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Objective. Epithelial-mesenchymal transition (EMT) exerts a key function in cancer initiation and progression. Herein, we aimed
to develop an EMT-based prognostic signature in gastric cancer. Methods. The gene expression profiles of gastric cancer were
obtained from TCGA dataset as a training set and GSE66229 and GSE84437 datasets as validation sets. By LASSO regression
and Cox regression analyses, key prognostic EMT-related genes were screened for developing a risk score (RS) model. Potential
small molecular compounds were predicted by the CMap database based on the RS model. GSEA was employed to explore
signaling pathways associated with the RS. ESTIMATE and seven algorithms (TIMER, CIBERSORT, CIBERSORT-ABS,
QUANTISEQ, MCPCOUNTER, XCELL, and EPIC) were applied to assess the RS and immune microenvironment. Results.
This study developed an EMT-related gene signature comprised of SERPINE1, PCOLCE2, MATN3, and DKK1. High-RS
patients displayed poorer survival outcomes than those with low RS. ROC curves demonstrated the robustness of the model in
predicting the prognosis. After external validation, the RS model was an independent risk factor for gastric cancer. Several
compounds were predicted for gastric cancer treatment based on the RS model. ECM receptor interaction, focal adhesion,
pathway in cancer, TGF-beta, and WNT pathways were distinctly activated in high-RS samples. Also, high RS was significantly
associated with increased stromal and immune scores and increased infiltration of CD4+ T cell, CD8+ T cell, cancer-associated
fibroblast, and macrophage in gastric cancer tissues. Conclusion. Our findings suggested that the EMT-related gene model may
robustly predict gastric cancer prognosis, which could improve the efficacy of personalized therapy.

1. Introduction

Gastric cancer represents a common aggressive malignancy
and a common cause of cancer-related deaths globally due
to its rapid progress to advanced stages and badly metastatic
characteristics [1]. The incidence and prevalence of gastric
cancer vary geographically [2]. Despite the improvement in
clinical outcomes by implementing standard D2 lymphade-
nectomy as well as development of chemotherapy and tar-
geted therapy, the overall survival rate of gastric cancer
patients is <30% [3]. As a heterogeneous malignancy [4],
survival outcomes may greatly vary even for subjects with
similar clinical characteristics and therapy regimens, indicat-

ing that traditional clinicopathologic characteristics are
inadequate for prognosis prediction and risk stratification
[5]. Hence, it is important to develop novel clinical tools
for predicting the prognosis of gastric cancer.

Epithelial-mesenchymal transition (EMT), a well-
characterized embryological process, is a critical molecular
step during the process of distant metastases [6–8]. Clini-
cally, EMT is in relation to unfavorable survival outcomes
of gastric cancer [9]. During the EMT process, gastric cancer
cells lose the expression of cellular adhesion proteins like E-
cadherin and tight junction proteins as well as express many
mesenchymal markers like N-cadherin, Vimentin, and ZEB1
[10]. The mesenchymal phenotype also may raise resistance
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to chemotherapy and contribute to a desirable prognosis
[11]. Therefore, an in-depth comprehension on the mecha-
nisms of the EMT process in gastric cancer is required for
promoting the progress of specific treatment strategies.

Because various large datasets are easily accessible, exploring
the gene signatures underlying the mechanisms of gastric
cancer has flourished [12–14]. Despite the extensive research
on the mechanisms of EMT in gastric cancer, the prognostic
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Figure 1: Identification of dysregulated EMT-related genes, biological functions in gastric cancer. (a) Volcano plot depicting the
dysregulated EMT-related genes between gastric cancer and normal tissues. X-axis represents log fold-change, and Y-axis indicates
-log10 (adjusted p value). Red and green dots represent up- and downregulated EMT-related genes in gastric cancer, and black dots
represent no significant genes. (b) Heatmaps for dysregulated EMT-related genes between tumor and normal tissues. X-axis represents
the sample type, and Y-axis depicts dysregulated EMT-related genes. Red and blue show up- and downregulation in gastric cancer,
respectively. (c, d) The top ten GO and KEGG terms enriched by dysregulated EMT-related genes.
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value of EMT-related genes is still inconclusive. Hence, this
study constructed an EMT-based signature for predicting
survival outcomes of gastric cancer patients. After external
verification, this signature might be a robust prognostic pre-
diction tool and assist clinical strategy.

2. Materials and Methods

2.1. Gene Expression Profiles and Data Processing. RNA-
sequencing (RNA-seq) profiles of 32 normal samples and
350 gastric cancer samples were downloaded from The

Age

Stage

N

Riskscore

0.004

0.005

0.823

<0.001

pvalue

1.031(1.010−1.053)

1.571(1.145−2.155)

0.973(0.768−1.233)

1.480(1.261−1.735)

Hazard ratio

Hazard ratio

0.0 0.5 1.0 1.5 2.0

(i)

Figure 2: Generation of a prognostic EMT-related gene model for gastric cancer in TCGA dataset. (a) Univariate Cox regression analysis for
prognosis-related EMT-related genes in gastric cancer. (b) Selecting the optimal parameter (λ) in the LASSO model using 10-fold cross-
verification. (c) LASSO coefficient profiles of prognosis-related EMT genes. (d) Distribution of RS in gastric cancer patients and
determination of the cutoff value of high-RS (red) and low-RS (green) groups according to RS median. (e) Distribution of survival status
(dead: red and alive: green) in high- and low-RS groups. (f) Kaplan-Meier OS curves for the high- and low-RS groups. (g) The time-
dependent ROC for the RS model. (h) Univariate and (i) multivariate Cox regression analyses of RS and other clinical features.

Table 1: Prognosis-related EMT-related gene signatures for gastric cancer by univariate Cox regression analysis.

