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Significant progress has been made in the understanding of
the underlying cancer biology of castration-resistant prostate
cancer (CRPC) with the androgen receptor (AR) signalling
pathway remaining implicated throughout the prostate cancer
disease continuum. Reactivation of the AR signalling pathway
is considered to be a key driver of CRPC progression and, as
such, the AR is a logical target for therapy in CRPC. The
objective of this review was to understand the importance of
AR signalling in the treatment of patients with metastatic
CRPC (mCRPC) and to discuss the clinical benefits associated
with inhibition of the AR signalling pathway. A search was
conducted to identify articles relating to the role of AR
signalling in CRPC and therapies that inhibit the AR
signalling pathway. Current understanding of prostate cancer
has identified the AR signalling pathway as a logical target for
the treatment of CRPC. Available therapies that inhibit the
AR signalling pathway include AR blockers, androgen
biosynthesis inhibitors, and AR signalling inhibitors.

Enzalutamide, the first approved AR signalling inhibitor, has
a novel mode of action targeting AR signalling at three key
stages. The direct mode of action of enzalutamide has been
shown to translate into clinical responses in patients with
mCRPC. In conclusion, the targeting of the AR signalling
pathway in patients with mCRPC results in numerous clinical
benefits. As the number of treatment options increase, more
trials evaluating the sequencing and combination of
treatments are required. This review highlights the continued
importance of targeting a key driver in the progression of
CRPC, AR signalling, and the clinical benefits associated with
inhibition of the AR signalling pathway in the treatment of
patients with CRPC.
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Introduction
The development and function of the prostate gland is
dependent on androgen regulation via the androgen receptor
(AR) signalling pathway. The AR is a 110 kDa member of
the steroid-receptor family and contains four modular
domains: the ligand-binding domain (LBD), the hinge region,
the DNA-binding domain (DBD) and the N-terminal domain
(NTD) (Fig. 1 [1–3]) [1]. The C-terminal LBD mediates
activation of transcription by the binding of ligand [1]. The
DBD facilitates binding to DNA and the hinge region is
important for nuclear localisation [1]. The NTD is
responsible for regulation of transcription [1].

Within a normal prostate, the AR [regulated by testosterone
and dihydrotestosterone (DHT)], has a homeostatic function
to balance the rate of cell proliferation with the rate of
apoptosis. In prostate epithelial and stromal cells, testosterone
is converted into the more active form, DHT, by 5a-reductase
[2,4]. Testosterone or DHT binds to the LBD of the AR,
causing a conformational change and activation of the

receptor. This leads to homodimer formation and
translocation of the AR from the cytoplasm to the nucleus.
Within the nucleus, the AR binds to androgen response
elements of DNA, recruiting co-factors (co-activators or co-
repressors) that regulate transcription of target genes, e.g.
PSA. In malignant prostate cells, the AR signalling pathway
drives uncontrolled growth and the balance between the rate
of cell proliferation and the rate of apoptosis is lost (Fig. 2)
[4]. The AR signalling pathway plays a key role in all phases
of prostate cancer, from disease initiation to disease
progression, including metastatic transformation and spread
[4,5].

Different stages within the prostate cancer disease continuum
can be clinically defined by the presence or absence of
detectable metastases and whether testosterone concentrations
are in the castrate range [6]. Treatment of prostate cancer, at
any stage in the disease continuum, is determined by tumour
characteristics, PSA level, extent of tumour spread, estimated
life-expectancy of the patient, whether or not symptoms are
present, and progression on previous treatments [7].
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For most patients with metastatic prostate cancer, androgen-
deprivation therapy (ADT) with LHRH agonists or
antagonists, or orchidectomy, constitutes first-line therapy
[7,8]. Medical ADT with LHRH agonists or antagonists can
involve monotherapy or can be combined with antiandrogens
(e.g. bicalutamide) that block the effect of any residual
testosterone. This is known as combined androgen blockade.
ADT strategies can produce a dramatic improvement of
symptoms, but invariably prostate cancer stops responding to
androgen suppression and progresses. The average time to
development of castration-resistant prostate cancer (CRPC)
after commencement of ADT is 2–3 years [9,10]. While this
state has previously been referred to as ‘hormone refractory’

or ‘androgen independent’, advancements in the
understanding of disease progression and the continued
involvement of the AR have led to this state being termed
‘castration-resistant prostate cancer’ [10]. CRPC is defined by
serial rises in PSA values despite castrate levels of
testosterone, and/or evidence of disease progression on
imaging studies [11]. Compared with hormone-sensitive
prostate cancer, the prognosis for patients with CRPC is poor
and survival is reduced [12]. In clinical trials, the median
survival of patients with CRPC varies between 9 and
30 months [12].

