiments. (C) Ex vivo Ld DimerX staining of brain-
infiltrating leukocytes. Bars represent the mean +/2 SEM. Data pooled from 2 independent experiments. (D) Ex vivo IFN-c intracellular staining of
spleen cells restimulated with J774 macrophages infected in vitro with the indicated parasites. Upper panel: mice infected with CEP+GRA6I, lower
panel: mice infected with CEP+GRA6II. Bars represent the mean +/2 SEM. Data representative from 2 independent experiments. ns: P.0.05 ; *:
P,0.05 ; **: P,0.005.
doi:10.1371/journal.ppat.1003449.g002
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Figure 3. Presence of the GRA6II-derived HF10 peptide correlates with better parasite control during acute and chronic T. gondii
infection. (A,B) BALB/c mice were infected intraperitoneally with 105 tachyzoites of the indicated parasite strains. Parasite clearance was followed
from day 7 to 13 by bioluminescence imaging on the ventral side. (A) Raw images of luminescence in pseudocolor scale. (B) Quantification of total
flux (photons/s) over time. Dots show the mean + s.d. with 3 mice per group. The differences between CEP+GRA6I and CEP+GRA6II did not achieve
statistical significance. Data representative of 2 independent experiments with at least 3 mice per condition. (C,D) B10.D2 mice were infected
intraperitoneally with 105 tachyzoites of the indicated parasite strains. (C) Parasite load in the spleen 3 weeks post-infection, as measured by the
number of cells harboring a GFP+ parasite. Bars show the mean +/2 SEM for at least 4 mice per group. The dotted line shows the background in
uninfected mice. Data pooled from 2 independent experiments. (D) Parasite burden in the brains of B10.D2 mice 4 weeks post-infection, evaluated
microscopically by enumerating the cysts. Histograms represent the mean +/2 SEM of at least 5 mice per group. Data pooled from 3 independent
experiments. ns: P.0.05 ; *: P,0.05 ; **: P,0.005.
doi:10.1371/journal.ppat.1003449.g003
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Figure 4. Immunodominance of GRA6II-derived HF10 cannot be explained by peptide affinity for Ld or naı̈ve T cell frequency. (A)
Flow cytometry surface labeling (MFI) of Ld on TAP-deficient RMA-S.Ld cells left unpulsed or pulsed with increasing concentrations of the indicated Ld-
restricted peptides or a control Dd-restricted AI9 peptide. Data representative of 3 independent assays. (B,C) Estimation of frequencies of naı̈ve T.

Epitope Location Controls Protection to T. gondii
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parasites led to similar infection rates (data not shown) but HF10

presentation was abrogated (Fig. 5C).

Finally, we examined the importance of HF10 C-terminal

location in vivo. We infected mice and analyzed the induction of

HF10-specific CD8 T cells in the spleen (Fig. 5D) and the brain

(Fig. 5E) at chronic stage. In accordance with our in vitro findings,

only the CEP+GRA6II parasites elicited a detectable HF10-

specific response. The absence of HF10-specific response in mice

infected by CEP+GRA6II-L and CEP+GRA6II-HA was consistent

with a dramatically higher cyst burden in their brains (Fig. 5F). We

conclude that the precise C-terminal location of HF10 is required

for optimal processing and presentation by T. gondii-infected APCs

and for eliciting parasite-specific T cells that could provide in vivo

protection.

Appending the SM9 peptide to the GRA6 C-terminus
overturns its subdominant status

We further assessed whether the location of an epitope at the

GRA6II C-terminus may be sufficient for enhancing presentation

and immunogenicity. We generated CEP parasites expressing the

subdominant SM9 peptide either at the C-terminus of GRA6II

(CEP+GRA6II-SM9Cter) or, as a control, internally within GRA6II

(CEP+GRA6II-SM9internal) (Fig. 6A). The selected clones ex-

pressed comparable levels of transgenes (Fig. 6B). We measured

SM9 presentation at the surface of parasite-infected cells using a

new b-galactosidase-inducible T cell hybridoma specific for Ld-

SM9 complex (BDSM9Z) (Fig. 6C). Interestingly, although the

natural SM9 precursor, GRA4, was expressed in type III parasites

(data not shown), the presentation of Ld-SM9 complexes remained

below detection in CEP-infected BMDMs. SM9 presentation was

also undetectable when the peptide was placed at an internal

position within GRA6. In contrast, BDSM9Z T cells were strongly

stimulated when SM9 was located at GRA6 C-terminus (Fig. 6C).

