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Abstract

Alternative splicing is a major contributor to transcriptome and proteome diversity in eukaryotes. 

Comparing to normal samples, about 30% more alternative splicing events were recently identified 

in 32 cancer types included in The Cancer Genome Atlas database. Some alternative splicing 

isoforms and their encoded proteins contribute to specific cancer hallmarks. In this review, we will 

discuss recent progress regarding the contributions of alternative splicing to breast cancer 

metastasis. We plan to dissect the role of MTDH, CD44 and their interaction with other mRNA 

splicing factors. We believe an in-depth understanding of the mechanism underlying the 

contribution of splicing to breast cancer metastasis will provide novel strategies to the 

management of breast cancer.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes 
were made.

Correspondence to: Dr. Xiangbing Meng, Department of Obstetrics and Gynecology, The University of Iowa, 375 Newton Road, 
Iowa City, IA 52242, USA. xiangbing-meng@uiowa.edu.
Authors’ contributions
Conception and elaboration of the work: Meng X, Yang S, Zhang J, Yu H
Provided administrative, technical, and material support: Meng X, Yang S, Zhang J, Yu H
Final approval of the version: Meng X, Yang S, Zhang J, Yu H

DECLARATIONS

Availability of data and materials
Not applicable.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Conflicts of interest
All authors declared that there are no conflicts of interest.

HHS Public Access
Author manuscript
J Cancer Metastasis Treat. Author manuscript; available in PMC 2019 November 15.

Published in final edited form as:
J Cancer Metastasis Treat. 2019 ; 5: . doi:10.20517/2394-4722.2018.96.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Breast cancer; metastasis; CD44; MTDH; splicing; epithelial-mesenchymal transition

INTRODUCTION

Breast cancer is the most common type of cancer among women. Despite emerging new 

treatments such as PARP inhibition and immune checkpoint blockade, it remains a major 

challenge[1,2] and is the primary cause of cancer mortality in women. In the majority of 

cases, the death from breast cancer is not due to the primary tumor per se, but rather the 

result of metastasis to other organs in the body[3]. Metastasis is a multistep process involving 

stromal invasion, cell migration, intravasation, anoikis resistance, extravasation and 

subsequent implantation and proliferation in sites other than the primary location[4]. 

Although we have gained ample knowledge in this cellular process, an in-depth 

understanding at the molecular level remains to be deciphered.

Alternative splicing might be such a molecular mechanism that contributes to metastasis. It 

is a process whereby multiple functionally distinct transcripts are encoded from a single 

gene by the selective removal or retention of exons and/or introns from the maturing RNA. 

This process is highly regulated, involving trans-acting splicing factors and cis-acting 

regulatory motifs and so is susceptible to hereditary and somatic mutations. Alternative 

splicing is common in many eukaryote lineages. Using deep transcriptome sequencing of the 

human genome, over 95% of multi-exon genes were found capable of producing at least one 

alternatively spliced isoform[5]. Many single-gene studies have also characterized the role of 

alternative splicing in various cellular processes. Disruption or dysregulation of alternative 

splicing has also been associated with pathological states[6,7]. Maguire et al.[8] demonstrated 

that spliceosomal mutations occur in a mutually exclusive manner in breast cancer and that 

distinct components of the spliceosome are targeted by somatic mutations in different types 

of breast cancer. The exact splicing pattern associated with a particular breast cancer type or 

stage still requires a broad characterization through molecular analysis of splicing isoforms 

in different patients. However, existing evidence strongly supports a pivotal role of 

alternative splicing in breast cancer biology and innovative tools are under development to 

use splicing events for diagnostic and therapeutic purposes[9]. Shapiro et al.[10] observed an 

epithelial-mesenchymal transition (EMT)-associated global change in alternative splicing of 

a number of genes that are involved in functions crucial for EMT progression, such as cell 

adhesion, cell motility, and cytoskeletal remodeling. Several of the splicing changes 

discovered in vitro were also found to occur in a panel of breast cancer cell lines and in vivo 
in primary human breast cancer samples. Dysregulation of alternative splicing has been 

increasingly recognized in cancer-related pathways. It is thus critical to investigate the 

functional significance of splicing regulation in the context of cancer. This review will 

discuss some recent progresses about the alternative splicing regulators such as CD44, 

heterogeneous nuclear ribonucleoprotein M (hnRNPM), SND1 and MTDH etc. in breast 

cancer metastasis.
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SPLICING VARIANTS MAY ENHANCE EMT AND METASTASIS IN BREAST 

CANCER

Dorman et al.[12] reported splicing defects in large-scale breast cancer sequencing studies. 