This review highlights the continued importance of AR
signalling in the treatment of patients with CRPC and
discusses the clinical benefits associated with inhibition of the
AR signalling pathway maintained even in later stages of the
disease.

Evidence Acquisition
A literature search was conducted, using PubMed and
congress abstracts, to identify articles relating to the role of
AR signalling in CRPC and therapies that inhibit the AR
signalling pathway. Key words included AR signalling,
mCRPC, abiraterone and enzalutamide.

Evidence Synthesis
Continued AR Signalling in CRPC

Significant progress has been made in the understanding of
the underlying cancer biology of CRPC. The AR signalling
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pathway is reactivated in CRPC and is a key driver of tumour
progression in this condition. This is demonstrated by levels
of PSA, which is a protein known to be regulated by AR
signalling, which is present in high levels in most patients
with CRPC [13]. In addition, many genes known to be
regulated by the AR signalling pathway are also expressed in
CRPC [13].

Various molecular mechanisms have been proposed to
explain how prostate tumour cells continue to use the AR
signalling pathway for growth despite castrate levels of
testosterone (Fig. 3) [2,4,13–16]. The most commonly
reported mechanisms of continued AR signalling are
extragonadal steroidogenesis and AR gene amplification.

Androgen synthesis by the adrenal glands is known to
continue despite medical or surgical castration [2].
Intratumoral testosterone/DHT production is also implicated
in the pathogenesis of CRPC. In addition, the synthesis of
androgen from circulating precursors occurs within prostate
tumour cells, reactivating AR signalling in CRPC despite
serum levels of testosterone in the castrate range [5].

The incidence of AR gene amplification in untreated primary
prostate cancer is low [14]. In comparison, studies have
shown that 50–85% of tumours in CRPC have an increased
AR gene copy number causing upregulation of AR gene
expression. This leads to overexpression of AR in the
cytoplasm of CRPC cells and consequent sensitisation of the
tumour to low levels of androgens, which confers a survival
and growth advantage upon tumours [14,15,17]. This suggests
that AR gene amplification and AR overexpression contribute
to the progression of prostate cancer to a castration-resistant

state [14,18]. AR overexpression also appears to promote the
conversion of first-generation antiandrogens, e.g.
bicalutamide, to full agonists [14].

Raised levels of AR splice variants have also been found in
some CRPC tissue specimens [16]. Transcriptional active
splice variants have also been detected in normal prostate
tissue [16]. AR splice variants are a result of alternative
splicing of the AR primary gene transcript. Up to seven
different AR splice variants that lack the LBD have been
identified in a range of human prostate tissues [16]. In
particular, expression levels of AR-V7 are found to be
elevated 20-fold in CRPC when compared with hormone-
na€ıve prostate cancer [16,19]. Although AR splice variants are
associated with the progression of prostate cancer, the exact
role they play in CRPC is complex and not yet fully
understood. Some AR splice variants that lack the LBD have
been shown to be constitutively active, suggesting that AR
signalling could occur in the complete absence of ligand
binding [16,19]. This mechanism of continued AR signalling
may drive resistance to therapies that rely on binding to the
LBD for their activity. AR splice variants are more common
when residual androgen levels are low, suggesting that AR
splice variants may arise as a result of ADT [20,21].
Constitutively active AR splice variants are also associated
with increased expression of N-cadherin, a protein that plays
an important role in cell adhesion, which in turn induces
epithelial–mesenchymal transition (EMT) [22]. EMT is a
physiological process whereby epithelial cells are converted
into mesenchymal cells during embryonic development as
part of organ development [22]. After embryogenesis, it was
assumed that EMT is ‘switched off’; however, it is now
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Fig. 3 Potential mechanisms of continued AR signalling in CRPC [2,4,16,33]. T, testosterone.
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thought that EMT is reactivated by malignant cells [22]. This
transformation may be responsible for the formation of
metastatic tumours via dissemination of cells from the
primary tumour site to tissue sites such as the liver, lungs or
bone marrow [22].