HF10 presentation by infected BMDMs was abrogated by the

presence of SM9 at the C-terminus but not by the presence of

SM9 at the internal position (Fig. 6D), consistent the C-terminal

extension studies described above (Fig. 5C),. In conclusion, placing

the SM9 peptide at the C-terminus of GRA6II was sufficient to

enhance its presentation by parasite-infected cells in vitro.

We next measured the SM9 and HF10-specific CD8 T cell

responses in the spleen (Fig. 6E) and brain (Fig. 6F) of mice

infected for 3 weeks with the transgenic parasites. A SM9-specific

response was hardly detectable in mice infected with the control

CEP. Infection with CEP+GRA6II-SM9internal elicited SM9-

specific CD8 T cells but these T cells were between 3-fold (spleen,

Fig. 6E) and 5-fold (brain, Fig. 6F) more abundant when SM9 was

grafted at GRA6 C-terminus. This difference was not due to

reduced infectivity of the CEP+GRA6II-SM9internal parasites since

HF10-specific CD8 T cells were abundant in those mice

(Fig. 6E,F). Similar results were obtained in mice immunized with

irradiated tachyzoites (Fig. S6 in Text S1). To ask whether the

enhanced SM9-specific response participates in parasite control,

we enumerated the brain cysts in the 3 groups. As compared to

mice infected with control CEP, the parasite load was lower when

either a strong HF10- or a strong SM9-specific response was

elicited (Fig. 6G). These data indicate that the nature of the

antigenic peptide itself does not seem to determine the protective

effect. We conclude that location of a subdominant peptide at

GRA6 C-terminus dramatically enhanced its immunogenicity,

changed the epitope hierarchy and had beneficial repercussions for

parasite control.

Discussion

In this study, we have identified the molecular bases underlying

the marked immunodominance of a CD8 T cell response that

controls the intracellular T. gondii parasite. Rather than peptide

affinity for MHC I and naı̈ve T cell frequency, we find that

immunodominance is determined by the location of the epitope

within the antigenic precursor.

The endeavor to characterize natural T cell antigens from T.

gondii has started only recently [17,20,26,27] but it has provided

much needed tools to better understand T cell immunity to this

widespread opportunistic pathogen. We report here that the 3

known Ld-restricted responses follow an immunodominance

hierarchy. At chronic stage, GRA6II-specific CD8 T cells were

between 10-fold (in the spleen) and 30-fold (in the brain) more

abundant than CD8 T cells specific for the 2nd dominant epitope:

IF9 derived from ROP7. Response to the 3rd dominant epitope,

SM9 derived from GRA4, was hardly detectable. Remarkably, we

did not observe immunodomination by the GRA6II dominant

epitope. Immunodomination refers to situations in which the T

cell response to a given epitope is inhibited by T cells specific for

another, more dominant, epitope [2]. This phenomenon has been

reported during infection by simian immunodeficiency virus [28]

and by Trypanosoma cruzi, another protozoan parasite phylogenet-

ically related to T. gondii [29]. A mechanism commonly proposed

to explain immunodomination is elimination of APCs by the

dominant cytotoxic T cells. Perhaps immunodomination does not

occur here because, as compared to IFN-c production, perforin-

mediated cytolysis by CD8 T cells plays only a limited role during

T. gondii infection [30]. The absence of immunodomination also

suggests that accessibility of peptide-loaded APCs for T cells is not

limiting. This may be because T. gondii is able to invade and be

presented on MHC I by many cell types, even non-professional

APCs [31].

