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Abstract

estimated from the alignments before trimming.

driven primarily by the sequence data.

Background: The flood of genomic data to help build and date the tree of life requires automation at several
critical junctures, most importantly during sequence assembly and alignment. It is widely appreciated that
automated alignment protocols can yield inaccuracies, but the relative impact of various sources error on
phylogenomic analysis is not yet known. This study employs an updated mammal data set of 5162 coding loci
sampled from 90 species to evaluate the effects of alignment uncertainty, substitution models, and fossil priors on
gene tree, species tree, and divergence time estimation. Additionally, a novel coalescent likelihood ratio test is
introduced for comparing competing species trees against a given set of gene trees.

Results: The aligned DNA sequences of 5162 loci from 90 species were trimmed and filtered using trimAL and two
filtering protocols. The final dataset contains 4 sets of alignments - before trimming, after trimming, filtered by a
recently proposed pipeline, and further filtered by comparing ML gene trees for each locus with the concatenation
tree. Our analyses suggest that the average discordance among the coalescent trees is significantly smaller than
that among the concatenation trees estimated from the 4 sets of alignments or with different substitution models.
There is no significant difference among the divergence times estimated with different substitution models.
However, the divergence dates estimated from the alignments after trimming are more recent than those

Conclusions: Our results highlight that alignment uncertainty of the updated mammal data set and the choice of
substitution models have little impact on tree topologies yielded by coalescent methods for species tree
estimation, whereas they are more influential on the trees made by concatenation. Given the choice of calibration
scheme and clock models, divergence time estimates are robust to the choice of substitution models, but
removing alignments deemed problematic by trimming algorithms can lead to more recent dates. Although the
fossil prior is important in divergence time estimation, Bayesian estimates of divergence times in this data set are
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Background

There is a growing interest in developing unified models
for phylogenomic data analysis that acknowledge a
multitude of biological processes. One such model, the
multispecies coalescent model, integrates nucleotide
substitution processes [1] and the coalescence process
[2-6] to deliver estimates of phylogenies that are
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comprehensive in their acknowledgement of basic bio-
logical processes. However, several critical variables,
such as sequence alignment uncertainty and the choice
of substitution models, have not yet been integrated into
these stochastic models, and their effects on phyloge-
nomic inference remain unknown. Alignment uncer-
tainty can be more influential on phylogenetic tree
estimation than the specific tree reconstruction methods
used [7-10], and its misleading effects depend on the
shape of the true phylogeny [11, 12]. A recent study [13]
suggested that ‘tiny’ changes in gene sequences could
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result in changes in estimated phylogenies. Although
alignment uncertainty is a critical variable in species tree
estimation, the approaches [14, 15] incorporating align-
ment uncertainty in their overall pipeline of phyloge-
nomic analysis are not yet widely adopted. Moreover,
misspecification of substitution models can mislead
phylogenetic inference [16—18] and divergence time esti-
mation [19, 20], especially when the substitution model
is under-parametrized [21] or rate heterogeneity among
sites is ignored [17]. A Bayesian approach [22] and the
methods of model adequacy [23] were developed to in-
corporate and evaluate uncertainty in substitution
models in phylogenetic inference. However, most efforts
have been devoted to evaluating the effects of alignment
uncertainty and substitution models in the context of
gene tree estimation; their impacts on species tree infer-
ence under the multispecies coalescent have not been
fully explored, despite the fact that coalescent species
tree estimation appears to be more robust than concat-
enation methods to taxon sampling, long branch attrac-
tion, missing data and other biases [24—-26], especially
but not exclusively when information content of individ-
ual alignments is moderate or high [27, 28].

