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Abstract: We explore the behavior of coarse-grained ionic polymer nanocomposites (IPNCs) under
uniaxial extension up to 800% strain by means of nonequilibrium molecular dynamics simulations.
We observe a simultaneous increase of stiffness and toughness of the IPNCs upon increasing the
engineering strain rate, in agreement with experimental observations. We reveal that the excellent
toughness of the IPNCs originates from the electrostatic interaction between polymers and nanopar-
ticles, and that it is not due to the mobility of the nanoparticles or the presence of polymer–polymer
entanglements. During the extension, and depending on the nanoparticle volume fraction, polymer–
nanoparticle ionic crosslinks are suppressed with the increase of strain rate and electrostatic strength,
while the mean pore radius increases with strain rate and is altered by the nanoparticle volume
fraction and electrostatic strength. At relatively low strain rates, IPNCs containing an entangled
matrix exhibit self-strengthening behavior. We provide microscopic insight into the structural, confor-
mational properties and crosslinks of IPNCs, also referred to as polymer nanocomposite electrolytes,
accompanying their unusual mechanical behavior.

Keywords: strain hardening; elongation; self-healing; mechano-ionic switch; solid polymer electrolyte

1. Introduction

Recently, a new family of nanocomposites by Odent et al. [1], Potaufeux et al. [2],
based on ionically functionalized nanosilicas mixed with oppositely charged imidazolium
(cationic)-functionalized polyurethanes (PUs), presented impressive mechanical properties.
These systems exhibited an attractive electrostatic interaction [3–8] between nanosilicas
and the PU matrix. In particular, two main interesting features have been observed in
ionic PU/nanosilicas composites [1]: (a) upon increasing the volume fraction of nanosilicas
(up to 20 wt%), an increase of strain at break was observed; (b) by increasing the strain
rate a simultaneous increase of stiffness and toughness was detected [1,9]. While the
increase of stiffness (Young modulus) can be interpreted by the addition of nanosilicas
into the PU matrix; however, the mechanisms that lead to the improvement of strain
at break and toughness in nanocomposites remain open questions [10]. According to
Odent et al. [1], both improvements do not originate from the nature of the PU matrix, but
rather the nanoparticles’ (NPs) mobility during deformation, while ionic bonds break and
reform with polymer chains as NPs move. In the work of Shah et al. [10] on poly(vinylidene
fluoride) and polystyrene (PS) nanocomposites (containing 5 wt% of nanoclay), the mobility
of the NPs was dictated by the matrix mobility, and an energy dissipation mechanism
was introduced [11] that led to an enhanced toughness via the orientation and alignment
of chains under stress. Specifically, NPs could retard the growth of cracks, leading to an
improved toughness [10].

There have been a few molecular simulation efforts using either atomistic or coarse-
grained models [12–17] focusing on the mechanical behavior of traditional (nonionic)
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polymer nanocomposites. In particular, in a coarse-grained molecular dynamics (MD)
study, the toughness of a nanocomposite was shown to be correlated with the minimization
of nanofiller diffusion compared to the polymer matrix [18]. This result is in contrast to
the work of Shah et al. [10] and the coarse-grained simulation work by Gersappe [11]. In
the latter, it was demonstrated that the mobility of nanofillers improves the toughness
of the nanocomposite through energy dissipation [11]. Riggleman et al. [19] showed that
the stress–strain curve of traditional (nonionic) nanocomposites exhibits an initial elastic
behavior followed by yielding and then a strain softening when the uniaxial tensile strain
reached ≈ 5%. For strains beyond 10%, a strain hardening [20] (stress increase with strain
beyond the yield point) was reported to set in. In another study with high NP volume
fractions, polymer bridging between the NPs resulted in an enhancement of the mechanical
properties [21]. At even larger volume fractions, a strain softening of the nanocomposite
beyond the yield point was observed by Lin et al. [22]. In addition, Hagita et al. [23], using
the same molecular model adapted for crosslinked polymers, reported that the stress–strain
behavior of the nanocomposite is influenced by the type of interaction between polymers
and NPs. For their small mesh cross-linked polymer networks, polymer–NP interactions
had a small effect on NP configurations during uniaxial extension while starting from the
same NP morphology [24]. The mechanical properties could even monotonically improve
with the increase of polymer–NP interaction strength due to the tele-bridge structure
formations between polymers and NPs [25]. The shear and Young’s moduli were enhanced
in comparison with those in a polymer matrix for attractive and neutral NPs [26]. The NP
volume fraction had an effect on the stress–strain behavior of the nanocomposite due to
the network formed between polymers and nanofillers; in particular, the stress increased
with NP volume fraction in the linear elastic regime (at 10% strain), and the higher surface-
to-volume ratio of the NPs was attributed to contribute to the mechanical improvement of
the nanocomposite [27]. Moreover, the grafting of NPs with polymers was reported to also
reinforce the nanocomposite and increase the elastic constants [28–30]. It was also found
that strain hardening was only weakly affected by grafting density or NP size [31].

Atomistic simulations are more time-consuming, rely on dedicated force models and
usually consider only a very few NPs. In particular, Frankland [32] performed atomistic
MD on polyethylene–carbon nanotube (PE-CNT) nanocomposites and evaluated the stress–
strain curves for different architectures of single wall CNTs in the PE matrix, when the
strain was applied parallel and transverse to the CNT alignments. It was suggested that
the use of higher CNT aspect ratio can improve the stress–strain behavior [33]. Moreover,
NP surface functionalization resulted in stronger interfacial interactions with the polymer
matrix and thus in an improvement of mechanical properties [34]. Another atomistic effort
on a nanosilica/polyimide mixture showed an increase of Young’s and shear moduli in
comparison to the polyimide matrix [35]. The addition of nanosilicas into a PS matrix
resulted in an enhanced Young’s modulus [36]. The same trend was observed for sulfur-
crosslinked cis-1,4-polybutadiene with nanosilicas [37]. For attractive nanocomposites,
the failure stress of the nanocomposite was correlated to NP loading, surface area of the
formed interphase, and the NP network [38]. In such a case, a glassy polymer was formed
around the NPs [39]. It was shown further that both attractive and neutral NPs increased
the Young’s modulus in comparison to the unfilled polymer matrix, whereas repulsive NPs
were found to decrease the moduli [39]. Moreover, the elastic moduli of the nanocomposite
varied with the NP diameter at a fixed NP loading [38].

In this work, we study the behavior of ionic polymer nanocomposites (IPNCs) sub-
jected to a uniaxial extension at various strain rates, using 8 = 2× 2× 2 qualitatively
different systems. This allows us to explore the effects of NP content (small and large
volume fractions), polymer chain length (entangled versus basically unentangled), and
the strength of the ionic interactions (small and large dielectric constant [40]), c.f. Table 1.
While experimental [1,41] and equilibrium simulation [8,42] studies are available for some
of the systems, to the best of our knowledge, IPNCs have not been studied by nonequi-
librium computer simulations so far. We are going to reveal the role of ionic interactions
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on the enhanced mechanical behavior observed in IPNCs, in comparison with traditional
nanocomposites.