ID HR HR.95L HR.95H p value ID HR HR.95L HR.95H p value

CTHRC1 1.200409 1.06768 1.349637 0.002248 THBS2 1.119698 1.015975 1.234009 0.022637

INHBA 1.177176 1.033914 1.340289 0.013751 SFRP1 1.090971 1.002915 1.186759 0.042586

COL1A1 1.12936 1.013576 1.25837 0.027503 COL5A1 1.142209 1.006216 1.296582 0.039804

BGN 1.179647 1.039263 1.338995 0.010597 LOX 1.25252 1.090202 1.439005 0.001475

COL4A1 1.215442 1.027667 1.437527 0.022685 PCOLCE2 1.249504 1.085789 1.437903 0.001879

TIMP1 1.186359 1.00804 1.396222 0.039751 CDH11 1.208569 1.052499 1.387781 0.007247

COL5A2 1.193086 1.03962 1.369208 0.011969 SFRP4 1.078954 1.005406 1.157882 0.034891

THY1 1.204512 1.039918 1.395158 0.013062 MATN3 1.278741 1.131943 1.444577 7.75E-05

FAP 1.167508 1.031661 1.321244 0.014135 NID2 1.235369 1.057539 1.443103 0.007689

COL3A1 1.150473 1.027265 1.288458 0.015291 MYL9 1.093798 1.005017 1.190421 0.037909

CALU 1.260293 1.001195 1.586444 0.048823 FN1 1.124577 1.018254 1.242003 0.020507

ADAM12 1.183344 1.044276 1.340931 0.008311 PRRX1 1.140897 1.011825 1.286434 0.031407

COL1A2 1.151805 1.024302 1.29518 0.018221 LUM 1.19584 1.054413 1.356237 0.005352

SPARC 1.263289 1.09289 1.460256 0.00157 DCN 1.159358 1.031313 1.303301 0.013275

SERPINE1 1.24028 1.117038 1.377119 5.51E-05 FBLN1 1.110247 1.017339 1.21164 0.019002

PDGFRB 1.189439 1.028726 1.375258 0.019162 MFAP5 1.117742 1.010726 1.236089 0.030178

VCAN 1.23074 1.079319 1.403403 0.001938 ACTA2 1.119472 1.016273 1.23315 0.02219

DKK1 1.067624 1.002775 1.136667 0.040693
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Cancer Genome Atlas (TCGA) via Genomic Data Commons
(GDC; https://portal.gdc.cancer.gov/). Also, the matched
clinical information was also retrieved. RNA-seq data were
converted to transcripts per kilobase million (TPM) values.
This dataset was used as the training set. From the Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo/), microarray expression profiling and clinical informa-
tion of 400 cases of gastric cancer were retrieved from the
GSE66229 dataset on the GPL570 platform ([HG-U133_
Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array)
[15]. Furthermore, expression profiles and clinical features
of 433 gastric cancer were obtained from the GSE84437
dataset on the GPL6947 platform (Illumina HumanHT-12
V3.0 expression beadchip) [16]. The raw microarray data
were adjusted by background, normalized, and log trans-
formed. The GSE66229 and GSE84437 datasets were
employed as the validation sets. The “HALLMARK_EPI-
THELIAL_MESENCHYMAL_TRANSITION” gene set was
retrieved from the Gene Set Enrichment Analysis (GSEA)
database (http://software.broadinstitute.org/gsea/index.jsp)
[17] (Supplementary Table 1).

2.2. Differential Expression Analysis. The expression of
EMT-related genes in 350 gastric cancer tissue specimens
was compared with 32 normal tissues in TCGA dataset using
the limma package [18]. The ∣log fold‐change ∣ >1 and

adjusted p < 0:05 were set as cutoff criteria. Differentially
expressed EMT-related genes were visualized into volcano
plots and heatmaps.

2.3. Functional and Pathway Enrichment Analysis. Biological
functions of differentially expressed EMT-related genes were
analyzed via the clusterProfiler package, containing Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis [19]. Terms
with false discovery rate ðFDRÞ < 0:05 were significantly
enriched.

2.4. Small Molecular Compound Prediction. Differentially
expressed genes with ∣log fold‐change ∣ >1 and adjusted p
< 0:05 were screened between the high- and low-RS groups.
Then, up- and downregulated tags were separately uploaded
onto Connectivity Map (CMap) [20]. The match between
these genes and small molecular compounds from CMap
was evaluated through a connectivity score from −1 to 1.
Positive scores denote stimulative effects of compounds on
the query signatures. Meanwhile, negative scores implicate
inhibitory effects of compounds on the query signatures.

2.5. Generation and Verification of a Risk Score (RS) Model.
In TCGA dataset, differentially expressed EMT-related genes
with prognostic value were filtered via univariate Cox

Table 2: Clinical characteristics of high- and low-RS gastric cancer patients in TCGA dataset.

Characteristics High risk (N = 175) Low risk (N = 175) Total (N = 350) p value

Age
<65 81 69 150

0.2348
≥65 94 106 200

Stage

Stage I 21 28 49

0.619
Stage II 55 56 111

Stage III 79 76 155

Stage IV 20 15 35

T

T1 3 13 16

0.0757

T2 39 35 74

T3 78 83 161

T4 52 43 95

TX 3 1 4

M

M0 155 157 312

0.9404M1 12 11 23

MX 8 7 15

N

N0 49 55 104

0.8117

N1 45 48 93

N2 36 36 72

N3 40 31 71

NX 5 5 10

Gender
Female 60 64 124

0.7374
Male 115 111 226

Grade

G1 4 5 9

0.9717
G2 62 63 125

G3 104 103 207

GX 5 4 9

9BioMed Research International
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Figure 3: Subgroup analysis of the prognostic value of the EMT-related RS model. (a) Heatmap of the expression of SERPINE1, PCOLCE2,
MATN3, and DKK1 in high- and low-RS groups. Red and green show up- and downregulation. Kaplan-Meier curves between high- and
low-RS gastric cancer patients in different subgroups including (b) age ≥ 65 and (c) age < 65; (d) female and (e) male; (f) M0 and (g)
M1; (h) N0 and (i) N1-3; (j) T1-2 and (k) T3-4; (l) stage I-II and (m) stage III-IV.
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regression analyses. Genes with p < 0:05 were included for
least absolute shrinkage and selection operator (LASSO)
Cox regression model analyses using the glmnet package
[21]. The penalized Cox regression model with LASSO pen-
alty was employed for achieving shrinkage and variable