Placental mammals have received considerable recent
attention in phylogenomics, although many nodes are
still uncertain (reviewed in [29]) and the models describ-
ing their ordinal radiation are still contentious [30—32].
An empirical study suggested a general agreement on
paleontological and molecular dates with results consist-
ent with the soft explosive model [33], which were later
confirmed and reinforced by Phillips and Fruciano [32]
based on simulations and empirical analyses. Liu et al.
[34] recently conducted a broad phylogenomic and dat-
ing analysis of mammals involving 4388 coding loci.
Gatesy and Springer [35] pointed out that some of the
alignments in their analysis appeared to be spurious, im-
plying that the study as a whole was compromised. The
effect of these alignment errors on the conclusions of
[34] seem to be minimal [36], and the analysis of the
mammal alignments by Liu et al. [34] is consistent with
Phillips’ suggested reconciliation between molecular and
paleontological diversification of placental mammals.
Another issue not considered by [34] was the effect of
prior distributions of divergence times on estimated pos-
terior distributions [37, 38]. Awareness is increasing of
the need to test for differences in posterior and prior
distributions, so as to gauge whether the signals in the
data can overcome the strength of prior distributions
[39, 40]. Brown and Smith [41] showed that, for a phyl-
ogeny of plants involving 4 genes and 124 taxa, multiple
interacting priors could grossly constrain estimated pos-
terior distributions of divergence times, a problem that
could potentially affect the mammal data set as well.
These exchanges and issues prompted us to explore in a
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general way the effects of alignment uncertainty and
priors on a large phylogenomic data set in mammals, a
useful test group with a history of coalescent analyses on
large and diverse data sets [42—-44]. A larger and im-
proved set of alignments of [34] based on careful codon-
based alignment and a state-of-the-art trimming pipeline
is now available [45]. The current study comprehensively
analyzes this data set of 5162 loci (total alignment length
9,150,597-14,623,557 bp) and 90 species [45] to evaluate
the effects of alignment uncertainty, substitution model,
and fossil priors on gene tree, species tree, and diver-
gence time estimation in mammals.

Methods

Alignments

The CDS sequences derived from [34] were processed to
remove potential low-quality regions and indels. The
protein sequences of 5162 loci were aligned by the pro-
gram Mafft v6 [46], where the protein sequences were
translated from the original DNA sequences using EM-
BOSS [47]. The aligned protein sequences were then
back-translated into DNA sequences, retaining the same
codons as in the original DNA alignment. The aligned
DNA sequences were trimmed by the program trimAl
[48] with the option -gappyout. The protocol of Irisarri
et al. [49], who discussed alignment errors at length, was
applied to the trimmed DNA sequences to identify indi-
vidual sequences within each alignment that appear to
generate long-branches due to misalignments or misas-
semblies. After performing the protocol of Irisarri et al.
[49], some qualitatively long branches were still observed
in the maximum likelihood (ML) trees; the alignments
were therefore further filtered by comparing the ML
gene trees with the pruned concatenation tree. For each
gene, the sequences corresponding to any unusually long
terminal branches in the ML gene tree (those branches
5X or longer than the corresponding branches of the
pruned concatenation tree) were removed. Finally, the
first and second codon positions (C12) were extracted
from 4 sets of alignments - before trimming (BT), after
trimming (AT), filtered by the protocol of Irisarri et al.
(FP), and further filtered by comparing ML trees with
the concatenation tree (FM) (Fig. 1). In our analysis, the
extracted C12 positions of the BT, AT, FP, and FM
alignments were used to assess uncertainty of alignments
and its effect on gene trees, species trees, and divergence
time estimation (Fig. 1). The final CDS and C12 align-
ments were deposited in figshare (https://figshare.com/
articles/cds_5162.zip/6031190; [45]).

Before-trimming, the BT alignments of 5162 loci for
90 species had a total of 14,623,557 base pairs. All
5162 loci include at least 80 sequences, with an aver-
age of 86.24 sequences per locus. Using trimAl, 38%
of sites were trimmed from the alignments to produce
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Fig. 1 A flow chart of data preparation and analyses conducted in this study. The original mammal alignments were trimmed and filtered,
generating 4 sets of alignments - before trimming (BT), after trimming (AT), filtered by the protocol of Irisarri et al. (FP), and further filtered by
comparing ML trees with the concatenation tree (FM). In the data analyses, different alignments and substitution models were used to evaluate
the effects of alignment uncertainty and the choice of substitution models on phylogenomic inference