Table 1. IPNCs studied in this work. Polymerization degree N, NP volume fraction φ, relative dielectric constant εr [43],
number nNP of spherical NPs of identical radius rNP, number of polymer chains n, individual NP negative charge Q,
and initial simulation box dimensions Lx × Ly × Lz. Every 3rd polymer bead is periodically charged along the polymer
backbone (including chain ends). The number of charges per polymer is nNPQ/n in each system. Each of the eight systems,
for which we introduce system labels in the first column, was subjected to uniaxial extension using five different strain
rates: ε̇xx = 0.0005, 0.001, 0.005, 0.01, and 0.05. The label L1• denotes a system containing long (L) chains at low NP volume
fraction (1) in the presence of strong electrostatic interactions (•), while S2◦ denotes a system containing short (S) chains at
high NP volume fraction (2) in the presence of weak interactions (◦), and so on. If one of the three identifiers is missing as in
S2, we refer to short chain, NP-dense systems with both weak and strong interactions.

Label N φ er nNP n Q/q Lx × Ly × Lz
L1• 200 11.6% 24 256 2304 603 54.2×108.3×108.3
L1◦ 200 11.6% 50 256 2304 603 54.2×108.3×108.3
L2• 200 20.8% 24 512 2304 306 56.2×112.4×112.4
L2◦ 200 20.8% 50 512 2304 306 56.2×112.4×112.4
S1• 40 11.7% 24 192 8640 630 49.3×98.5×98.5
S1◦ 40 11.6% 50 192 8640 630 49.3×98.5×98.5
S2• 40 20.8% 24 384 8640 315 51.1×102.3×102.3
S2◦ 40 20.7% 50 384 8640 315 51.1×102.3×102.3

The manuscript is organized as follows. In Section 2, we describe the models and
simulation method used in this study. As part of the results and discussion Section 3, we
investigate the stress–strain behavior in Section 3.1. Subsequently, the polymer and NP
structure during the extension are reported in Sections 3.2 and 3.3. Monitoring the entangle-
ment network (Section 3.4) and the formation of temporary ionic crosslinks (Section 3.5) are
shown to help explain the molecular mechanism accompanying the deformation process
in IPNCs. The picture is completed with a pore size analysis in Section 3.6, and a detailed
investigation of self-strengthening behavior at low strain rates in Section 3.7. Finally,
conclusions of this study are drawn in Section 4.

2. Methods
2.1. Model Description and Setup

In this work, we have performed coarse-grained nonequlibrium molecular dynamics
simulations of model IPNCs. While this model has been described thoroughly in our
previous work on the equilibrium properties of IPNCs [42], we discuss its essential features
in the following for the sake of completeness.

Our model systems are composed of spherical NPs and multibead-spring linear
polymer chains (so-called Kremer–Grest polymers [44–46]), where each bead represents a
number of monomers [47,48]. Adjacent beads within chains are connected by anharmonic
springs, while the impenetrable NPs are modeled as rigid, mobile objects whose surfaces
are covered by NP surface beads. Polymeric and surface beads may or may not carry a
permanent charge, while the systems are overall neutral in each case, to satisfy the charge
balance between ionic polymers and nanoparticles [1]. For both NP volume fractions
investigated, the ionic polymers keep their chemistry, that is, their unaltered charge density,
as in the experiment [1]. We do not include counterions to compensate for the charge,
since they do not appear in the experimental nanocomposite system [1] as well. This
implies that the NP charge depends on the NP volume fraction and that the effects of
charge and NP volume fraction cannot be explored independently, without altering the
polymer dimensions. The existence of charges on the polymers and surface beads within
our nanocomposite model is the only factor that leads to NP dispersion in comparison with
previous simulation models for traditional nanocomposites [17,19,21,24], in which a short
range attractive interaction (nonionic) between NPs and monomers promotes dispersion.
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We use Lennard–Jones (LJ) units throughout this manuscript, so that all quantities are
given as non-dimensional numbers. They receive their dimensional counterparts through
their physical units and the dimensional length, time, mass, and charge units, which we
(can) assign afterwards [49], so that all results presented potentially hold up for arbitrary
choices of real materials.

Specifically, adjacent polymer beads i and j separated by spatial distance rij within
polymer chains, each made of N beads, are connected using finitely extendable nonlinear
elastic (FENE) springs [50–56]:

VFENE
ij = −1

2
kR2

0 ln

(
1−

r2
ij

R2
0

)
, (1)

where in applying Equation (1), the maximum bond length and spring coefficient are set
to R0 = 1.5 and k = 30, respectively, as in previous works on neutral polymers [51]. All
the polymer and NP surface beads interact via a truncated, purely repulsive LJ potential
VLJ

ij , whose corresponding force acts along the line connecting the centers of mass of two
beads [57]. It is given by:

VLJ
ij = 4

(
σ12

ij

r12
ij
−

σ6
ij

r6
ij

)
, rij ≤ 21/6σij, (2)

where rij represents the spatial distance between any beads i 6= j. The polymer entangle-
ment length [58] of this Kremer–Grest model of a polymer melt in the absence of NPs is
Ne ≈ 86 by the S-coil estimator [59,60], the bond length is approximately unity, and the
characteristic ratio is C∞ ≈ 1.7 at our chosen temperature T = 1.25. The Lorentz–Berthelot
mixing rule [57] σij = (σi + σj)/2 is used for each pair of beads; σi = 1 if bead i belongs
to the set of polymer beads, and σi = 0.4 if i belongs to the set of NP surface beads. In
addition, the coulombic interaction between charged beads in the polymer matrix (with a
relative dielectric constant of εr) and on the NP surface is incorporated and given by:

VCoulomb
ij =

qiqj

εrrij
, (3)

with qi = +q for a charged polymer bead and qi = −q for a charged NP surface bead,
where q is the elementary charge of a proton e in LJ units, that is, q = e/

√
4πε0σε. All NPs

are equally and negatively charged; Q of its surface beads carry a negative charge −q. The
molecular dynamics simulations were performed using the LAMMPS package [61]. The
long-range electrostatics were computed using the particle–particle particle–mesh (PPPM)
method [62] with an accuracy of 10−4. The modeled IPNCs consist of monodisperse
spherical rigid NPs, each with a baseline radius of 3.75 (implying an effective NP radius
of rNP = 3.75 + 0.7/2 = 4.1), and fully covered by 720 surface beads. The mass of
an NP surface bead, mNP = 0.49, is chosen so that the NP mass density, calculated as
ρNP = 720×mNP/VNP with NP volume VNP = 4/3πr3

NP, is ≈ 1.5 times the mass density
of the polymer matrix with monomer mass of m = 1, calculated from ρ = nNm/V(1− φ)
with the simulation box volume V, and NP volume fraction φ = nNPVNP/V. The start
configurations of the simulation cells were created by replicating already equilibrated
nanocomposite structures [56]. The large simulation cells were further equilibrated for the
duration of approximately five times the relaxation time of the gyration radius. All results
to be presented are averages over ten independently generated nanocomposite systems.