selection. Tenfold cross-validation was presented for deter-
mining the optimal value of the penalty parameter λ. Based
on λ value, factors with the matched coefficients were cho-
sen. RS of each patient was determined on the basis of the
expression levels of genes and their coefficients. According

p = 5.333e−03
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Figure 4: External validation of the EMT-related RS model in GSE66229 and GSE84437 datasets. (a) Distribution of RS in gastric cancer
samples and determination of the cutoff value of high-RS (red) and low-RS (green) groups according to RS median in the GSE66229
dataset. (b) Distribution of survival status (red: dead and green: alive) in high- and low-RS groups in GSE66229 dataset. (c) Kaplan-
Meier OS curves of high- and low-RS groups in GSE66229 dataset. (d) ROC curves of the RS model in GSE66229 dataset. (e)
Distribution of RS in gastric cancer samples and determination of the cutoff value of high-RS (red) and low-RS (green) groups according
to RS median in GSE84437 dataset. (f) Distribution of survival status (red: dead and green: alive) in high- and low-RS groups in
GSE84437 dataset. (g) Kaplan-Meier OS curves of high- and low-RS groups in GSE84437 dataset. (h) ROC curves of the RS model in
GSE84437 dataset.
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to the median value, patients were split into the high- and
low-RS groups. Kaplan-Meier curves and log-rank test were
employed for analyzing the overall survival (OS) difference
between the high- and low-RS groups. Receiver operating
characteristic (ROC) analysis was conducted for detecting
the predictive accuracy of this RS model in the prognosis.
Furthermore, the RS model was externally validated in the
GSE66229 and GSE84437 datasets.

2.6. Screening Independent Prognostic Factors. Univariate
Cox regression analysis was applied for evaluating the signif-
icance of the RS model and clinical characteristics in predict-
ing gastric cancer patients’ OS. Factors with p < 0:05 were
included for multivariable logistic regression analysis, and
confounding factors were excluded. The hazard ratio (HR)
and 95% confidence interval (CI) were calculated. The
results were visualized into a forest plot.

2.7. Subgroup Analysis. To evaluate the predictive sensitivity
of the RS model in gastric cancer OS, patients were split into
subgroups based on clinical features, as follows: age (>65
and ≤65), gender (female and male), M (M0 and M1), N
(N0 and N1-3), T (T1-2 and T3-4), and stage (I-II and III-
IV). The survival difference between the high- and low-RS
samples was compared in each subgroup.

2.8. Development of a Prognostic Nomogram. RS and tradi-
tional clinicopathological characteristics were included in
the nomogram through the rms package. To assess the per-
formance of the nomogram in predicting 1-, 3-, and 5-year
OS time, nomogram-predicted OS probability was com-
pared with actual survival time by calibration curves. Fur-

thermore, the predictive efficacy of this nomogram was
externally verified in the GSE66229 and GSE84437 datasets.

2.9. GSEA. The GSEA method was applied for exploring the
potential KEGG pathways activated in high-RS gastric can-
cer samples. The reference gene set was retrieved from
“c2.cp.kegg.v7.1.symbols” file. The significantly enriched
pathways were screened with FDR < 0:05.

2.10. Estimation of Immune Score, Stromal Score, and Tumor
Purity. The immune score, stromal score, and tumor purity
were estimated in gastric cancer tissue specimens via the
Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data (ESTIMATE) algo-
rithm [22].

2.11. Analysis of Immune Cell Infiltrations. To reveal the
associations of the risk score and diverse tumor-infiltrating
immune cells, seven algorithms including TIMER, CIBER-
SORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER,
XCELL, and EPIC were applied for quantifying the infiltra-
tion levels. Differences in immune-infiltrating cell fractions
were estimated between the high- and low-risk groups.

2.12. Statistical Analysis. All statistical analyses were con-
ducted using R software (version 3.6.2; https://www.r-
project.org/). Comparisons between groups were carried
out with Student’s t-test and Wilcoxon rank-sum test. The
Spearman correlation test was applied to assess the correla-
tion between immune cells. p values < 0.05 were considered
statistically significant.

Table 3: Clinical characteristics of gastric cancer patients in the GSE66229 dataset.

Characteristics High risk (N = 150) Low risk (N = 150) Total (N = 300) p value

Age
<65 87 74 161

0.1647
≥65 63 76 139

Stage

Stage I 9 21 30

0.0073

Stage II 40 56 96

Stage III 55 40 95

Stage IV 45 32 77

NA 1 1 2

T

T2 75 111 186

<0.0001
T3 60 31 91

T4 14 7 21

NA 1 1 2

M
M0 131 142 273

0.0437
M1 19 8 27

N

N0 14 24 38

0.1309
N1 62 69 131

N2 47 33 80

N3 27 24 51

Gender
Female 53 48 101

0.6251
Male 97 102 199
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Figure 5: Continued.
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3. Results

3.1. Identification of Dysregulated EMT-Related Genes and
Their Functions in Gastric Cancer. Following the compari-
son of expression of EMT-related genes between gastric can-
cer and normal tissues, 79 differentially expressed EMT-
related genes with ∣log fold‐change ∣ >1 and adjusted p <
0:05 were identified (Supplementary Table 2). Among
them, 67 EMT-related genes were upregulated and 12 were
downregulated in gastric cancer (Figures 1(a) and 1(b)).
GO enrichment analyses were conducted to elucidate the
functional characteristics of these differentially expressed
EMT-related genes. Our data showed that these genes were
markedly enriched in extracellular matrix (ECM)
organization, extracellular structure organization, and
collagen fibril organization (Figure 1(c)). Meanwhile, these
genes were distinctly related to several key pathways like
focal adhesion, ECM-receptor interaction, PI3K-Akt
signaling pathway, and proteoglycans in cancer
(Figure 1(d)). Hence, it is required to illustrate their
clinical implications in gastric cancer.