AR gene mutations constitute another genetic alteration involved
in the progression to CRPC. The incidence of AR gene
mutations has been found to increase with cancer stage, with
�10% of CRPC tumours found to have such mutations [2,4].
Most of the AR mutations characterised to date occur in the
LBD and may alter ligand binding. This may allow activation of
the AR signalling pathway by alternative ligands, such as some
first-generation antiandrogens and steroids [23]. The AR LBD
mutations may provide a mechanistic explanation for the
development of resistance to antiandrogen therapy [4].

Another proposed biological mechanism for the reactivation
of AR signalling in CRPC is cross-talk between signal
transduction pathways [2,4]. Two or more signal transduction
pathways often cross-talk via the activation or inhibition of
downstream signalling molecules or target genes common to
all pathways [2,4]. Cross-talk between growth factor signalling
pathways may influence the phosphorylation of AR and AR
co-regulators to stimulate AR activity [2,4]. Growth factor
kinase signalling pathways, including phosphoinositide-3-
kinase (PI3K), protein kinase B (AKT), extracellular signal-
regulated kinase (ERK) and mammalian target of rapamycin
(mTOR), have been shown to stimulate AR target gene
expression in the absence of an AR ligand [2,4]. Studies have
shown that the PI3K/AKT signalling pathway is upregulated
in 30–50% of prostate cancer cases, with the associated loss of
phosphatase and tensin homolog (PTEN) function shown to
enhance CRPC disease development [24]. The loss of PTEN
function increases the expression and signalling of the pro-
inflammatory chemokine ligand 8 (CXCL8) in prostate cancer
cells. CXCL8 signalling is associated with the activation of
additional signalling pathways, leading to upregulation of
anti-apoptotic proteins and, ultimately, the survival of cancer
cells [25].

The AR Signalling Pathway and Current Treatment
Options in mCRPC

As our understanding of the biological mechanisms
underlying disease progression expands, the treatment
landscape in CRPC has been evolving. Cytotoxic
chemotherapy agents, such as docetaxel and cabazitaxel, have
shown survival benefits in patients with mCRPC [26–28].
Taxanes (docetaxel and cabazitaxel) cause apoptosis of
prostate cancer cells by stabilising their microtubule network
[28,29]. The stabilisation of microtubules inhibits their
disassembly, preventing cell division and promoting cell-cycle
arrest [28,29]. An indirect consequence of the stabilisation of
microtubules by taxanes is inhibition of AR nuclear

translocation [30]. Docetaxel was the first agent to show
improvement in overall survival (OS), in addition to palliative
benefits in patients with mCRPC who had progressed on
ADT [28]. Cabazitaxel has shown an OS benefit in patients
with mCRPC whose disease has progressed during or after
treatment with docetaxel [26].

Current understanding of prostate cancer has identified the
AR signalling pathway as a logical target for the treatment of
CRPC. Available therapies that inhibit the AR signalling
pathway include AR blockers (bicalutamide, nilutamide and
flutamide), androgen biosynthesis inhibitors (ketoconazole
and abiraterone) and AR signalling inhibitors (enzalutamide).
Other available treatments with different mechanisms of
actions include sipuleucel-T, an autologous cellular
immunotherapy and radium-223, a radiopharmaceutical that
targets bone metastases. Agents that do not affect the AR
signalling pathway are not covered in the present review.

AR blockers

Traditionally, antiandrogens (bicalutamide, nilutamide or
flutamide) have been added to ADT at PSA progression, with
the objective of achieving a more complete androgen
blockade. Mainly used in advanced prostate cancer, these
agents provide modest survival benefits of �3% improvement
in survival at 5 years [31].