2.2. Choice of Systems

In the following, we estimate and then set the Bjerrum length, λB, through an (ap-
proximate) mapping of the simulated systems with existing materials. Imidazolium-
functionalized polyurethane (PU)/silica [1] and poly(ethylene oxide) (PEO)/silica [63]
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nanocomposites have been studied in the melt state at around T ≈ 333 K, thus implying
ε ≈ 266 kBK for the LJ energy unit, and the nanosilica diameter of around 10 nm that results
in σ ≈ 1 nm for the LJ length unit. Therefore, the parameter q, which is the ratio between
the elementary charge e and LJ charge unit

√
4πε0σε, is calculated and set as q ≈ 7.92. The

Bjerrum length λB indicates the length scale at which the magnitude of the electrostatic
interaction equals the thermal energy. It is thus obtained from Equation (3) as:

λB =
q2

εrT
. (4)

While depending on molecular weight and the temperature the dielectric constant of
PEO melt varies, as discussed by Koizumi and Hanai [64], Porter and Boyd [65], we consider
a dielectric constant of εr = 24, which is around the values reported [64,65], implying a
Bjerrum length of λB ≈ 2.1. We also study the effect of ionic strength by simulating a
set of replicate systems with a different dielectric constant of εr = 50, or equivalently a
weaker Coulomb interaction with the Bjerrum length of λB ≈ 1.0. If we identify C∞ of our
beads to correspond to CPEO

∞ PEO monomers, the bead mass is m ≈ 5.5× 44/1.7 g/mol
≈ 142.5 g/mol, where 44 g/mol is the mass of a PEO monomer and CPEO

∞ ≈ 5.5 [66].
Here we consider two different NP loadings φ = 11.6, 20.8%, for polymer chains

containing charges on every third monomer, with “polymerization” degrees of N = 40, 200
beads per chain that have been studied before for their equilibrium properties, [42] and sub-
ject them to uniaxial elongations with different rates of ε̇xx = 0.0005, 0.001, 0.005, 0.01, 0.05.

Details of the IPNC systems studied, including NP volume fraction φ (%), the number
of spherical NPs, nNP, polymerization degree N, number of chains n, individual NP
negative charge Q and initial simulation box dimensions, are summarized in Table 1. A
typical integration time step is dt = 0.002. A representative snapshot of a fully relaxed
undeformed IPNC L2• is provided by Figure 1. Under these conditions, at equilibrium,
the NPs prefer a body-centered cubic arrangement. See Ref. [42] for further discussions
regarding the structure of the NPs at equilibrium for this model system.

(a) (b)

x

y

z

Figure 1. (a) Simulation snapshot of system L2•, a fully relaxed undeformed IPNC system at NP
volume fraction φ = 20.8%, dielectric constant εr = 24, and monodisperse chains with N = 200 beads
each. The small, colorful spheres depict the connected polymer beads, and the large golden ones
stand for the NPs. Note that the surface of each NP is covered homogeneously with 720 smaller NP
surface beads that are not shown here for the sake of clarity. Polymers in the top corner are removed
so that the NP (almost perfect lattice) structure is visible. The system contains n = 2304 polymer
chains, nN = 460800 polymer beads and 512 NPs in total (Table 1). (b) The same system in which
only 50 randomly selected chains, each with a distinct color, is shown while the rest of the chains as
well as the NPs are invisible.
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2.3. Uniaxial Extension

We apply a uniaxial extension in the x-direction with constant engineering strain
rates ε̇xx up to 800% strain. While the box size in the x-direction is increased deterministi-
cally as Lx(t) = (1 + ε̇xxt)Lx(0) according to the imposed strain rate, the perpendicular
box dimensions Ly(t) and Lz(t) are pressure-controlled, using the equilibrium pressure
measured during the relaxation runs. Furthermore, at each time step, we rescale the coor-
dinates of monomers and NPs as rigid bodies to match the dimensions of the deformed
box. With this simulation setup, in the x-direction only the temperature is controlled via a
Nosé-Hoover thermostat, while in the y- and z-direction the pressure is controlled as well
via a Nosé-Hoover barostat, mimicking as closely as possible the laboratory conditions
during tensile extension experiments. All systems are originally twice as long in the y- and
z-directions orthogonal to the stretching x-direction to allow for relatively large strains at
limited computational cost.

2.4. Quantities

The trajectories of monomers and NP centers are available at any stage of the macro-
scopic deformation process and allow us to evaluate the following quantities in the course
of time:

• nonequilibrium contribution to the stress tensor, σ: its potential and kinetic contribu-
tions are calculated via the tensorial virial theorem, using coordinates and momenta.

• number of temporary crosslinks, Xc: between a single polymer and all NPs, aver-
aged over all polymers. Such a temporary crosslink is formed when one (or more)
monomer(s) of a chain comes into the r = 1 neighborhood of an NP surface [42].

• entanglements per chain, Z0: calculated using the Z1 code [67,68], in the so-called
phantom limit, where NPs are removed from the system prior constructing the shortest
disconnected path.

• NP–NP radial pair correlation function, g(r): calculated from the center coordinates
of the NPs, g(r) ∼ 〈δ(r− |ri − rj|)〉/r2, where now ri denotes the position of an NP
center, and the average is taken over all pairs of NPs.

• non-affine NP displacement, δ: quantifies the extent of non-affine motion of NPs
at given strain. If xµ(t) denotes the µth component of the time-dependent position
vector of an NP center and Lµ(t) the box size in µ-direction, then δ is the mean
length of the vectors (one for each NP), whose components are given by xµ(t + ∆t)−
Lµ(t + ∆t)xµ(t)/Lµ(t) ≈ (ẋµ(t)− L̇µ(t)x(t)/Lµ(t)]∆t, where ∆t is the time between
snapshots. We take 500 snapshots during each uniaxial extension experiment up to
strain ε̇xxt = 800%, hence ∆t = (62.5 ε̇xx)−1.

• mean pore radius: calculated from the pore radius histogram h(r), which offers the
probability that the largest sphere that can be inserted into the polymer matrix without
any overlap with existing NPs, and which contains point p and has radius r, provided
that the insertion point p is chosen randomly from the points residing in the space
available to the polymers. See for example, Ref. [7] for more details on the pore
size definition.

• disorder parameter S: defined, based on the NP–NP pair correlation function, in
Equation (5).