3.2. Generation of a Prognostic EMT-Related RS Model for
Gastric Cancer. By the mRNA expression profiling of TCGA
dataset, we screened 35 EMT-related genes associated with
OS of gastric cancer with univariable Cox regression analysis
(Figure 2(a); Table 1). These genes were further analyzed
using LASSO Cox regression model analysis. As a result,
we generated a 4-EMT-related gene model for gastric cancer
(Figures 2(b) and 2(c)). The RS was determined for each gas-
tric cancer, as follows: RS = 0:127258355254692 ∗ SERPINE
1 expression + 0:04303645817321 ∗ PCOLCE2 expression +
0:128510051263955 ∗MATN3 expression +
0:0116209970037921 ∗DKK1 expression. Because the

median RS was convenient for clinical application, this study
set the median value as the cutoff value, and patients were
split into the high- and low-RS groups (Figure 2(d)). We
compared the survival status between groups. In
Figure 2(e), more deaths occurred in the high-RS group.
Furthermore, for each patient, high RS was indicative of an
unfavorable prognosis (p = 8:321e − 05; Figure 2(f)). How-
ever, there was no significant difference in clinical character-
istics between the high- and low-RS groups (Table 2). The
area under the curve (AUC) of the RS model was 0.763, indi-
cating good performance in predicting patients’ OS
(Figure 2(g)). Our univariate Cox regression analysis showed
that age (p = 0:033), stage (p = 0:002), N (p = 0:022), and RS
(p < 0:001) were distinctly associated with a poor prognosis
(Figure 2(h)). Under multivariate Cox regression analysis,
age (p = 0:004), stage (p = 0:005), and RS (p < 0:001) were
independent risk factors for the gastric cancer prognosis
(Figure 2(i)).

3.3. Subgroup Analysis of the Prognostic Value of the EMT-
Related RS Model. SERPINE1, PCOLCE2, MATN3, and
DKK1 expression was compared between the high- and
low-RS groups. In Figure 3(a), there were increased expres-
sion levels in the high- than low-RS groups. To assess
whether the EMT-related RS model could sensitively predict
gastric cancer patients’ prognosis, we carried out subgroup
analysis. Our data showed that high RS was predictive of
undesirable survival outcomes compared with low RS in
each subgroup including age ≥ 65 (p = 0:002; Figure 3(b))
and age < 65 (p = 0:009; Figure 3(c)), female (p = 0:024;
Figure 3(d)) and male (p = 0:002; Figure 3(e)), M0
(p < 0:001; Figure 3(f)) and M1 (p = 0:590; Figure 3(g)), N0
(p = 0:001; Figure 3(h)) and N1-3 (p = 0:005; Figure 3(i)),
T1-2 (p = 0:003 Figure 3(j)) and T3-4 (p = 0:006;
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Figure 5: External validation of the independency of the EMT-related RS model in predicting prognosis in GSE66229 and GSE84437
datasets. (a, b) Heatmap of the expression of SERPINE1, PCOLCE2, MATN3, and DKK1 in high- and low-RS groups in (a) GSE66229
and (b) GSE84437 datasets. Red and green indicate up- and downregulation. (c) Univariate and (d) multivariate Cox regression analyses
of the RS model and other clinicopathological characteristics in GSE66229 dataset. (e) Univariate and (f) multivariate Cox regression
analyses of the RS model and other clinicopathological characteristics in GSE84437 dataset.

21BioMed Research International



Points
0 10 20 30 40 50 60 70 80 90 100

Age
35 40 45 50 55 60 65 70 75 80 85 90

Stage
Stage I Stage III

Stage II Stage IV

RiskScore
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Total Points
0 20 40 60 80 100 120 140 160 180

Linear Predictor
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

1−year survival Probability
0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3

3−year survival Probability
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

5−year survival Probability
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Nomogram−predicted probability of 1−year survival

A
ct

ua
l 1

−Y
ea

r S
ur

vi
va

l

(b)

Figure 6: Continued.

22 BioMed Research International



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Nomogram−predicted probability of 3−year survival

A
ct

ua
l 3

−y
ea

r s
ur

vi
va

l

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Nomogram−predicted probability of 5−year survival

A
ct

ua
l 5

−y
ea

r s
ur

vi
va

l

(d)

Figure 6: Continued.

23BioMed Research International



Points
0 10 20 30 40 50 60 70 80 90 100

Stage
Stage I Stage III

Stage II Stage IV

M
M0

M1

RiskScore
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Total Points
0 20 40 60 80 100 120 140 160

Linear Predictor
−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

1−year survival Probability
0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

3−year survival Probability
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

5−year survival Probability
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

(e)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Nomogram−predicted probability of 1−year survival

A
ct

ua
l 1

−y
ea

r s
ur

vi
va

l

(f)

Figure 6: Continued.

24 BioMed Research International



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Nomogram−predicted probability of 3−year survival

A
ct

ua
l 3

−y
ea

r s
ur

vi
va

l

(g)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Nomogram−predicted probability of 5−year survival

A
ct

ua
l 5

−y
ea

r s
ur

vi
va

l

(h)

Figure 6: Continued.