After long-term use of antiandrogens combined with ADT,
some patients will respond to the selective discontinuation of
the antiandrogen. This is known as ‘antiandrogen withdrawal
syndrome’, which is characterised by decreasing PSA levels
and regression of the tumour on discontinuation of the
antiandrogen [32], indicating that antiandrogens can serve as
AR agonists under specific circumstances.

AR overexpression occurs in most cases of CRPC and is
perhaps the most common mechanism whereby
antiandrogens gain agonist activity [14,17]. In vitro studies of
AR overexpressing cells indicate that first-generation
antiandrogens induce changes in the AR that continue to
allow nuclear translocation, DNA binding and co-activator
recruitment at variable efficiencies [14,33]. Up-regulation of
co-activators may also allow activation of wild-type AR by
some antiandrogens, thus demonstrating agonist activity
[4,34]. In the presence of AR gene mutations, some
antiandrogens may confer agonist activity [4].

Androgen biosynthesis inhibitors

The androgen biosynthesis inhibitor ketoconazole has been
suggested to have limited clinical efficacy in CRPC [35].
However, its widespread use in this condition is now
restricted due to significant side-effects and the need to co-
administer with steroids.
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Abiraterone irreversibly and selectively blocks cytochrome
P450 17A1 (CYP17A1), indirectly inhibiting production of
androgens from the testes, adrenal glands and from the
prostate tumour itself [36]. Elevated mineralocorticoid levels
due to CYP17 blockade by abiraterone require co-
administration with prednisone to suppress
adrenocorticotrophic hormone and reduce the adverse events
(AEs) associated with mineralocorticoid excess. Abiraterone
has shown efficacy over placebo in both chemotherapy-na€ıve
and post-docetaxel patients with mCRPC [37,38]. In the
chemotherapy-na€ıve setting, the AEs of fatigue, arthralgia,
peripheral oedema, grade 3 or 4 mineralocorticoid-related
AEs, and abnormalities on liver-function testing were
reported more frequently in the abiraterone-prednisone group
than in the prednisone-alone group [38]. A similar tolerability
profile was reported for abiraterone-prednisone in the post-
docetaxel study [37].

AR signalling inhibitors in mCRPC

The AR signalling pathway remains implicated throughout
the prostate cancer disease continuum and reactivation of the
AR signalling pathway is thought to be a key driver of CRPC
progression [5]. The underlying molecular mechanisms of
CRPC progression are considered to affect tumour growth
and some have been shown to potentiate agonist activity of
first-generation antiandrogens, such as the AR blocker
bicalutamide [14,33]. The AR signalling pathway is a logical
target for novel therapies in CRPC. AR blockers, e.g.
bicalutamide, have provided the starting point for
development of AR signalling inhibitors. These therapies
would need to be potent AR inhibitors capable of avoiding
significant agonist activity.

Enzalutamide is the first approved AR signalling inhibitor
(also described as an AR inhibitor), with a novel mechanism
of action, that distinguishes it from both androgen
biosynthesis inhibitors (e.g. abiraterone) and first-generation
antiandrogens (e.g. bicalutamide) [39,40].

Enzalutamide was rationally designed by conducting a
chemical synthesis programme to identify novel chemical
structures that would be potent AR inhibitors in CRPC
without significant agonist activity [41]. Based on structure-
activity relationships and optimisation of half-life and oral
bioavailability, enzalutamide was selected for further
preclinical and clinical studies [41,42]. This approach to drug
discovery has provided a new model for the rational design
and development of AR signalling inhibitors.

Other AR signalling inhibitors currently being investigated
include ODM-201 and ARN-509. ODM-201 has been shown
to inhibit AR nuclear translocation in preclinical studies and
86% of patients had a ≥50% PSA level decrease with a 1 400-mg
dose of ODM-201 in a Phase I/II study [43,44]. ARN-509

targets the AR signalling pathway by binding to AR and a Phase
I study has demonstrated a ≥50% PSA level decrease in 46.7%
of patients [45,46]. The Phase III SPARTAN trial will evaluate
the efficacy and safety of ARN-509 in patients with non-
metastatic CRPC at high risk of progression [47].