Another major conclusion is that during chronic stage,

subdominant responses could not compensate and provide

efficient parasite control in the absence of the GRA6II dominant

peptide. These data designate GRA6 as a strain-specific compo-

nent which determines chronic parasitemia and is targeted by

adaptive immunity. This is in contrast to already known T. gondii

virulence factors which mostly interfere with innate processes, such

as ROP16 which interferes with STAT transcription factors [32],

ROP18 which disarms immunity-related GTPases involved in host

defense [33,34]) or GRA15 which promotes NF-kB activation

[35]. Of note, GRA6 is among the 20 most polymorphic genes in

the T. gondii genome and many polymorphisms are located in its

C-terminal region (see ToxoDB.org and Fig. S1 in Text S1).

Beyond the 3 prototypic strains, sequence polymorphisms in

GRA6 have been characterized in more exotic strains (or

haplogroups) [36]. These atypical strains either express HF10,

HY10 or alternative versions of the decamer peptide with distinct

polymorphisms. Interestingly, in chronically infected humans,

some of these variations are specifically recognized by natural

gondii-specific CD8a+ T cell populations in naive B10.D2 mice. (B) Representative flow plots of T cells isolated from spleen and lymph nodes of
uninfected mice. Shown are CD62L and tetramer (SM9:Ld, IF9:Ld or HF10:Ld) stainings after gating on live dump2 (dump = B220, F4/80, MHC II) CD3+

CD8a+ T cells. One million events were collected for each sample. (C) Summary of total tetramer+ T cells per mouse. Each dot represents one mouse.
Pooled data from 3 independent experiments. Mean +/2 SEM are represented by horizontal lines and values are noted on the graph. *: P,0.05 ; **:
P,0.005.
doi:10.1371/journal.ppat.1003449.g004
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Figure 5. Optimal presentation and parasite control depend on the location of HF10 at the C-terminus of GRA6. (A) HF10 presentation
assessed with the CTgEZ.4 hybridomas on mouse fibroblasts co-transfected with Ld and plasmids coding for the indicated C-terminally-extended
GRA6II. Graph shows percentages of maximal response, obtained with 5 ng of wild-type GRA6II plasmid/well. Data are averaged from 2 independent
assays +/2 SEM. (B) Western blot analysis of GRA6 (upper panels), HA (middle panels) and SAG1 (loading control, lower panels) of the indicated
parasites. (C) HF10 presentation by BMDMs infected for 24 h with the indicated parasites, assessed with the CTgEZ.4 hybridomas. Representative of 4
independent experiments. (D,E) Ex vivo HF10:Ld DimerX staining of spleen cells (D) and brain-infiltrating leukocytes (E) from 3–4 week-infected B10.D2
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antibodies that are used as a tool to serotype the parasite [37,38].

Given that GRA6 C-terminus is targeted both by humoral and

cellular responses, we speculate that selective pressure by adaptive

immunity may have contributed in shaping GRA6 polymor-

phisms.

By exploring the possible causes of HF10 immunodominance,

we were able to rule out two possible explanations. We found no

positive correlation of immunodominance hierarchy with peptide

affinity for Ld or naı̈ve T cell frequency. The numbers of naı̈ve

HF10- and IF9-specific T cells fall within the previously reported

range of 15 to 1500 naı̈ve CD8 T cells per mouse [39] but the

number of SM9-specific cells (4300) may look unusually high.

Although the exact reason remains unclear, this may be related to

a large amount of positive selecting ligands available for this

population. In agreement with this idea, an F1 H2bxd mouse strain

gives half the value measured with the B10.D2 H-2d strain (data

not shown). Remarkably, we found an inverse correlation between

size of the naı̈ve population and magnitude of the parasite-specific

response. This latter result may seem paradoxical in the light of

other situations, such as peptide immunization [23] or viral

infection [7,9,10,24], where size of the naı̈ve pool was a good

predictor of immunodominance. However, there are known

exceptions to this rule [12]. Here, the low abundance of HF10-

specific precursors may facilitate their expansion by limiting

interclonal competition. Alternatively, the TCRs used by HF10-

specific CD8 T cells may have a high affinity for the HF10-Ld

complex, which could promote stronger signaling and prolifera-

tion. These hypotheses remain to be investigated.