• radius of gyration tensor, Rg: defined as the dyadic product 〈(ri − c)(ri − c)〉, where
ri denotes the position of a bead, and c the center of mass of the corresponding
polymer [69,70]; the average is taken over all beads and all polymers and depends on
time and strain.

• segment orientation tensor 〈uu〉: obtained with |u| = 1 from all normalized bond
vectors u along the polymer chains, as a function of strain.

Snapshots have been visualized using the visual molecular dynamics (VMD) soft-
ware [71]. To help the reader follow the discussion and correlate measurements for the
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various quantities shown in the main text or Supplementary Information, we have listed
the systems, regimes and content captured by all figures in Table 2.

Table 2. Guide through results shown by figures in both main text and Supplementary Information. System labels have
been introduced in Table 1, strain rates ε̇xx, strain εxx and quantities are mentioned here. Parts of labels have been left out if
the corresponding figure shows results for all labels that contain the pattern such as S2; it stands for S2• and S2◦. Additional
data available from authors upon request.

Figure Label ε̇xx εxx Content Figure Label ε̇xx εxx Content
Figure 1 L2• 0 0 snapshot Figure S1a,b L2• , S2• varied 0–8 stress–strain
Figure 2a,b L1• , S1• varied 0–8 stress–strain Figure S2 L2• varied 0–5 correlation g(r)
Figure 3 S1• 0.05 7.5 snapshots Figure S3 L1• varied 0–3 correlation g(r)
Figure 4a,b L, S 0.01 0–3 stress–strain Figure S4 L1• varied 0–8 gyration Rg
Figure 5 L2• 0.005 0–3 stress–strain, g(r), S Figure S5 S1• varied 0–8 gyration Rg
Figure 6 L2• 0.005 0–2 snapshots Figure S6 L,S 0.01 0–8 stress-optic
Figure 7 L◦ ,S◦ 0.01 0–3 gyration Rg Figure S7a S1• varied 0–8 entanglements Z0
Figure 8a L1• varied 0–8 entanglements Z0 Figure S7b S 0.01 0–8 entanglements Z0
Figure 8b L 0.01 0–8 entanglements Z0 Figure S8a S2• varied 0–8 crosslinks Xc
Figure 9a L2• varied 0–8 crosslinks Xc Figure S8b S 0.01 0–8 crosslinks Xc
Figure 9b L 0.01 0–8 crosslinks Xc Figure S9a S1• varied 0–8 pore rp
Figure 10a L1• varied 0–8 pore rp Figure S9b S 0.01 0–8 pore rp
Figure 10b L 0.01 0–8 pore rp Figure S10 L2 0.001 0–8 Rg , Z0, rp
Figure 11 L2 0.001 0–8 stress–strain, g(r), S Figure S11 L, S 0.01 0–3 non-affine δ
Figure 12 L2◦ 0.001 0–5 snapshots Figure S12 L2 0.001 0–8 non-affine δ

While all quantities will be reported in dimensionless LJ units, they can be converted
to dimensional numbers using the reference quantities, for which crude estimates were
given above for PEO. Specifically, if a resulting quantity has a physical dimension of
kgαmβsγCδ, the dimensionless result has to be multiplied by mα+γ/2ε−γ/2σβ+γ(e/q)δ,
using m = 142.5 g/mol, ε = 266 kBK, σ = 1 nm, and q = 7.92. For example, stress has
units of Pa, that is, α = 1, β = −1, γ = −2 and δ = 0, implying a dimensionless stress
of 1 to correspond to 3.67 MPa. Similarly, a dimensionless rate has to be multiplied with
125/ns. Fortunately, it is known that these basic considerations do not tell the whole story
about the dimensional analogues [70]. The strain rates applied in the present study are
unrealistically large based on this calculation, but it is still possible to reach a linear regime.

3. Results and Discussion
3.1. Stress–Strain Behavior

We begin by examining the mechanical stress–strain behavior of IPNCs. In particular,
in Figure 2a,b, we show the stress–strain curves of both entangled and “unentangled”
(less than a single entanglement per chain) IPNCs L1• and S1•, for φ = 11.6%, εr = 24
and various strain rates. In Figure 2a, it can be seen that for L1• the strain rate increases
the overall toughness, that is, area under the stress–strain curve. For strain rates larger
than 0.001, both the stiffness and toughness of IPNCs increase with increasing strain rate.
This behavior is in agreement with experiments in ionic PU-nanosilicas composites [1]. A
similar behavior is observed for unentangled (N = 40) IPNCs S1• (Figure 2b); however, in
such systems a strain of failure is found. This scenario is exemplarily visualized for S1• in
the case of a relatively large strain rate in Figure 3. The corresponding stress–strain curve
is shown in Figure 2b.



Polymers 2021, 13, 4001 8 of 20

0  1  2  3  4  5  6  7  8  

0  

1  

2  

3  

4  

5  

6  

7  

8  

9  

10 

11 

0 0.5
0

1

2

(a)

0  1  2  3  4  5  6  7  8  

0  

1  

2  

3  

4  

5  

0 0.5

0

1

2

(b)

Figure 2. Rate-dependence of stress–strain curves for (a) entangled L1•, and (b) unentangled S1•

at an NP loading of φ = 11.6%, and εr = 24. Different rates are marked by different colors, from
ε̇xx = 0.0005 (blue) to ε̇xx = 0.05 (purple). Insets provide zooms into the regions of moderate strains
below 50%.

Figure 3. Snapshot taken from the S1• system. Breaking of the unentangled IPNC system under large
uniaxial extension strain εxx = 750% at (fast) engineering extension rate of ε̇xx = 0.05, c.f. purple
line in Figure 2b. The simulation snapshot corresponds to a system with N = 40 chains at an NP
loading of φ = 11.6%, and εr = 24.

For the entangled IPNCs L1•, a strain hardening regime beyond the yield point is
observed [20], that is absent in the unentangled IPNCs S1•. Furthermore, the insets in
Figure 2a,b indicate that at small strains (εxx ≤ 10%) and at low strain rates (ε̇xx ≤ 0.001) a
linear regime for both L1•and S1•systems emanates where the entangled systems show a
larger Young’s modulus (initial slope of the stress–strain curve) than the unentangled ones.
Both systems exhibit a stress overshoot at the beginning of extension for the largest strain
rates (ε̇xx = 0.05) consistent with the experimental observations for polymer melts.