25BioMed Research International



Points
0 10 20 30 40 50 60 70 80 90 100

Age
25 30 35 40 45 50 55 60 65 70 75 80 85 90

Ptstage
T2 T3

T1 T4

Pnstage
N0 N2

N1 N3

RiskScore
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Total Points
0 50 100 150 200 250 300

Linear Predictor
−2 −1.5 −1 −0.5 0 0.5 1 1.5

1−year survival Probability
0.95 0.9 0.8 0.7

3−year survival Probability
0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3

5−year survival Probability
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

(i)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Nomogram−predicted probability of 1−year survival

A
ct

ua
l 1

−y
ea

r s
ur

vi
va

l

(j)

Figure 6: Continued.

26 BioMed Research International



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Nomogram−predicted probability of 3−year survival

A
ct

ua
l 3

−y
ea

r s
ur

vi
va

l

(k)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Nomogram−predicted probability of 5−year survival

A
ct

ua
l 5

−y
ea

r s
ur

vi
va

l

(l)

Figure 6: Discovery and verification of a prognostic nomogram based on the EMT-related RS model. (a) Establishment of a prognostic
nomogram in TCGA dataset. (b–d) The calibration curves for the relationships between the nomogram-predicted and actual 1-, 3-, and
5-year survival probabilities. (e) Validation of the prognostic nomogram in GSE66229 dataset and (f–h) the calibration curves for the
relationships between the nomogram-predicted and actual 1-, 3-, and 5-year survival probabilities. (i) Validation of the prognostic
nomogram in GSE84437 dataset and (j–l) the calibration curves for the relationships between the nomogram-predicted and actual 1-, 3-,
and 5-year survival probabilities.
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Figure 3(k)), stage I-II (p < 0:001; Figure 3(l)) and stage III-
IV (p = 0:042; Figure 3(m)).

3.4. External Validation of the EMT-Related RS Model. The
predictive efficacy of the EMT-related RS model was exter-
nally verified in the GSE66229 and GSE84437 datasets. With
the same formula, we calculated the RS of each patient. In
the GSE66229 dataset, patients were split into the high-
and low-RS groups based on the median value
(Figure 4(a)). As expected, more deaths were found in the
high-RS group (Figure 4(b)). The clinical features between
groups were compared, and we found that high RS was in
relation to late stage, T, and M (Table 3). Furthermore,
high-RS patients exhibited more undesirable survival out-
comes (p = 7:802e − 07; Figure 4(c)). AUC of the RS model
was 0.675 (Figure 4(d)). Similarly, we split patients in the
GSE84437 dataset into the high- and low-RS groups
(Figure 4(e)). There were more patients with dead status in
the high-RS group (Figure 4(f)). In Figure 4(g), high RS
was distinctly related to poor prognosis (p = 5:333e − 03).
And AUC of the model was 0.637 (Figure 4(h)). Consistent
with TCGA dataset, increased SERPINE1, PCOLCE2,
MATN3, and DKK1 expression was detected in the high-
RS group than the low-RS group in GSE66229
(Figure 5(a)) and GSE84437 (Figure 5(b)) datasets. Follow-
ing univariate (Figure 5(c)) and multivariate (Figure 5(d))
Cox regression analyses, the RS model was markedly corre-
lated with gastric cancer prognosis in the GSE66229 dataset.
Consistently, in the GSE84437 dataset, the RS model was

also a risk factor for prognosis according to univariate
(Figure 5(e)) and multivariate (Figure 5(f)) Cox regression
analyses. Collectively, the EMT-related RS model displayed
good generalizability in clinical practice.

3.5. Development of a Prognostic Nomogram Based on the
EMT-Related RS Model. Independent risk factors were
included in the prognostic nomogram for gastric cancer. In
TCGA dataset, the nomogram including age, stage, and RS
was constructed for predicting patients’ survival duration
(Figure 6(a)). The calibration curves confirmed that the
nomogram-predicted 1-, 3-, and 5-year survival probabilities
were in accord with observed survival duration
(Figures 6(b)–6(d)). Similarly, the nomogram was developed
in the GSE66229 dataset (Figure 6(e)). The well predictive
efficacy was verified by the calibration curves (Figures 6(f
)–6(h)). Meanwhile, the nomogram was validated in the
GSE84437 dataset (Figures 6(i)–6(l)).

3.6. Prediction of Underlying Small Molecular Compounds
for Gastric Cancer Based on Dysregulated EMT-Related
Genes. Totally, 209 differentially expressed genes were iden-
tified between the high- and low-RS groups (Supplementary
Table 3). Based on them, underlying compounds were
predicted by the CMap database, as listed in Table 4. The
mechanism of action analysis was then conducted to
investigate the shared mechanisms among the compounds.
In Figure 7(a), estrogen receptor agonist was shared by
dienestrol and diethylstilbestrol.

Table 4: Potential small compounds for treating gastric cancer based on dysregulated EMT-related genes.