Our central finding is that C-terminal position of the epitope

within GRA6 plays a crucial role for immunodominance. It is

illustrated by the fact that the weakly immunogenic GRA4 epitope

elicited strong SM9-specific responses when grafted at GRA6 C-

terminus. Intriguingly, the internal position of SM9 gave rise to a

lower, but substantial, CD8 response whereas we did not detect

any HF10-specific T cells when HF10 was placed at the same

internal position (Fig. S7 in Text S1). The bases for such a different

outcome are unknown but they may lie in different epitope-

dependent processing efficiencies or compensatory effects of the

high frequency of SM9-specific T cell precursors counteracting the

less favorable position for processing. Most notably, addition of

residues to GRA6II C-terminus greatly impaired presentation. It is

theoretically possible that the C-terminal flanking sequences

abrogated HF10 presentation by altering the vacuolar trafficking

of GRA6 and/or its membrane insertion. We think it is unlikely

because 1) we found that transport of GRA6II-HA was

undistinguishable from transport of total GRA6 and 2) presenta-

tion of the C-terminal SM9 peptide could occur efficiently in vitro

and in vivo. Rather than regulating global GRA6 trafficking, we

favor the idea that additional C-terminal sequences impair

processing. Epitope-flanking sequences are indeed known to

positively or negatively affect protease cleavage capacity and

generation of the final peptide, with clear consequences on

immunodominance [4,6,40,41,42]. Using minigenes, it was shown

that the nature of C-terminal flanking residues profoundly impacts

excision of the processed peptide [42]. In the context of a full-

length viral protein, single changes to the epitope-flanking residues

dramatically reduced presentation [41] and it was later proposed

that the subdominant nature of certain peptides bearing appro-

priate consensus motifs might result from suboptimal C-terminal

sequences [40]. Finally, it is interesting to note that the influence of

the flanking motifs may differ whether the antigen is presented by

the direct MHC I pathway or by cross-presentation [43]. In our

case, we observed a dramatic impact of the absence or presence of

C-terminal residues on presentation, suggesting a key role for

antigen processing in modulating immunodominance. A system-

atic screening of C-terminal extensions may be useful to precisely

define the rules that govern processing of GRA6 C-terminus.

Since GRA6 behaves as an integral transmembrane protein in

the vacuole [44], the importance of the C-terminus could be

related to the topology of GRA6 membrane insertion. One

possibility is that GRA6 C-terminal domain is displayed in the

cytosol and thus potentially accessible to host proteases. This

mechanism was proposed for antigens from the intravacuolar

bacteria Chlamydia trachomatis that are inserted in the surrounding

membrane of the bacteria-containing vacuole [45,46]. This

hypothesis remains to be tested. Alternatively, unfolded GRA6

may access the cytosol thanks to the recruitment of host

endoplasmic reticulum components on the parasitophorous

vacuole, as proposed for the soluble OVA model antigen

[47,48]. In any case, we consider it likely that access of GRA6

to the MHC I pathway is less efficient than in the situation of a

viral antigen directly synthesized by the host cell translation

machinery. Consequently, any parameter that would facilitate

processing (e.g. being at C-terminus) may become the determining

factor for the presentation outcome.

To our knowledge, this is the first evidence that C-terminal

position can be positively correlated with immunodominance.

Given the variety of parameters that can influence immunodomi-

nance, a remaining question is the degree of peculiarity of our

current findings with respect to other antigens. A recent study

interrogating the Immune Epitope Database (www.iedb.org) for a

positional bias of viral epitopes reported that epitopes from both

ends of a protein tended to be underrepresented [49]. An indirect

way to assess the general relevance of the C-terminal position

would be to transfer subdominant epitopes to the C-terminus of

their respective antigens (e.g. GRA4, ROP7) and evaluate the

impact on CD8 responses. Future studies, not only with T. gondii

but also with other intracellular parasites, should shed light on the

general relevance of this position.

During T. gondii infection in vivo, two scenarios of MHC I

presentation could co-exist. On the one hand, phagocytosed

parasite material may be processed by bystander cells present in

the vicinity of infected cells [50]. On the other hand, parasite

proteins may be directly presented by actively infected cells [51].