Direct AR Inhibition with Enzalutamide
Extensive in vitro studies have shown that enzalutamide
targets the AR signalling pathway at three key stages, exerting
its effect by blocking binding of androgens to AR, by
inhibiting nuclear translocation of activated AR, and by
impairing binding of activated AR with DNA (Fig. 4) [16,33].
In preclinical CRPC models, enzalutamide has been shown to
competitively inhibit androgen binding to the receptor by
binding with five- to eight-times higher affinity than
bicalutamide, but without partial agonist activity [33].
Molecular modelling suggests that enzalutamide sits in the
ligand binding domain in a manner that is distinct from
bicalutamide and offers mechanism for the partial agonist
activity of bicalutamide [48]. AR localisation studies have
shown that enzalutamide inhibits nuclear translocation of the
AR and impairs DNA binding and activation in preclinical
CRPC models [33].

Enzalutamide Clinical Studies

The theoretical benefit of enzalutamide, designed to interrupt
the androgen signalling mechanism in prostate cancer cells,
has been shown to translate into clinical responses in patients
with mCRPC [49,50].

A Phase I/II, open-label, uncontrolled, dose-escalation study
in patients with progressive CRPC with or without detectable
metastases, demonstrated the antitumour activity of
enzalutamide, both in patients who had previously received
chemotherapy and those who had not [51]. At the end of the
study, maximal PSA level decrease did not differ significantly
by prior chemotherapy status [51].

The clinical efficacy and safety of enzalutamide in patients
with mCRPC has been shown in two Phase III randomised
clinical trials, thus further supporting the AR signalling
pathway as a therapeutic target in mCRPC [49,50].

In the Phase III AFFIRM trial, 1 199 men with mCRPC who
had received prior docetaxel-based chemotherapy were
randomly assigned to receive either enzalutamide (160 mg as
a single oral dose, once-daily) or placebo in a 2:1 ratio [50].
Concomitant therapy with steroids was permitted but not
required [50]. At the time of the interim analysis (after
520 deaths), a significant benefit in the primary endpoint of
OS was seen, with a 37% reduction in risk of death favouring
enzalutamide compared with placebo (hazard ration [HR] =
0.63, 95% CI 0.53–0.75; P < 0.001, median OS 18.4 vs
13.6 months, respectively). This effect was consistent across
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all patient subgroups analysed. Enzalutamide was associated
with significant improvements in all secondary efficacy
endpoints compared with placebo, including radiographic
progression-free survival (rPFS), time to PSA progression,
PSA response rate, and soft-tissue response rate [50].
Enzalutamide was also associated with significantly better
patient-related outcomes compared with placebo (i.e. health-
related quality of life, time to first skeletal-related event and
pain) [50,52]. Additional secondary analyses have shown
consistent benefits in OS, rPFS and time to PSA progression
with enzalutamide in elderly (≥75 years) and younger
(<75 years) patients [53], in patients with different levels of
disease severity assessed by baseline PSA levels, and in both
North American- and European-treated patients [54,55].

In the Phase III PREVAIL trial, 1 717 chemotherapy-na€ıve
patients with progressive mCRPC who had failed on ADT
were randomly assigned to receive either enzalutamide
(160 mg as a single oral dose, once-daily) or placebo in a 1:1
ratio [49]. The patient population included �12% of patients
with visceral metastases, typically not included in CRPC
trials. At the time of the planned interim analysis (after
540 deaths) enzalutamide treatment resulted in significant
benefits in both co-primary endpoints vs placebo, significantly
reducing the risk of radiographic progression by 81% (HR
0.19, 95% CI 0.15–0.23; P < 0.001) or death by 29% (HR

0.71, 95% CI 0.60–0.84; P < 0.001). The rPFS and OS benefits
were seen across all subgroups including age, baseline pain
intensity, geographical region, and type of disease progression
at entry [49]. In addition, enzalutamide was associated with
significant benefits over placebo across all secondary outcome
measures (i.e. time to chemotherapy initiation, time to PSA
progression, reduction in PSA level, objective soft-tissue
response, and quality of life maintenance) [49].