Rank CMap name Mean n Enrichment p Specificity Percent nonnull

1 Puromycin 0.694 4 0.929 0.00004 0.0562 100

2 Trolox C 0.461 4 0.89 0.00014 0 75

3 Cloxacillin -0.487 4 -0.869 0.0006 0 75

4 Indoprofen -0.307 4 -0.815 0.00213 0.0333 50

5 Diethylstilbestrol -0.338 6 -0.663 0.00407 0.0082 50

6 Caffeic acid 0.398 3 0.853 0.00605 0 66

7 Benzamil -0.302 6 -0.629 0.0081 0 50

8 STOCK1N-35874 -0.613 2 -0.916 0.01447 0.0331 100

9 Fasudil -0.469 2 -0.904 0.01863 0 100

10 Amrinone 0.51 4 0.688 0.01975 0.0147 75

11 5155877 0.419 4 0.675 0.02441 0.1313 75

12 Eticlopride -0.279 4 -0.673 0.0257 0.0758 50

13 Meropenem 0.309 4 0.668 0.02711 0.0163 50

14 16-Phenyltetranorprostaglandin E2 -0.486 4 -0.667 0.02765 0.0476 75

15 Thapsigargin -0.496 3 -0.757 0.02934 0.2194 66

16 Pronetalol 0.265 4 0.657 0.03191 0.0089 50

17 Chloropyrazine -0.328 4 -0.639 0.04048 0.0649 50

18 Naltrexone -0.418 5 -0.576 0.04133 0.0899 60

19 Oxolamine -0.355 4 -0.636 0.04255 0.1 50

20 Oxybenzone -0.313 4 -0.635 0.04335 0.1268 50

21 Carisoprodol -0.365 4 -0.633 0.04406 0.0248 50

22 Piperine -0.393 4 -0.627 0.04782 0.0118 50
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3.7. Identification of the EMT-Related Gene Model Associated
Signaling Pathways. In TCGA dataset, ECM receptor inter-
action (NES = 2:24, FDR = 0:004), focal adhesion
(NES = 2:13, FDR = 0:007), pathway in cancer
(NES = 2:06, FDR = 0:011), TGF-beta signaling pathway
(NES = 2:01, FDR = 0:011), and Wnt signaling pathway
(NES = 1:79, FDR = 0:033) were markedly activated in
high-RS gastric cancer specimens (Figure 7(b)). The above
activated pathways were confirmed in the GSE66229
(Figure 7(c)) and GSE84437 (Figure 7(d)) datasets.

3.8. Associations between the EMT-Related RS Model and
Immune Microenvironment of Gastric Cancer. Using the
ESTIMATE algorithm, we estimated the stromal score,
immune score, and tumor purity of gastric cancer tissues
from TCGA dataset and analyzed their relationships with
the RS. Our data showed that high RS was distinctly related
to increased stromal and immune scores as well as lowered
tumor purity in gastric cancer (Figure 8(a)). Seven algo-
rithms including TIMER, CIBERSORT, CIBERSORT-ABS,
QUANTISEQ, MCPCOUNTER, XCELL, and EPIC were
employed to estimate the immune cell infiltrations in each
sample. We compared the differences in immune cell infil-
trations between the high- and low-RS groups. In
Figure 8(b), higher infiltration levels of CD4+ T cell, CD8+
T cell, cancer-associated fibroblast, and macrophage were
found in the high-RS group than the low-RS group.

4. Discussion

EMT-based gene signatures have been developed in bladder
cancer [23], glioma [24], and colorectal cancer [25]. EMT is
determined to be closely associated with gastric cancer pro-
gression and prognosis. Increased motility and invasiveness
mediated by the EMT process are key during the initiation
of cancer metastasis. However, no studies have reported
the prognostic value of EMT-based signatures in gastric can-
cer. Here, we developed an EMT-related RS model that was
comprised of SERPINE1, PCOLCE2, MATN3, and DKK1 in
gastric cancer via the LASSO method, which may classify
gastric cancer patients into the high- and low-risk categories.
This LASSO method has been widely applied for analyzing
high-dimensional data, which may screen feature signatures
with robust prognostic potential and weak correlations
among them to avoid overfitting [26].

Alterations in gene expression are in relation to the car-
cinogenic process. Here, we screened 67 upregulated and 12
downregulated EMT-related genes in gastric cancer. These
genes were distinctly enriched in ECM organization, extra-
cellular structure organization, and collagen fibril organiza-
tion as well as several cancer-related pathways like focal
adhesion, ECM-receptor interaction, PI3K-Akt signaling
pathway, and proteoglycans in cancer, highlighting their
critical implications in gastric cancer pathogenesis. By the
LASSO method, we generated an EMT-based signature
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containing SERPINE1, PCOLCE2, MATN3, and DKK1.
After validation, this signature was independently predictive
of survival outcomes. Previously, SERPINE1 upregulation
was found in gastric cancer and in relation to unfavorable
prognoses [27]. Furthermore, it was tightly correlated to
the EMT process in gastric cancer [28]. As an oncogene, it
may facilitate tumor cell proliferation, migration, and inva-
sion in gastric cancer through mediating the EMT process
[29]. The roles of SERPINE1 on angiogenesis and metastasis
in gastric cancer were also found [30]. MATN3 was aber-
rantly methylated and dysregulated in gastric cancer and
related to an undesirable prognosis [31]. DKK1, as an inhib-

itor of Wnt signaling, was also in relation to survival out-
comes of gastric cancer [32]. Nevertheless, more research
should be conducted for investigating the roles of PCOLCE2
in gastric cancer progression. To facilitate personalized pre-
diction of the patient’s prognosis, we generated the nomo-
gram by incorporating the RS model and traditional
clinicopathological characteristics. These model-predicted
survival probabilities were highly consistent with actual sur-
vival probabilities.

Several small molecular compounds were predicted for
treating gastric cancer based on the RS model such as puro-
mycin, trolox C, cloxacillin, indoprofen, diethylstilbestrol,
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Figure 8: The relationships between the EMT-related RS model and immune microenvironment of gastric cancer. (a) Violin plots of
stromal score, immune score, and tumor purity in high- and low-RS groups. (b) Heatmap showing infiltration levels of immune cells in
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and caffeic acid. In our future studies, we will verify the ther-
apeutic effects of these compounds on antigastric cancer by
experiments. Our GSEA demonstrated that ECM receptor
interaction, focal adhesion, pathway in cancer, TGF-beta sig-
naling pathway, and Wnt signaling pathway were markedly
activated in high-RS gastric cancer, indicating that this
model was in relation to these pathways. The immune
microenvironment exerts a key role in tumor progression.
Our further analysis found tight associations between this
model and immune microenvironment. This indicated that
EMT might participate in reshaping the immune microenvi-
ronment of gastric cancer, which will be validated in our
future research.