Our work shows that antigen access to the MHC I pathway and

efficient processing are the limiting factors that control immuno-

dominance. Beyond amino acid mutations within the peptide

sequence, modifying the epitope position may provide the parasite

with a strategy to manipulate how it is detected by CD8 T cells.

Understanding the features that make certain peptides immuno-

genic will shed light on the strategies used by parasites to interact

with their host immune system.

Materials and Methods

Ethics statement
In the US, animal studies were carried out in accordance with

the recommendations of the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health and in

compliance with the guidelines of the Institutional Animal Care

mice. Each dot represents one mouse, bars show the mean +/2 SEM. Data pooled from 2 independent experiments. (F) Cyst burden in the brains of
B10.D2 mice infected for 4 weeks. Data pooled from 3 independent experiments. **: P,0.005.
doi:10.1371/journal.ppat.1003449.g005
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and Use Committee (IACUC) of the University of California. The

animal protocols were approved by the IACUC of the University

of California, Berkeley (Animal Use Protocol # R057-0913BR)

and of the University of Pittsburgh, PA (Protocol # 1210130). In

France, animal studies were carried out under the control of the

National Veterinary Services and in accordance with European

regulations (EEC directive 86/609 dated 24 November 1986). The

protocol was approved by the Regional Ethics Committee from

the Midi-Pyrénées Region (Approval # MP/01/29/09/10).

Mice and parasites
C57BL/6J (B6), BALB/c and B10.D2-Hc1 H2d H2-T18c/

nSnJ (B10.D2) mice were purchased from The Jackson Laboratory

(Bar Harbor, ME, USA). B6xDBA/2 F1 (B6D2) mice were

purchased from Charles River (France). For all experiments, sex

and age-matched mice were used. Mice were handled with the

approval of local ethics committees. Except for the CEP+GRA6II-

HA clone which was a gift from J. Saeij (Cambridge, MA, USA),

all transgenic parasites were generated from the parental

CEP.DHXGPRT.GFP.Luc strain [22]. Tachyzoites were main-

tained by passage on confluent monolayers of human foreskin

fibroblasts (HFF). For infections, parasites were harvested, filtered

through 3 mm and 105 tachyzoites were injected intraperitoneally

in 100 ml PBS.

Plasmid constructs, parasite and L cell transfection
For in vitro expression of antigenic sequences, all C-terminally

extended GRA6II sequences were cloned into the pcDNA1 vector

containing the pcDNA1-embedded 39UTR. Plasmids used for T.

gondii transfection were derived from the pGRA.HA.HPT vector, a

gift from J.D. Dunn and J. Boothroyd (Palo Alto, CA, USA). More

details on the construction of the plasmids are given in the

Supporting Protocol S1 in Text S1.

L cells were triple transfected using a standard diethylami-

noethyl dextran method with vectors coding for Ld, B7-2 and

mutant GRA6, as previously described [17]. For parasite

transfections, 1.56107 tachyzoites were electroporated with

50 mg of HindIII-linearized plasmid DNA and inoculated in 4

confluent HFF flasks in order to obtain up to 4 independent

clones. The next day, 25 mg/ml mycophenolic acid and 50 mg/ml

xanthine were added for selection. After 2 passages, resistant

tachyzoites were cloned by limiting dilution and presence of the

transgene was verified by PCR. For each construct, one clone that

acquired resistance but no transgene was kept as HXGPRT+

control.

MHC I stabilization assay
RMA-S.Ld cells were a gift from T. Hansen (St-Louis, MO,

USA). RMA-S.Ld cells were incubated at 37uC, 5% CO2 for 8 h

to saturate the culture medium with CO2. The flask was sealed

with parafilm and incubated at RT overnight. The next day, cells

were washed with PBS and plated at 36105 cells/well in a 96-W

plate. Peptide was added to the cells in serial dilutions. The plate

was incubated for 1 h at RT and 3 h at 37uC. Cells were stained

with the 30-5-7 antibody (specific for conformed, peptide-bound

Ld) and a phycoerythrine (PE)-coupled goat anti-mouse secondary

antibody and analyzed by flow cytometry.