Moreover, in Figure 4a(L systems), b(S systems), we examine the effects of the dielectric
constant (or Bjerrum length) [42] and NP volume fraction on the stress–strain behavior
for a selected strain rate ε̇xx = 0.01 (cyan curves in Figure 2). As can be seen in both
polymer cases, the toughness of the IPNC increases substantially for a higher Bjerrum
length (smaller dielectric constant), which means a stronger electrostatic strength (in short,
toughness is larger in • systems than ◦ systems). However, the stiffness of the IPNCs (the
initial slope of the stress–strain curves) does not seem to be influenced by the electrostatic
strength. The NP volume fraction influences the stiffness and toughness of the IPNCs.
It can be clearly seen that the addition of ionic NPs into the polymer matrix leads to a
substantial decrease of toughness (in short, toughness 1 > 2). Additional results for the
stress–strain behavior of IPNCs L2•and S2•at a larger NP volume fraction of φ = 20.8%, for
various strain rates analogous to those investigated for L1• and S1• (Figure 2), are provided
in Supplementary Figure S1. It is worth noting that the modeled stress–strain behavior in
INPCs, both stiffness and toughness, is enhanced compared with the modeled stress–strain
curve of traditional (nonionic) nanocomposites [24,25].
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Figure 4. All eight L and S systems at identical engineering strain rate. Stress–strain curves for (a) L
(N = 200), and (b) S (N = 40) systems at different NP loadings and dielectric constants subjected to
a stretching rate of ε̇xx = 0.01.

3.2. NP Structure during Uniaxial Extension

In this section, we focus on the NP structure during the deformation process of the
IPNCs. In Figure 4a we can see the pronounced stress overshoot. This phenomenon is
accompanied by a transition between affine and non-affine motion of the NP subsystem,
quantified in terms of the non-affine displacement δ (Supplementary Figure S11) introduced
in Section 2.4; δ begins to rise suddenly at the inflection point of the stress, that is, the stress
increase triggers a non-affine motion of NPs, and vice versa, the non-affine motion tends to
help relax the stress. In general, the degree of non-affinity is comparable at very low and
very high strains and reaches its maximum at intermediate strains.

To quantify the structural transition further, we show in Figure 5b the NP–NP radial
pair correlation function, g(r), for the L2• system at an intermediate strain rate ε̇xx = 0.005,
for various selected strains marked by bullets in the stress–strain curve shown in Figure 5a.
Compared with the non-affine displacement, which characterizes changes that may leave
g(r) unchanged, g(r) can be considered as a more classical measure of order than δ, while
it should be kept in mind that it is most useful for isotropic systems. Snapshots that
correspond to the states marked by bullets up to a strain of 200% are provided in Figure 6.
The first of these snapshots coincides with the equilibrium snapshot shown in Figure 1.
According to these results, the strain has a distinct effect on the structure of NPs. For
low strains, up to the stress peak at a strain of about 70%, there is more than one peak
(and characteristic distance) in the pair correlation function signaling a pronounced NP
ordering. Actually, while the system exhibits a near-crystalline body-centered cubic order
in equilibrium (Figure 1), it transits through a cascade of long range ordered structures
including a hexagonal close packed (hcp) structure, during which the stress rises. The
transition between body-centered cubic and hexagonal close-packed can be easily seen in
the first two (blue and green) curves of Figure 5b. Up to distances of twice the minimum
NP–NP distance, the body-centered cubic can be recognized by a large first peak, followed
by two peaks of comparable magnitude, while the hexagonal close packed as opposed
to face-centered cubic has a peak at about r = 21, just before a larger peak emanates that
would also occur for the face-centered cubic structure. Disorder has started to set in at
the yield point (marked by a red bullet). For higher strains, there is only one broad peak
remaining in the pair correlation function representing a random packing of the ionic NPs
in the polymer matrix, also confirmed by the snapshots of Figure 6. To quantify the amount
of disorder reflected by the shape of the pair correlation function, not only for selected
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strains but also over the whole range of strains, we introduce a simple entropy-like disorder
parameter based on g(r),

S = −
∫

g(r) ln[g(r)] dr∫
g(r) dr

, (5)

where the integral extends over regions in r, where g(r) does not vanish. The quantity
S gives information about the degree of disorder; S vanishes for an ideal gas, and gets
progressively negative with increasing order. The behavior of S for L2• as a function of
strain is shown in Figure 5c. At low strains, the system remains long-range ordered, while
the structure reorganizes, starting out with a body-centered cubic NP structure. Beyond
strains of about 50%, S sharply increases until it reaches a maximum at about εxx ≈ 80%.
Just at the maximum the long-range order vanishes completely and the unordered structure
remains up to the largest strains probed here, while there is a moderate tendency for an
increase of order with increasing strain, that is not visible in g(r), but quantified by S
(Figure 5c). Results for the L2• at different strain rates are provided in Section 3.7 and
Supplementary Figure S2. Analogous results for the more NP-dilute L1• are available in
Supplementary Figure S3.
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Figure 5. System L2• subjected to strain rate ε̇xx = 0.005 at different stretching strains. (a) stress–strain curve. (b) NP–NP
pair correlation function at the strains marked by colorful bullets in (a). The curves are shifted upward by their index
i = 0, ..., 5 where, e.g., i = 0 for the blue line (0.03 strain) and i = 5 for the yellow line (3 strain). (c) Corresponding
information measure S obtained from g(r) shown in (b) via Equation (5). Snapshots for the marked states are provided in
Figure 6.
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Figure 6. Snapshots (projections onto the x-y-plane) of the three-dimensional L2• system with
N = 200, εr = 24, φ = 20.8%, subjected to uniaxial extension in x-direction at strain rate ε̇xx = 0.005,
captured at different stretching strains of εxx = 0, 18%, 70%, 120%, and 200% from top to bottom.
These states are marked by colored bullets in Figure 5a,c. The NPs remain unstructured at strains
larger than εxx ≥ 200%. Polymers are not shown here for the sake of clarity. The corresponding
NP–NP pair correlation functions at these strains are given in Figure 5b.
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3.3. Polymer Conformations

Beyond the NP structure, it is of interest to investigate the polymer conformations,
which affect the polymer–polymer entanglements [59,72,73] during the uniaxial extension.
Here, we elaborate on the polymer conformations by investigating components of gyration
tensor, Rg, for different numbers of monomers and NP volume fractions, during the
uniaxial extension process. It is worth recalling that all ionic polymers exhibit the same
charge density. Thus, the intramolecular electrostatic interaction between monomers has
the same effect on polymer dimensions and entanglements in all systems studied. Changes
of polymer conformations, entanglements and ionic crosslinks may therefore arise from
the electrostatic attraction between the NPs and ionic polymers, which depends on the NP
volume fraction and Bjerrum length, as the charge per NP is decreasing by increasing NP
volume fraction.