Nine hundred and eighty-eight splicing variants including exon skipping, leaky or cryptic 

splicing from 5,206 putative mutations were confirmed for splicing mutations in 442 Breast 

Cancer patients from The Cancer Genome Atlas dataset. These splicing variants were 

significantly increased in patients with lymph node metastasis, but not in lymph node-

negative tumors. Silipo et al.[13] reported that the expression profile changes of splicing 

factors including serine/arginine-rich splicing factor 1 (SRSF1), SRSF2, SRSF3, SRSF5, 

SRSF6 and SRSF10; the heterogeneous nuclear ribonucleoproteins (hnRNPs) including 

hnRNP A2/B1, hnRNPI, hnRNPA1 and hnRNP K; as well as eight RNA-binding proteins 

including HuR, Sam68, BRM5, FOX2, YB-1, PRMT6, SPF45 and PELP1 in breast cancer 

cells compared with normal cells, which are strongly associated with the alternative splicing 

pattern of many cancer-related genes despite the absence of mutations in genomic DNA. 

Inoue et al.[14] reported aberrant splicing of CD44 gene in breast cancer, which promotes 

metastasis. The status of splicing factors and other splicing-related proteins in breast cancer 

are important to provide insights into the mechanisms that lead to breast cancer 

metastasis[15]. The correlation analysis of somatic variants with alternative splicing events 

confirmed known trans- associations with variants in SF3B1 and U2AF1, and additional 

trans-acting variants (e.g., TADA1, PPP2R1A). Tumors have up to 30% more alternative 

splicing events than normal samples. Many tumors have thousands of alternative splicing 

events that are not detectable in normal samples. On average, 930 exon-exon junctions 

(‘‘neojunctions’’) were identified in tumors not typically found in normal tissue included in 

the Genotype-Tissue Expression (GTEx) project[15]. CD44 is a cell surface protein with 

various isoforms that involves in motility, cell survival and proliferation and the formation of 

tumor microenvironment. Alternative splicing can produce various isoforms of CD44 with 

properties at different specific tissue[16,17]. The RNA-binding protein hnRNPM was found to 

promote breast cancer metastasis by activating the switch of alternative splicing during 

EMT.

HNRNPM INCREASES CD44 ALTERNATIVE SPLICING TO ENHANCE 

BREAST CANCER METASTASIS

CD44 was identified as a key downstream target of hnRNPM by genome-wide deep 

sequencing analysis. hnRNPM is associated with increased standard form of CD44 (or 

CD44 standard, CD44s) in aggressive breast cancer patient specimens. Overexpressed 

hnRNPM competes with epithelial splicing regulatory protein 1 (ESRP1), and binds to the 

same cis-regulatory RNA elements of CD44 for the precisely control CD44s splice isoform 

switching during EMT[18]. ESRP1 is a splicing regulator to promote an epithelial splicing 

program and hnRNPM is a mesenchymal splicing regulator. Harvey et al.[19] reported that 

hnRNPM and ESRP1 co-regulate a set of cassette exon events in EMT genes associated with 

cell migration and cytoskeletal reorganization. Competitive binding to these cis-elements by 

hnRNPM and ESRP1 to antagonize alternative splicing was proposed. The expression of 

hnRNPM is closely correlated with invasion and metastasis of tumor cells. hnRNPM 
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expression was upregulated in breast cancer tissues. HnRNPM and CD44s expression are 

positively correlated in breast cancer tissues. Cancer stem cells marker ALDH1+ was found 

positively associated with overexpression of CD44s and hnRNPM. High hnRNPM is 

associated with higher levels of CD44s, shorter overall survival and higher rates of lymph 

node metastases in breast cancer patients[20].