Western blot
HFFs were disrupted with a 23-G needle and tachyzoites were

lysed in a lysis buffer containing 1% NP-40, 10 mM Tris pH 7.4,

150 mM NaCl, and protease inhibitors (cOmplete EDTA-free,

Roche) for 30 min on ice. Lysates were centrifuged for 15 min at

15,000 g. Solubilized proteins were boiled and reduced for 5 min

in SDS sample buffer, separated by electrophoresis on 12%

polyacrylamide gels and transferred to nitrocellulose membranes.

Immunologic detection was achieved using rabbit anti-GRA6

serum (gift from L. D. Sibley, St-Louis, MO, USA), mouse anti-

HA (gift from D. Raulet, UC Berkeley, CA, USA) or mouse anti-

SAG1 (clone TP3, Santa Cruz) followed by secondary horseradish-

peroxidase-conjugated antibodies. Peroxidase activity was visual-

ized by chemiluminescence.

Ex vivo cell preparations
Mice were sacrificed 3 to 4 weeks after infection. Spleens were

dissociated into single-cell suspensions in complete RPMI (In-

vitrogen) supplemented with 10% (vol/vol) FCS (Hyclone).

Samples were depleted of erythrocytes with ACK lysis buffer

(100 mM EDTA, 160 mM NH4Cl and 10 mM NaHCO3).

Leukocytes from the brain were prepared as in [17]. In brief,

brains were minced and digested for 1 h at 37uC with 1 mg/ml

collagenase (Sigma) and 100 mg/ml DNAseI (Roche) in complete

RPMI. Brain suspensions were filtered through 70-mm cell

strainers and centrifuged for 10 min at 200 g. Cells were

resuspended in 60% (vol/vol) Percoll (GE Healthcare), overlaid

on 30% (vol/vol) Percoll and centrifuged 20 min at 1,000 g.

Infiltrating mononuclear cells were collected from the gradient

interface and the remaining erythrocytes were lyzed with ACK

lysis buffer.

Parasite load analysis
The number of infected splenocytes was determined by

measuring the percentage of GFP+ cells by flow cytometry.

Results from two samples with over 26105 events collected per

tube were averaged for each mouse. For cyst enumeration, the

brain was homogenized over a 100 mm strainer and 5% of the

entire brain was stained with fluorescein-conjugated Dolichos biflorus

agglutinin (Vector Laboratories). Cysts were counted using an

inverted fluorescence microscope. For bioluminescence imaging,

BALB/c mice were infected intraperitoneally with 105 tachyzoites

Figure 6. Grafting subdominant SM9 at GRA6II C-terminus enhances its presentation, overturns the dominance hierarchy and
provides efficient cyst control. (A) Schematic description of the GRA6II-SM9 chimeric constructs. For GRA6II-SM9Cter, SM9 was introduced at the C-
terminus, downstream of HF10. For GRA6II-SM9internal, SM9 was introduced internally within GRA6II after residue 153, before the putative
transmembrane domain. In both cases, SM9 was preceded by a leucine to mimic the endogenous flanking sequence of HF10. (B) Western blot
analysis of GRA6 (upper panels) and SAG1 (loading control, lower panels) of the indicated parasite clones. (C,D) SM9 and HF10 presentation by
BMDMs infected for 24 h with the indicated parasites, assessed with the BDSM9Z (C) and CTgEZ.4 (D) hybridomas, respectively. (E,F,G) Ex vivo
evaluation of the CD8 responses and the parasite load 3 weeks post-infection with the indicated parasites. (E) IFN-c intracellular staining of spleen
cells restimulated with the SM9 peptide (left panel) or the HF10 peptide (right panel). (F) Tetramer staining of brain cells with SM9:Ld (left panel) and
HF10:Ld (right panel). Bars represent the mean +/2 SEM. Data pooled from 2 independent experiments. (G) Parasite burden in the brains of mice
infected with control CEP (white bar), CEP+GRA6II-SM9internal (black bar) or CEP+GRA6II-SM9Cter (hatched bar), evaluated microscopically by
enumerating the cysts. Histograms represent the mean +/2 SEM of 14 mice per group, pooled from 3 independent experiments. *: P,0.05 ; **:
P,0.005.
doi:10.1371/journal.ppat.1003449.g006
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of CEP expressing GRA6I or GRA6II or control CEP HXGPRT+.