First, the size of polymers in the absence of deformation is only weakly affected
by NP volume fraction (Figure 7) or strength of the electrostatic interactions (data not
shown). In particular, components of the gyration tensor as a function of strain for all
weakly electrostatic systems L◦ and S◦ at a rate of ε̇xx = 0.01, for which stress–strain curves
were presented in Figure 4, are shown in Figure 7. We observe a characteristic increase
of the parallel component of the gyration tensor, Rgxx, to the expense of a decrease on its
perpendicular component (Rgyy + Rgzz)/2 with respect to the extension direction. The
behavior of these two components as a function of strain is qualitatively similar to the ideal,
uniaxially extended, polymer coil, which is limited in its extension by the polymerization
degree (Rgxx ≤ (N − 1)2/12 because the bond length is approximately unity). The parallel
and perpendicular components of Rg, for entangled chains, are slightly enhanced for the
lower NP volume fractions during the extension (L2◦) since, in that case, the NPs carry
a higher total charge, which leads to a stronger electrostatic attraction between polymer
and NPs. Additional data for gyration tensor components versus strain at several rates for
the L1• and S1• systems are provided in Supplementary Figures S4 and S5, respectively.
The stress–strain relationships can be correlated with the conformations of the polymers to
investigate the stress-optic behavior; this is done in Supplementary Section S1.
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Figure 7. Polymer structure during stretching for different NP loadings and chain lengths for all
weakly electrostatic L◦ and S◦ systems (εr = 50). Different elements of gyration tensor, (a) parallel-
and (b) perpendicular to the direction of strain. Data correspond to the strain rate of ε̇xx = 0.01. A
similar trend was observed for strongly electrostatic systems L• and S• but with a slight increase
(less than 10%) in gyration tensor elements (results not shown here). Additional data highlighting
the effect of strain rate provided in Figures S4 and S5.

3.4. Polymer–Polymer Entanglements

In this section, we focus on the polymer entanglements during the extension for all
four L systems, using the method described in Section 2.4. It is an often quoted statement
that entanglements contribute to the stress–strain behavior of the IPNC, and specifically
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to the toughness and strain hardening regime of the material. We find that the number
of entanglements per chain is generally reduced with increasing strain rate, beyond a
strain rate of 0.001, as it can be seen in Figure 8a for the representative L1• system. It is
worth noting that the number of entanglements Z0 is first rising for strains below 300%,
and dropping afterwards. This is because chains tend to first stretch during deformation
and increase their number of polymer–polymer contacts, before they lose entanglements
due to alignment. While there is a clear reduction of Z0 with increasing NP volume
fraction and decreasing NP–NP distance (Figure 8), the Bjerrum length does not seem to
have any effect on Z0 for the high NP volume fraction, L2◦ and L2• systems. At the low
NP fraction, however, an increase of Bjerrum length is accompanied by an increase of
entanglements at sufficiently low strains (Figure 8a), in short: entanglements • ≥ ◦ and
1 > 2 and their amount decreases with increasing rate. It is worth noting that the number of
polymer entanglements is higher for lower NP volume fraction IPNCs, due to the stronger
electrostatic attraction between polymers and NPs for that case. This higher number of
entanglements at a lower NP volume fraction is accompanied by strain hardening and a
higher toughness of the IPNC as is depicted in Figure 4a for all L systems.

However, although there are regimes with the same number of polymer entanglements
in the plasticity region, the corresponding toughness and strain hardening values of the
IPNCs are different. Such results clearly denote the correlation of electrostatic strength
(attraction) with the toughness and strain hardening behavior of the IPNC. In short: while
toughness and entanglements are both • ≥ ◦ and 1 > 2, toughness increases with rate,
while entanglements decrease with rate. Thus, a direct correlation between entanglements
and toughness (or strain hardening regime) can be ruled out.

An increase of Bjerrum length tends to reduce the number of entanglements for the sys-
tems at low NP volume fraction (φ ≈ 11.6%); however, it does not alter the entanglements
at larger volume fractions (φ ≈ 20.8%), especially in light of the results for the S systems
(Supplementary Figure S7). In essence, stronger electrostatic interactions (attraction) seem
to enhance the effect of NP content on the number of entanglements, for all systems.
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Figure 8. Entanglement data for all L systems. Number of entanglements per chain, Z0, in the
phantom NP limit during stretching for the L systems containing N = 200 chains. Dependence of
Z0 on stretching rate ε̇xx (a) for L1•. (b) Z0 dependence on φ and εr measured at a stretching rate
of ε̇xx = 0.01. The corresponding stress–strain curves are given in Figures 2a and 4b respectively.
Additional data for the S systems available in Figure S7.

3.5. Polymer-NP Temporary Crosslinks

Next, we focus on the ionic temporary crosslinks (Section 2.4) created between NPs
and polymers during extension. We have shown in our previous study by equilibrium
MD [8,42], that there are ionic temporary crosslinks formed, depending on the electrostatic
strength and charge sequence of the ionic polymers. It is shown in Figure 9a for the
L2• system that low strain rates have a very subtle effect on the number of crosslinks
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Xc. As the strain rate increases to 0.05, there is a substantial decrease of crosslinks with
increasing strain. For all rates, the number of crosslinks increases with strain. It can be
seen in Figure 9b that Bjerrum length (different dielectric constant) has a distinct effect
on the number of ionic crosslinks, especially at 20.8% NP volume fraction (systems L2•

and L2◦); in particular, a lower Bjerrum length increases the number of crosslinks at any
strain. In short: crosslinks 1 < 2 and • ≤ ◦ and their amount increases with strain. This
can be explained by the fact that at a lower Bjerrum length (εr = 50), due to the weaker
electrostatics strength, NPs and polymers have a higher mobility thus ionic crosslinks can
be formed more easily. In light of results shown in Figure 4a for all L systems, it can be
seen that at a lower Bjerrum length, the toughness of the IPNC reduces, which means that
the mobility of NPs is not the main mechanism for driving the toughness behavior of the
IPNC but rather the strength of ionic crosslinks formed. This result comes into agreement
with the simulation work of Kutvonen et al. [18] in which the minimization of NPs mobility
was reported to contribute to the toughness of a polymer nanocomposite but it disputes
what is claimed in the experimental work by Odent et al. [1] Thus, the mechanism that
drives the toughness of the IPNC is the electrostatic strength of the ionic crosslinks formed
between polymers and NPs. Obviously, for lower NP volume fractions (systems L1• and
L1◦), there are fewer NP–polymer crosslinks formed due to the smaller number of available
NPs. However, as can be seen in Figure 4a, a better toughness behavior and a greater
strain hardening for such lower NP loading IPNCs appears. Such behavior can also be
explained by the strength of ionic crosslinks formed, since at lower NP volume fractions,
NPs contain a higher total charge, thus a stronger electrostatic attraction between polymers
and NPs exists.
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Figure 9. Crosslink data for all L systems. (a) Polymer–NP temporary crosslinks per chain Xc as a
function of elongational strain εxx for systems with dielectric constant and NP loading of εr = 24
and φ = 20.8% respectively, measured at different strain rates. (b) Xc measured at various φ and εr

for samples subjected to a strain rate of ε̇xx = 0.01. All data shown here correspond to entangled
systems with N = 200 chain length. Data for the short chain S systems available in Figure S8.