5. Conclusion

Collectively, our study established an EMT-based signature
that may robustly predict gastric cancer prognosis and
improve the efficacy of personalized therapy. The predictive
performance will be verified in a larger cohort of gastric
cancer.

Abbreviations

EMT: Epithelial-mesenchymal transition
RNA-seq: RNA-sequencing
TCGA: The Cancer Genome Atlas
GDC: Genomic Data Commons
TPM: Transcripts per kilobase million
GEO: Gene Expression Omnibus
GSEA: Gene Set Enrichment Analysis
GO: Gene Ontology
KEGG: Kyoto Encyclopedia of Genes and Genomes
RS: Risk score
LASSO: Least absolute shrinkage and selection

operator
OS: Overall survival
ROC: Receiver operating characteristic
HR: Hazard ratio
CI: Confidence interval
CMap: Connectivity Map
ESTIMATE: Estimation of STromal and Immune cells in

MAlignant Tumor tissues using Expression
data.

Data Availability

The data used to support the findings of this study are
included within the supplementary information files.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

Huiyong Xu and Huilai Wan contributed equally to this
work.

Acknowledgments

This research was supported by the Medical and Health
Guidance Project of Xiamen (3502Z20184041 and
3502Z20184042).

Supplementary Materials

Supplementary 1. Supplementary Table 1: a list of EMT-
related gene signatures.

Supplementary 2. Supplementary Table 2: differentially
expressed EMT-related genes in gastric cancer.

Supplementary 3. Supplementary Table 3: differentially
expressed genes between high- and low-RS groups.

References

[1] E. C. Smyth, M. Nilsson, H. I. Grabsch, N. C. T. van Grieken,
and F. Lordick, “Gastric cancer,” Lancet, vol. 396, no. 10251,
pp. 635–648, 2020.

[2] A. E. Russo and V. E. Strong, “Gastric cancer etiology and
management in Asia and the West,” Annual Review of Medi-
cine, vol. 70, no. 1, pp. 353–367, 2019.

[3] S. Li, X. Cong, H. Gao et al., “Tumor-associated neutrophils
induce EMT by IL-17a to promote migration and invasion in
gastric cancer cells,” Journal of Experimental & Clinical Cancer
Research, vol. 38, no. 1, p. 6, 2019.

[4] R. Wang, M. Dang, K. Harada et al., “Single-cell dissection of
intratumoral heterogeneity and lineage diversity in metastatic
gastric adenocarcinoma,” Nature Medicine, vol. 27, no. 1,
pp. 141–151, 2021.

[5] Y. Liu, J. Wu, W. Huang et al., “Development and validation of
a hypoxia-immune-based microenvironment gene signature
for risk stratification in gastric cancer,” Journal of Transla-
tional Medicine, vol. 18, no. 1, p. 201, 2020.

[6] N.M. Aiello and Y. Kang, “Context-dependent EMT programs
in cancer metastasis,” The Journal of Experimental Medicine,
vol. 216, no. 5, pp. 1016–1026, 2019.

[7] B. De Craene and G. Berx, “Regulatory networks defining
EMT during cancer initiation and progression,” Nature
Reviews. Cancer, vol. 13, no. 2, pp. 97–110, 2013.

[8] I. Pastushenko and C. Blanpain, “EMT transition states during
tumor progression and metastasis,” Trends in Cell Biology,
vol. 29, no. 3, pp. 212–226, 2019.

[9] X. Z. Yang, T. T. Cheng, Q. J. He et al., “LINC01133 as ceRNA
inhibits gastric cancer progression by sponging miR-106a-3p
to regulate APC expression and the Wnt/β-catenin pathway,”
Molecular Cancer, vol. 17, no. 1, p. 126, 2018.

[10] B. Yue, C. Song, L. Yang et al., “METTL3-mediated N6-
methyladenosine modification is critical for epithelial-
mesenchymal transition and metastasis of gastric cancer,”
Molecular Cancer, vol. 18, no. 1, p. 142, 2019.

[11] N. Kim, “Chemoprevention of gastric cancer by Helicobacter
pylori eradication and its underlying mechanism,” Journal of
Gastroenterology and Hepatology, vol. 34, no. 8, pp. 1287–
1295, 2019.

[12] K. Guan, X. Liu, J. Li et al., “Expression status and prognostic
value of M6A-associated genes in gastric cancer,” Journal of
Cancer, vol. 11, no. 10, pp. 3027–3040, 2020.

34 BioMed Research International

https://downloads.hindawi.com/journals/bmri/2021/9026918.f1.pdf
https://downloads.hindawi.com/journals/bmri/2021/9026918.f2.pdf
https://downloads.hindawi.com/journals/bmri/2021/9026918.f3.pdf


[13] H. Wang, X. Wu, and Y. Chen, “Stromal-immune score-based
gene signature: a prognosis stratification tool in gastric can-
cer,” Frontiers in Oncology, vol. 9, p. 1212, 2019.

[14] X. Zhang, W. Zhang, Y. Jiang, K. Liu, L. Ran, and F. Song,
“Identification of functional lncRNAs in gastric cancer by inte-
grative analysis of GEO and TCGA data,” Journal of Cellular
Biochemistry, vol. 120, no. 10, pp. 17898–17911, 2019.

[15] S. C. Oh, B. H. Sohn, J. H. Cheong et al., “Clinical and genomic
landscape of gastric cancer with a mesenchymal phenotype,”
Nature Communications, vol. 9, no. 1, p. 1777, 2018.

[16] S. J. Yoon, J. Park, Y. Shin et al., “Deconvolution of diffuse gas-
tric cancer and the suppression of CD34 on the BALB/c nude
mice model,” BMC Cancer, vol. 20, no. 1, p. 314, 2020.