Parasite burden was assessed using in vivo bioluminescence imaging

as described previously [52]. Briefly, daily readings were

performed using an IVIS Lumina II imaging system (Caliper).

Ten minutes prior to imaging, mice were injected intraperitoneally

with 200 mL of 15.4 mg/mL D-Luciferin in PBS and anesthetized

using 2% isoflurane. Dorsal and ventral images were acquired for

5 minutes and luminescence (photons/s/cm2/sr, total flux ex-

pressed as photons/s) was quantified using IgorPro Image Analysis

Software (Caliper).

Primary macrophage differentiation
Bone marrow cells were obtained from mouse femurs and tibias.

Primary BMDMs were differentiated for 7 days in Petri dishes

with RPMI supplemented with 20% (vol/vol) FCS and 10% (vol/

vol) colony-stimulating factor–containing culture supernatant

(purity, about 95% CD11b+). Colony-stimulating factor-producing

3T3 cells were a gift from R. Vance (UC Berkeley, CA, USA).

BMDMs were infected for 24 h with c-irradiated tachyzoites (120

Gy) at various multiplicities of infection and used in antigen

presentation assays. In all experiments, the proportion of infected

(GFP+) BMDMs was controlled by flow cytometry.

Generation of T cell hybridomas and antigen
presentation assays

B6D2 F1 mice were immunized subcutaneously with 100 mg

synthetic SM9 peptide in complete Freund’s adjuvant and boosted

after 2 weeks. One week later, spleens were harvested and

restimulated with 10 nM SM9. Recombinant human IL-2 (50 U/

ml) and 5% T-stim (both from BD Pharmingen) were added after

day 2 to support CD8 T cell proliferation. Four days after

restimulation, responding cells were fused to the TCRab-negative

lacZ-inducible BWZ.36/CD8a fusion partner as described in [17].

Specificity of the resulting BDSM9Z hybridomas was tested by

overnight incubation with peptide-pulsed or unpulsed Ld-transfected

L cells. TCR-mediated stimulation of the BDSM9Z and the

CTgEZ.4 hybridomas [17] was quantified using a chromogenic

substrate: chlorophenol red-b-D-galactopyranoside (CPRG, Roche).

Cleavage of the CPRG by b-galactosidase releases a purple product,

which absorbance was read at 595 nm with a reference at 655 nm.

Naı̈ve T cell enumeration and flow cytometry
Spleen and major lymph nodes from individual naı̈ve B10.D2

mice were harvested. Single cell suspension was stained with PE-

labeled (Prozyme) SM9:Ld, IF9:Ld or HF10:Ld tetramers (NIH

tetramer facility). Tetramer enrichment was performed on each

sample with anti-PE magnetic beads (Miltenyi Biotec) and each

sample was stained with antibodies (BD Biosciences) for flow

cytometry analysis. Total numbers of CD8a+tetramer+ T cells per

mouse were determined as before [23,24].

For other stainings, surfaces were labeled according to standard

procedures with flow cytometry buffer (3% (vol/vol) FCS and

1 mM EDTA in PBS). Intracellular IFN-c was detected with the

Cytofix/Cytoperm kit (BD Pharmingen). DimerX H-2Ld:Ig

(fusion protein of H-2Ld and immunoglobulin; BD Biosciences)

was used according to the manufacturer’s instructions and as

described in [17]. All flow cytometry data were acquired on an XL

Analyzer (Coulter) or a LSRII (Becton Dickinson) and were

analyzed with FlowJo software (Tree Star).

Statistical analysis
Prism software (GraphPad) was used for statistical analyses. All

P values were calculated with the two-tailed Mann-Whitney test

(nonparametric).

Supporting Information

Text S1 Text S1 contains the Supporting Figures S1 to S7 and

their respective legends, the: experimental procedures used for the

generation of plasmid constructs, the mouse immunizations and

immunofluorescence as Supporting protocol S1 and the references

cited in the Supporting Figure legends as Supporting References S1.
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