MORC2-MUTANT M276I PROMOTES AN HNRNPM-MEDIATED CD44 

ALTERNATIVE SPLICING TO ENHANCE BREAST CANCER METASTASIS

A cancer-associated Microrchidia family CW-type zinc finger 2 (MORC2) (M276I) mutant 

was reported to promote metastatic ability of TNBC cancer cells by enhancing interaction 

with hnRNPM and splicing switch of CD44 from the epithelial isoform (CD44v) to the 

mesenchymal isoform (CD44s) [Figure 1]. Expression of mutant MORC2 in TNBC cells 

increased cell migration, invasion, and lung metastasis. The M276I mutation enhanced 

binding of MORC2 to hnRNPM, a component of the spliceosome machinery. This 

interaction promoted an hnRNPM-mediated splicing switch of CD44 from CD44v) to 

CD44s, ultimately driving EMT. Knockdown of hnRNPM reduced the binding of mutant 

MORC2 to CD44 pre-mRNA and reversed the mutant MORC2-induced CD44 splicing 

switch and EMT. As a consequence, the migratory, invasive, and lung metastatic potential of 

mutant MORC2-expressing cells was impaired[21].

TDP43, CPEB2A/B AND ESRP1/RBFOX2 IN BREAST CANCER METASTASIS

Ke et al.[22] reported that the loss of TDP43 (TAR DNA-binding protein 43), an important 

splicing regulator involved in the SRSF3 regulated unique splicing of downstream gene 

PAR3, promotes metastasis in TNBC. Highly expressed TDP43 is correlated with poor 

prognosis in TNBC. Knockdown of TDP43 inhibits SRSF3 and PAR3 mediated metastasis. 

Two CPEB2 splicing isoforms with or without exon 4 was reported to mediate opposing 

effects on cancer-related phenotypes. The CPEB2A isoform, which is produced by exclusion 

of exon 4 from the mature CPEB2 mRNA, inhibited tumor growth. The CPEB2B splicing 

isoform with the inclusion of exon 4 into the mature CPEB2 mRNA was overexpressed in 

aggressive forms of human breast cancer and enhanced cancer metastasis was observed[23]. 

CPEB2A/B promotes the translation of two critical downstream proteins TWIST1 and HIF1a 

in the hypoxia/EMT pathway[23]. Splicing factor ratio might be an index of EMT and tumor 

aggressiveness in breast cancer. In fact, the association of low ESRP1/ RBFOX2 ratio with 

high risk of metastasis in early breast cancer was speculated to be a new early prognostic 

marker of breast cancer metastasis[24].

RNA BINDING PROTEIN RBM47 INHIBITS BREAST CANCER METASTASIS 

BY REGULATING SPLICING

RNA binding motif protein 47 (RBM47) was identified as a suppressor of breast cancer 

metastasis through analysis of clinical breast cancer gene expression datasets, cell line 

models, and mutation data. Transcriptome-wide HITS-CLIP analysis revealed widespread 

mRNAs associated with RBM47 by binding to their introns and 3’UTRs. The dickkopf 
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WNT signaling pathway inhibitor 1 (DKK1) is one of downstream mRNAs of RBM47. 

RBM47 inhibits breast cancer metastasis by increasing stability of the Wnt antagonist 

DKK1[25].

NON-CODING RNA REST-003 PROMOTES BREAST CANCER METASTASIS

Non-coding RNAs (ncRNAs) RE1-silencing transcription factor (REST)-003 was reported 

to promote breast cancer metastasis. REST-003 is cRNAs derived from the first exon of an 

alternatively spliced REST transcript processed by serine/arginine repeat-related protein 

SRRM3. REST is a transcription factor to regulate expression of genes important for 

neuronal development. Interestingly, SRRM3 expression is repressed by REST[26].

MTDH PROMOTES BREAST CANCER METASTASIS PARTIALLY BY 

REGULATING ALTERNATIVE SPLICING

High metadherin gene expression was highly correlated with breast cancer metastasis[27,28]. 

MTDH was identified to bind to the vasculature of the lung by phage display screening 

cDNAs from metastatic breast carcinoma[27]. Experimental metastasis can be inhibited by 

metadherin specific antibody or siRNAs. Hu et al reported that MTDH drives breast cancer 

metastasis to the lungs by increasing adhesion to the walls of blood vessels[28]. 