[17] A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set
enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 43, pp. 15545–15550, 2005.

[18] M. E. Ritchie, B. Phipson, D. Wu et al., “limma powers differ-
ential expression analyses for RNA-sequencing and microar-
ray studies,” Nucleic Acids Research, vol. 43, no. 7, article e47,
2015.

[19] G. Yu, L. G. Wang, Y. Han, and Q. Y. He, “clusterProfiler: an R
package for comparing biological themes among gene clus-
ters,” OMICS, vol. 16, no. 5, pp. 284–287, 2012.

[20] J. Lamb, E. D. Crawford, D. Peck et al., “The Connectivity
Map: using gene-expression signatures to connect small mole-
cules, genes, and disease,” Science, vol. 313, no. 5795, pp. 1929–
1935, 2006.

[21] S. Engebretsen and J. Bohlin, “Statistical predictions with
glmnet,” Clinical Epigenetics, vol. 11, no. 1, p. 123, 2019.

[22] K. Yoshihara, M. Shahmoradgoli, E. Martínez et al., “Inferring
tumour purity and stromal and immune cell admixture from
expression data,” Nature Communications, vol. 4, no. 1,
p. 2612, 2013.

[23] R. Cao, L. Yuan, B. Ma, G. Wang, W. Qiu, and Y. Tian, “An
EMT-related gene signature for the prognosis of human blad-
der cancer,” Journal of Cellular and Molecular Medicine,
vol. 24, no. 1, pp. 605–617, 2020.

[24] C. Tao, K. Huang, J. Shi, Q. Hu, K. Li, and X. Zhu, “Genomics
and prognosis analysis of epithelial-mesenchymal transition in
glioma,” Frontiers in Oncology, vol. 10, p. 183, 2020.

[25] Z. Zhang, S. Zheng, Y. Lin et al., “Genomics and prognosis
analysis of epithelial-mesenchymal transition in colorectal
cancer patients,” BMC Cancer, vol. 20, no. 1, p. 1135, 2020.

[26] K. Peng, E. Chen, W. Li et al., “A 16-mRNA signature opti-
mizes recurrence-free survival prediction of stages II and III
gastric cancer,” Journal of Cellular Physiology, vol. 235, no. 7-
8, pp. 5777–5786, 2020.

[27] K. Nie, L. Shi, Y. Wen et al., “Identification of hub genes corre-
lated with the pathogenesis and prognosis of gastric cancer via
bioinformatics methods,” Minerva Medica, vol. 111, no. 3,
pp. 213–225, 2020.

[28] B. Xu, Z. Bai, J. Yin, and Z. Zhang, “Global transcriptomic
analysis identifiesSERPINE1as a prognostic biomarker associ-
ated with epithelial-to-mesenchymal transition in gastric can-
cer,” Peer J, vol. 7, article e7091, 2019.

[29] J. D. Yang, L. Ma, and Z. Zhu, “SERPINE1 as a cancer-
promoting gene in gastric adenocarcinoma: facilitates tumour
cell proliferation, migration, and invasion by regulating EMT,”
Journal of Chemotherapy, vol. 31, no. 7-8, pp. 408–418, 2019.

[30] F. Teng, J. X. Zhang, Y. Chen et al., “LncRNA NKX2-1-AS1
promotes tumor progression and angiogenesis via upregula-
tion of SERPINE1 expression and activation of the VEGFR-2
signaling pathway in gastric cancer,” Molecular Oncology,
vol. 15, no. 4, pp. 1234–1255, 2021.

[31] C. Zhang, Y. Liang, M. H. Ma, K. Z. Wu, and D. Q. Dai,
“KRT15, INHBA, MATN3, and AGT are aberrantly methyl-
ated and differentially expressed in gastric cancer and associ-
ated with prognosis,” Pathology, Research and Practice,
vol. 215, no. 5, pp. 893–899, 2019.

[32] J. A. Wall, S. J. Klempner, and R. C. Arend, “The anti-DKK1
antibody DKN-01 as an immunomodulatory combination
partner for the treatment of cancer,” Expert Opinion on Inves-
tigational Drugs, vol. 29, no. 7, pp. 639–644, 2020.

35BioMed Research International


	Discovery and Validation of an Epithelial-Mesenchymal Transition-Based Signature in Gastric Cancer by Genomics and Prognosis Analysis
	1. Introduction
	2. Materials and Methods
	2.1. Gene Expression Profiles and Data Processing
	2.2. Differential Expression Analysis
	2.3. Functional and Pathway Enrichment Analysis
	2.4. Small Molecular Compound Prediction
	2.5. Generation and Verification of a Risk Score (RS) Model
	2.6. Screening Independent Prognostic Factors
	2.7. Subgroup Analysis
	2.8. Development of a Prognostic Nomogram
	2.9. GSEA
	2.10. Estimation of Immune Score, Stromal Score, and Tumor Purity
	2.11. Analysis of Immune Cell Infiltrations
	2.12. Statistical Analysis

	3. Results
	3.1. Identification of Dysregulated EMT-Related Genes and Their Functions in Gastric Cancer
	3.2. Generation of a Prognostic EMT-Related RS Model for Gastric Cancer
	3.3. Subgroup Analysis of the Prognostic Value of the EMT-Related RS Model
	3.4. External Validation of the EMT-Related RS Model
	3.5. Development of a Prognostic Nomogram Based on the EMT-Related RS Model
	3.6. Prediction of Underlying Small Molecular Compounds for Gastric Cancer Based on Dysregulated EMT-Related Genes
	3.7. Identification of the EMT-Related Gene Model Associated Signaling Pathways
	3.8. Associations between the EMT-Related RS Model and Immune Microenvironment of Gastric Cancer

	4. Discussion
	5. Conclusion
	Abbreviations
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