In both the AFFIRM and PREVAIL studies, enzalutamide
was generally well tolerated [49,50]. In AFFIRM, the most
common AEs reported more frequently in the enzalutamide
group compared with placebo included fatigue (34% vs 29%),
diarrhoea (21% vs 18%), and hot flushes (20% vs 10%) [50].
The rate of discontinuations due to AEs was low in both the
enzalutamide and placebo groups (8% vs 10%) [50]. Of
800 patients treated with enzalutamide, five (0.6%) had a
seizure, whereas no seizures occurred in patients receiving
placebo [50]. One additional patient was identified with an
event termed syncope with features suggestive of a seizure,
and another patient was diagnosed with a seizure after the
interim analysis cut-off date [52]. Enzalutamide was not
associated with liver or cardiac toxicity [50].

In the PREVAIL trial in patients with chemotherapy-na€ıve
mCRPC, enzalutamide showed a generally favourable
tolerability profile, despite the reporting period for
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enzalutamide being more than twice that for placebo [49].
AEs that occurred in ≥20% of patients receiving
enzalutamide at a rate that was at least 2% higher than
that in the placebo group were fatigue (36% vs 26%), back
pain (27% vs 22%), constipation (22% vs 17%), and
arthralgia (20% vs 16%). Cardiac AEs were seen in 10% of
patients receiving enzalutamide compared with 8% of
placebo patients. Hypertension was more commonly seen in
the enzalutamide group than in the placebo group (13% vs
4%). Two seizures were reported during the study, one in
each treatment arm. The seizure in the enzalutamide
treatment arm occurred after the data cut-off date.

Sequencing of Hormonal Therapies
While the number of treatments available across the prostate
cancer disease continuum that target or have an effect on the
AR continues to grow, treatment decisions in the
management of patients with mCRPC are becoming more
complex.

There have been several retrospective reports in the
literature, with some studies involving patients initially
included in early access or compassionate use
programmes prior to commercial availability of
enzalutamide in various countries. Typically they were
based on a few heavily pre-treated patients, and none of
the studies were designed to specifically investigate
sequential treatment in patients with mCRPC in the
post-chemotherapy setting (Table 1) [56–71]. In this
population of heavily pre-treated patients with advanced
mCRPC, the effectiveness of enzalutamide appeared to be
attenuated by prior treatment with abiraterone, with a
generally smaller proportion of patients experiencing
≥50% decline in PSA level with enzalutamide after prior
treatment with abiraterone (Table 1) compared with
patients treated with enzalutamide post-docetaxel in the
AFFIRM Phase III study (54%) [50]. None of the reports
identified any reliable predictors of response to
enzalutamide. Similarly, subsequent treatment with
abiraterone in patients who progressed on enzalutamide
treatment also only experienced modest responses
(Table 1). However, significant cabazitaxel activity was
reported in patients with mCRPC progressing after
abiraterone or enzalutamide [71].

Mechanisms of Resistance to
Enzalutamide
In general, studies that have investigated the sequencing
of hormonal therapies have shown that with any
treatment a reduced response is expected with each
subsequent line of therapy. Recent research, primarily in
patients who progressed on chemotherapy and abiraterone,
suggests that one marker for resistance to AR-targeted

therapies is AR-V7, a constitutively active AR splice
variant [72]. Based on the currently available data,
detection of AR-V7 in circulating tumour cells from
patients with CRPC may be associated with resistance to
enzalutamide and abiraterone [72]. In a small Phase II
prospective study evaluating the effect of enzalutamide in
blood and bone marrow, the presence of an AR-V7
variant was associated with primary resistance to
enzalutamide [73]. In addition, in vivo studies have shown
that cabazitaxel remained highly effective in enzalutamide-
resistant tumours in castrated mice and demonstrated
superior antitumour activity compared with docetaxel.
These findings suggest that there could be cross-resistance
in the AR pathway between enzalutamide and docetaxel,
but not with cabazitaxel, in CRPC [74].

The results of the studies summarised in this section should
be interpreted with caution, as they present analyses of small,
retrospective case series, typically involving populations of
patients previously progressing on more than two previous
therapies and in different stages of mCRPC. None of these
reports were based on studies specifically designed to assess
the efficacy of sequential treatments. Larger, prospective
sequencing and combination studies are required to assess the
impact of treatments and to define optimal sequencing
strategies for patients with mCRPC as the treatment
paradigm continues to evolve.