Amplification of a minimal 2.9 Mb piece of chromosome 8q22 Was identified in poor-

prognosis breast cancers by ACE (analysis of CNAs by expression data) and fluorescence in 

situ hybridization (FISH) analysis. Only the enforced expression of MTDH in this amplified 

8q22 region was identified to increase lung seeding after tail vein injection of the mildly 

metastatic breast cancer cell line MDA-MB-231[28]. Interaction of MTDH with 

Staphylococcal nuclease domain-containing 1 (SND1) was independently identified by mass 

spectrometry (MS) by three labs[29–31]. Overexpression of MTDH and SND1 in primary 

tumors is strongly associated with reduced metastasis-free survival in multiple large-scale 

datasets of breast cancer patients[32,33]. SND1 acts as a novel alternative splicing regulator 

by interacting with SAM68 to regulate exon v5 inclusion in the CD44 mRNA splicing that 

promotes cancer metastasis [Figure 1][34–36]. Several other splicing regulators including 

hnRNPA0, hnRNPA2B1, hnRNPF, hnRNPA3 isoform were also identified by MS in MTDH 

pull-down assay[29]. High-throughput sequencing of RNA isolated by Cross-linking 

immunoprecipitation (HITS-CLIP) and Photoactivatable Ribonucleoside-Enhanced Cross-

linking and Immunoprecipitation (PAR-CLIP) were recently developed methods to study 

RNA-protein interactions[37,38]. As shown in Table 1, mRNAs encoding for mRNA splicing 

regulators were identified in MTDH RNA interactome for multiple times at different sites by 

MTDH antibody specific PAR-CLIP and 12 splicing factors were confirmed by MTDH 

HITS-CLIP[39]. Therefore, MTDH may promote breast cancer metastasis by regulating 

mRNA splicing through interacting with mRNAs or proteins of splicing factors.

CONCLUSION

Increased expression of mRNAs alternative splicing isoforms derived from alteration of 

splicing factors and MTDH expression could promote EMT and breast cancer metastasis, 

which provides new targets for breast cancer therapy.
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Figure 1. 
Mechanisms of alternative splicing of CD44 in epithelial-mesenchymal transition and breast 

cancer metastasis were summarized
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Table 1.

List of mRNAs encoding for mRNA splicing factors identified by MTDH PAR-CLIP or HITS-CLIP

Ref Seq# Gene #PAR-CLIP Ref Seq# Gene #PAR-CLIP

NM_006924 SRSF1  16 NM_004698 PRPF3 6

NM_003016 SRSF2  14 NM_014502 PRPF19  11

NM_003017 SRSF3* 7 NM_015629 PRPF31 3

NM_005626 SRSF4 8 NM_006109 PRMT5 7

NM_001039465 SRSF5 9 NM_014706 SART3 8

NM_006275 SRSF6  13 NM_018047 RBM22 5

NM_001031684 SRSF7 5 NM_012321 LSM4 5

NM_003769 SRSF9 7 NM_000344 SMN1 1

NM_054016 SRSF10 5 NM_015721 GEMIN4  11

NM_001190987 SRSF11  10 NM_015465 GEMIN5 4

NM_003090 SNRPA1 5 NM_024707 GEMIN7 3

NM_198216 SNRPB* 4 NM_024707 HNRNPA1* 7

NM_003093 SNRPC 5 NM_031157 HNRNPA2B1*  12

NM_006938 SNRPD1 3 NM_031243 HNRNPA3*  29

NM_004597 SNRPD2* 5 NM_194247 HNRNPH3*  10

NM_004175 SNRPD3  11 NM_012207 HNRNPK*  10

NM_003094 SNRPE 3 NM_002140 HNRNPL* 6

NM_003095 SNRPF 2 NM_001005335 HNRPU*  17

NM_003096 SNRPG 3 NM_004501 HNRNPUL2*  14

NM_022805 SNRPN 4 NM_001079559 PCBP1*  10

*
MTDH interacting mRNAs identified in both High-throughput sequencing of RNA isolated by Cross-linking immunoprecipitation (HITS- CLIP) 

and Photoactivatable Ribonucleoside-Enhanced Cross-linking and Immunoprecipitation (PAR-CLIP)
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