The number of ionic crosslinks are generally reduced in the unentangled S systems
compared to the entangled L systems. Still, we present the full analysis of the low-molecular
weight systems in Supplementary Figure S8a for S2•, where we have varied the strain
rate, and in Supplementary Figure S8b at a selected rate for all four S systems, for a direct
comparison with results discussed in the current section. While there are qualitative
similarities between the L and S systems, the amount of ionic crosslinks increases less
dramatically with strain for the S systems. For the highest strain rate probed, we even find
Xc to go through a minimum at a strain of about 400%, while the L systems have only a
very moderate increase instead of a minimum. This effect is due to the ability of polymer
chains to stretch by a factor ∼

√
N, the ratio between fully extended and coiled equilibrium

state, before they detach.
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3.6. Pore Size Analysis

To shed some light on the remarkable structural, anisotropic changes of the deformed
NP subsystem, that are captured only in very crude fashion by the isotropic part of the
pair correlation function, we evaluate the pore size distribution (Section 2.4) and its first
moment, the mean pore radius, as a function of strain. Let us begin by inspecting the
mean pore radius rp versus strain for the system L1• for which we have already monitored
the nonequilibrium stresses and gyration tensor components, subjected to different strain
rates (Figure 10a). We find that the peak in the mean pore radius occurs exactly at an
order–disorder transition, and its value, that is, the size of pores, tends to increase with
increasing strain rate. This implies that our initially ordered systems are able to transit
through intermediate, differently but still very well ordered states with larger pore sizes
on average. For the remaining L systems, the pore radius is shown versus strain for the
selected rate ε̇xx = 0.01 in Figure 10b. In particular, NP volume fraction has a clear effect
on rp, denoting a larger rp for lower volume fractions. In addition, a higher Bjerrum length
leads to a higher rp ; beyond the strain the peak of rp appears. This is due to the stronger
electrostatic attraction that exists between polymers and NPs and keeps NPs closer in the
neighborhood of polymers during the extension for a larger Bjerrum length.
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Figure 10. Pore radius data for all L systems. (a) Dependence of the mean pore radius rp on stretching
rate ε̇xx for the L1• system at various rates. (b) rp dependence on φ and εr measured at a stretching
rate of ε̇xx = 0.01. The corresponding stress–strain curves are given in Figures 2a and 4a respectively.
Analogous analysis for the S systems in Supplementary Figure S9a for S1• and in Figure S9b for all
S systems.

This information is very different from that contained in g(r). While the first peak
in g(r) denotes the preferred distance between neighboring NPs, and remaining peaks
could be used to speculate about the anisotropic ordering, the mean pore size provides
orthogonal information about the three-dimensional arrangement. The largest pore radius
is observed for a configuration that is close to mono–modal simple cubic (SC) packing. It is
well known that the pore size of an SC lattice is a factor 0.55/0.41 ≈ 1.34 larger than that of
the initial body-centered (BCC) cubic lattice [74]. This ratio equals the ratio 7.4/5.5 ≈ 1.34
observed for the largest strain rate in Figure 11a.

An analogous analysis for the S systems is available in Supplementary Figure S9a for
S1• and in Figure S9b for all unentangled S systems.
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Figure 11. Structural transition data for the entangled L2• and L2◦ systems at an identical and
relatively small strain rate ε̇xx = 0.001. (a) Stress–strain curves for L2• (blue) and L2◦ (red lines),
(b) NP–NP pair correlation function calculated at different stretching strains for the L2◦ system. The
curves are shifted upward by their index i = 0, ..., 5 where, e.g., i = 0 for the blue (bottom) line and
i = 5 for the yellow (top) line. The line colors in (c) correspond to the observations (colorful symbols)
made in (a,c) at the same strain εxx values. (c) Disorder parameter S versus strain for both L2• and
L2◦ systems. A similar analysis for the L2• system at a larger rate was provided by Figure 5.

3.7. Stretching of the Entangled IPNC Systems at Low Strain Rates

By lowering the strain rate further, we begin to enter a regime where self-strengthening
features of entangled IPNCs can be clearly observed. While the L2• system was shown to
exhibit strain-hardening behavior at a rate of ε̇xx = 0.005, the stress–strain curves for both
L2 systems, at a five times smaller rate ε̇xx = 0.001, are provided in Figure 11a. Correspond-
ing snapshots for the selected strains, marked by colored bullets, are provided in Figure 12.
Instead of a single local minimum at a finite strain, we observe a noisy stress signal at first
glance. However, the results, presented here, are obtained starting from more than ten in-
dependent initial configurations, and the stress signal shown in Figure 11a is reproducible
to within a few percent. The physical mechanism behind this self-strenghening zig-zag
signal is a build-up of highly ordered structures at certain strains, which renders similarity
with stress–strain signals obtained for mechano-ionic switches [75,76]; In between those
strains, the system reorganizes in a relatively unordered fashion, as it apparently lacks the
possibility of falling into a global energetic minimum. As for the IPNCs discussed earlier in
this manuscript, δ rises at the inflection point of the stress, that is, a stress increase triggers
a non-affine motion and vice versa, the non-affine motion tends to relax the stress (Supple-
mentary Figure S12). Contrary to Figure 4a, we now observe more than a single overshoot.
Structural reorganization produces a configuration for which the affine extension leads to a
stress increase, and the process is repeated until the non-affine displacement results in a
random or less structured state.

By visual inspection of Figure 12, we can observe that the various ordered phases do
not exhibit the same crystal symmetry. To make this more quantitative, we have calculated
the NP–NP pair correlation function g(r), depicted in Figure 11b. The alternating aspects of
both quantities, snapshots and correlation function are obvious. In particular, it can be seen
that the g(r) graphs (blue, red, magenta lines) with a few localized peaks for strains 0%,
150%, and 410% alternate with g(r) graphs (green, cyan, yellow lines) that exhibit a single
and very broad peak at a value that is determined by the number density of NPs. The
corresponding maxima of the non-affine displacement δ occur with a delay, for a reason
discussed already, at the larger strains 60%, 220%, and 550% (Supplementary Figure S12),
independent of the strength of the electrostatic interaction.
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Figure 12. L2◦ system at strain rate ε̇xx = 0.001, captured at different stretching strains of εxx = 0,
68%, 150%, 220%, 300%, and 410% from top to bottom respectively. Polymers are not shown here
for the sake of clarity. The corresponding NP–NP pair correlation functions, stresses, and disorder
parameters at these strains are given in Figure 11. All the coordinates here are projected onto the
xy plane. We have chosen only to show L2◦ here; the snapshots are very comparable for L2•, as
Figure 11c also implies.