Conclusions
Progress is being made in the treatment of mCRPC with
increased understanding of the underlying molecular
mechanisms involved in CRPC disease progression. This
improved understanding is being applied to rationally
designed pharmacological treatment options with novel
mechanisms of action, e.g. enzalutamide, for patients with
mCRPC. Enzalutamide inhibits three steps in the AR
signalling pathway and positive results of Phase III clinical
trials validate the AR signalling pathway as a therapeutic
target in CRPC [49,50]. Enzalutamide is administered orally,
can be taken with or without food, and does not require
concomitant administration of steroids. Enzalutamide has not
shown signs of liver toxicity and does not require specific
monitoring [50].

Prostate cancer is a markedly heterogeneous disease, with
potential for multiple mechanisms of resistance to
castration. Despite the clinical benefits obtained with
currently available drugs for mCRPC, patients will
ultimately become resistant and disease progression will
eventually occur. Better understanding of drug resistance
mechanisms and evaluation of treatment combinations are
areas of ongoing research that have, and will continue to,
become more important as the treatment options for CRPC
evolve and expand.
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Table 1 Retrospective studies of hormonal sequencing with enzalutamide in patients with mCRPC.

Reference Sequence of hormonal
therapies

Type of study Number of
patients

≥50% decline
in PSA with
second treatment, %

Key study notes

Docetaxel, abiraterone ? enzalutamide
Badrising et al. [56] Docetaxel and abiraterone

prior to enzalutamide
Retrospective 61 21 Enzalutamide had modest

clinical activity in patients
with mCRPC who previously
received docetaxel and
abiraterone; PSA response
to docetaxel and abiraterone
did not predict PSA response
to enzalutamide

Bournakis et al. [57] Abiraterone and/or orterenol
(25 of 35 patients)
prior to enzalutamide

Patient access
programme

35 40 (six out of 15
evaluable patients)

Enzalutamide benefited a
subset of patients resistant
to prior abiraterone
treatment

Scholz et al. [58] Docetaxel, abiraterone prior
to enzalutamide

Retrospective 66 NR; 29% had >30%
decline in PSA

Enzalutamide had activity
in a heavily pre-treated
population of men resistant
to abiraterone and docetaxel

Caffo et al. [59] Docetaxel prior to second- and
third-line agent
(abiraterone, cabazitaxel,
or enzalutamide)

Retrospective 260 20 (70 out of 260 patients
received enzalutamide as
third-line agent)

No difference in clinical
outcomes of abiraterone,
cabazitaxel, or enzalutamide
as third-line treatment was
seen, regardless of the
previous treatment

Schrader et al. [60] Docetaxel and abiraterone
prior to enzalutamide

Retrospective 35 29 Patients progressing after
abiraterone achieved only
a modest response rate with
enzalutamide; a small but
significant number of
patients showed significant
benefit from sequential
treatment

Bianchini et al. [61] Docetaxel and abiraterone
prior to enzalutamide

Retrospective 39 13 Limited activity of
enzalutamide was reported
in the post-docetaxel and
post-abiraterone patient
population

Thomsen et al. [62] Docetaxel and abiraterone
prior to enzalutamide

Retrospective 24 17 Previous abiraterone therapy
was associated with a less
marked reduction in
PSA level following
enzalutamide treatment,
compared with reported
results in randomised studies

Brasso et al. [63] Docetaxel and abiraterone
prior to enzalutamide

Compassionate use
programme

137 18 Modest PSA level responses
and improved survival was
seen with enzalutamide in
patients progressing after
chemotherapy and
abiraterone

Schmid et al. [64] Docetaxel and abiraterone
prior to enzalutamide

Compassionate use
programme

35 10 Consecutive use of enzalutamide
and abiraterone after
taxane-based chemotherapy
shows a modest clinical
activity

Thomson et al. [65] Docetaxel and abiraterone
prior to enzalutamide

Expanded access
programme

23 39 Enzalutamide appears to
show only modest activity
after failure of docetaxel
and abiraterone

Sandhu et al. [66] Abiraterone prior to
enzalutamide

Retrospective study 23 17 (four out of 23 patients) Sequential enzalutamide in
patients with CRPC
post-abiraterone showed
only modest activity
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