In addition, the crystal-like g(r) informs us that, while there is a body-centered cubic
arrangement of the NPs at equilibrium, it transforms into face-centered cubic structures at
the finite strains ≈ 150% and ≈ 410%. For a discussion of deformation-induced transitions
between lattice types we refer to Wang et al. [77]. As the snapshots clearly reveal, the lattice
has been first destroyed and then rebuilt at another angle with respect to the extension
direction. The stress at these ordered structures is particularly low, giving rise to the
observed zig-zag transients. The complete time-dependent behavior of the pair correlation
function, characterized by the disorder parameter S, is shown in Figure 11c. It can be seen
that both the stress–strain and ordering behavior are very similar for weak and strong
electrostatics (different dielectric constants), while the stresses are larger for the L2• system.

4. Conclusions

Ionic polymer nanocomposites (IPNCs) under high uniaxial extension were studied
by means of extensive nonequilibrium molecular dynamics simulations. The effects of the
nanoparticle (NP) loading, polymer matrix molecular weight, electrostatic strength, and
engineering strain rate on the mechanical and structural properties of the IPNCs under
uniaxial extension were investigated.

The simulation results revealed that IPNCs with an entangled polymer matrix can
withstand larger strains, have greater toughness and show strain hardening relative to
the IPNCs with an unentangled polymer matrix under the same loading conditions. In
accordance with recent experiments, a larger strain rate resulted in a larger toughness for
all systems studied here. The results further suggest that the mechanical properties of
IPNCs are not governed solely by the number of polymer–polymer entanglements and/or
NP mobility, but also more strongly by the temporary ionic polymer–NP crosslinks, the
strength of ionic interactions, and the NP loading.

At relatively low strain rates, IPNCs with an entangled polymer matrix and large NP
loading showed self-strengthening properties similar to those of mechano-ionic switches.
The NP lattice structure indicated “healing” after being destroyed (during extension) in a
repeated manner, resulting in a zigzag-type stress response up to very large strains (800%).
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The present study reveals detailed microscopic insight into the complex interplay
between structural changes accompanying the uniaxial mechanical deformation behavior
of IPNCs, the roles played by the ionic interactions, the evolution of the entanglement
network, and temporary ionic crosslinks between NPs and polymers. The structures have
been characterized in great detail, from snapshots to pair correlation functions and pore
size distributions; only part of this information is experimentally accessible at present.
Further studies may focus on the linear viscoelastic and shearing behavior [78] of IPNCs in
comparison with their neutral counterparts, as there are additional rotational components
that need to be explored to complete our understanding of the nonequilibrium mechanical
behaviors of IPNCs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13224001/s1, additional data and Figures S1–S12: stress–strain curves, pair correlation
functions, gyration tensor components, orientaton tensor components, ionic crosslinks, pore size
distributions, non-affine displacements. Figure S1: Stress–strain curves. Data for L2• and S2•

systems. Rate-dependence of stress–strain curves for (a) N = 200, and (b) N = 40 chains at a NP
loading of φ = 20.8%, and εr = 24; Figure S2: Polymer and NP structure. NP–NP pair correlation
functions calculated at different stretching strains. Data corresponds to L2• systems with N = 200,
εr = 24, φ = 20.8% for strain rates of (a) ε̇xx = 0.005 and (b) ε̇xx = 0.01; Figure S3: Polymer and
NP structure. NP–NP pair correlation functions calculated at different stretching strains. Data
corresponds to L1• systems with N = 200, εr = 24, φ = 11.6% for strain rates of (a) ε̇xx = 0.005 and
(b) ε̇xx = 0.05; Figure S4: Polymer and NP structure. Data for the L1• system. Entangled polymer
(N = 200) structure during stretching for different stretching rates. Different elements of gyration
tensor parallel- (a), and perpendicular (b) to the direction of strain. Data corresponds to the NP
volume fraction of φ = 11.6%, and dielectric constant of εr = 24; Figure S5: Polymer and NP structure.
Data for the S1• system. Unentangled polymer (N = 40) structure during stretching for different
stretching rates. Different elements of gyration tensor parallel- (a), and perpendicular (b) to the
direction of strain. Data corresponds to the NP volume fraction of φ = 11.6%, and dielectric constant
of εr = 24; Figure S6: Chain entanglement under deformation. Data for all S systems. Number of
entanglements per chain Z0 in the phantom NP limit during stretching for the systems containing
N = 40 chains. (a) Dependence of Z0 on stretching rate ε̇xx for the S1• system with εr = 24 and
φ = 11.6%. (b) Z0 dependence on φ and εr measured at a stretching rate of ε̇xx = 0.01. While all
S systems are denoted as unentangled since their number of monomers, N, is small compared to
Ne of the pure melt, a mean number of entanglements Z0 < 1 per chain can also be evaluated. As
opposed to the L systems, Z0 monotonically decreases with increasing strain, and the extent of the
decrease lowers with increasing NP volume fraction. While an increase of Bjerrum length tends
to reduce the number of entanglements for the systems at low NP volume fraction (φ ≈ 11.6%),
the opposite seems to be the case at larger volume fraction (φ ≈ 20.8%); Figure S7: Stress-optics.
Structure–rheology relationship for all L systems containing N = 200, and all S systems containing
N = 40 at different NP loadings and dielectric constants subjected to a stretching rate of ε̇xx = 0.01.
Data shown for strains up to εxx = 300%. Corresponding stress–strain curves can be found in
Figure 4; Figure S8: Temporary cross-links under deformation. Data for all S systems. (a) Polymer–
NP temporary crosslinks per chain Xc as a function of elongational strain εxx for the S2• system with
dielectric constant and NP loading of εr = 24 and φ = 20.8% respectively, measured at different
strain rates. (b) Xc measured at various φ and εr for samples subjected to a strain rate of ε̇xx = 0.01.
All data shown here correspond to unentangled S systems with N = 40 chain length; Figure S9: Mean
pore size. Data for all S systems. Mean pore size rp during stretching for systems containing N = 40
chains. (a) Dependence of rp on stretching rate ε̇xx for the S1• system with εr = 24 and φ = 11.6%.
(b) rp dependence on φ and εr measured at a stretching rate of ε̇xx = 0.01; Figure S10: Stretching
of the entangled IPNC systems at low rate. Data for the L2• and L2◦ systems. (a) Transverse Rg,
(b) number of entanglements per chain, and (c) mean pore size for entangled (N = 200) systems
at a NP volume fraction of φ = 0.208 and differet dielectric constants εr measured at a (relatively
low) strain rate of ε̇xx = 0.001; Figure S11: Non-affine displacement. All eight L and S systems at
identical elongation rate. Incremental non-affine displacement of NPs for (a) L (N = 200), and (b) S
(N = 40) systems at different NP loadings and dielectric constants subjected to a stretching rate of
ε̇xx = 0.01; Figure S12: Non-affine displacement. Incremental non-affine displacement of NPs for
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entangled L2• and L2◦ (N = 200, φ = 20.8%) systems at identical and relatively small strain rate
ε̇xx = 0.001. The larger δ-level compared with Figure 11 is due to the larger time increment ∆t ∝ ε̇−1

xx
between snapshots.
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