the AT alignments. The protocol of Irisarri et al. [49]
removed 13,181 sequences, i.e., 3% of a total of 445,
209 sequences of the AT alignments, to produce the
FP alignments. The FP alignments were further fil-
tered by the ML protocol and an additional 392 se-
quences were removed to produce the FM
alignments. The extracted C12 positions of the BT,
AT, FP, and FM alignments were summarized with
respect to the proportion of informative sites, GC
contents, and base frequencies (Additional file 1: Fig-
ure S1). The average proportion of informative sites
is 30, 43, 41, 41% for the BT, AT, FP, and FM align-
ments, respectively (Additional file 1: Figure Sla). The
X test identifies 88% of genes whose proportion of
informative sites of the AT alignments is significantly
higher than that of the BT alignments (Additional
file 1: Figure S1b). In contrast, the proportion of sig-
nificant genes is 14% and only 0.5% for AT versus FP
and FP versus FM, respectively (Additional file 1: Figure
S1b). Both the average proportion of informative sites and
the y* test indicate that trimming can significantly increase
the proportion of informative sites, but the protocol of Iri-
sarri et al. [49] and the ML protocol have little impact on
the proportion of informative sites. The analysis for GC
contents and base frequencies shows no significant differ-
ence among the BT, AT, FP, and FM alignments (Add-
itional file 1: Figure Slc-d); the proportion of AT
nucleotides (52%) is consistently greater than the propor-
tion of GC nucleotides (48%) in all alignments (Additional
file 1: Figure S1d).

Gene tree estimation

To evaluate the effect of alignment uncertainty on gene
tree estimation, maximum likelihood (ML) and boot-
strap gene trees were built from the BT, AT, FP, and
EM alignments using RAxML v82.11 [50] with the
GTRCAT model. The RAxML command line for build-
ing the ML and 100 bootstrap gene trees is raxmIHPC-
AVX -f a -#100 -s inputfile -n outputfile -m GTRCAT
-p randomseedl -x randomseed2. We chose the
GTRCAT model because it substantially reduced the
computational time of the ML and bootstrap analyses in
RAXML. The ML gene trees of the AT, FT, and FM
alignments were compared with those generated from
the BT alignments using the normalized Robinson
Foulds distance (NRFD, i.e., the Robinson Foulds dis-
tance divided by the maximum possible distance) [51].
For genes with missing species, the NRFD was calculated
by pruning two gene trees to a set of species that appear
in both genes. Let D(ML MLBT) be the distance be-
tween the ML!" tree of the alignment m = {AT, FP, FM}
and the MLPT tree of the BT alignment for gene i. For
each gene, the 99% quantile of the tree distances was
calculated using the ML and 100 bootstrap gene trees
estimated from the BT alignments. The distance D(ML}"
, MLET) between two ML gene trees is then standardized
by the 99% quantile of the tree distances. If the stan-
dardized tree distance is greater than 1, the distance be-
tween two ML gene trees falls outside the 99%
confidence interval of the tree distances, indicating that
the ML tree of alignment m ={AT, FP, FM} is signifi-
cantly incongruent with the ML tree of the BT align-
ment. However, if a tree distance D(ML}", ML) falls in
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the 99% confidence interval of the tree distances, it is
not necessarily true that the corresponding ML tree of
the m = {AT, FP, FM} alignment is in the 99% confidence
interval of the trees around the ML tree of the BT align-
ments. Moreover, we calculate the average bootstrap
percentage for each gene tree and then fitted a linear re-
gression line for the average bootstrap percentages for
AT versus BT, FP versus BT, and FM versus BT, re-
spectively, to explore the effect of alignment on esti-
mates of bootstrap support. The paired ¢ test was
utilized to find significance for the logarithm of average
bootstrap percentages of the BT, AT, FP, and FM align-
ments. The linear regression and paired ¢ analyses were
performed in R using functions Im() and ttest(). To
evaluate the effect of substitution models on gene tree
estimation, ML and bootstrap gene trees were built by
RAxML with the JC, K80, and GTR models for the FM
alignments. For each gene, the NRFD between the K80
(or GTR) gene tree and the JC gene tree was calculated,
and then was standardized by the 99% quantile of the
tree distances as described above, where the 99% quan-
tile of the tree distances was calculated from the ML
and bootstrap gene trees estimated with the JC model.
We again fitted a linear regression line for the average
bootstrap percentages of K80 versus JC and GTR versus
JC, and we conducted the paired ¢ test to find signifi-
cance for the logarithm of average bootstrap percentages
estimated with the JC, K80, GTR models.

Species tree reconstruction

To evaluate the effect of alignment uncertainty on spe-
cies tree estimation, species trees were estimated from
the bootstrap gene trees of the BT, AT, FP, FM align-
ments using the species tree estimation methods ASTR
AL [52], NJst [53], and STAR [54]. Bootstrap gene trees
were obtained using RAXML with the GTRCAT model.
The ASTRAL, NJst, and STAR trees were summarized
by a majority rule consensus tree, respectively. In each
case, the consensus tree was used as the estimate of the
species tree. The NJst and STAR methods were imple-
mented in the R package Phybase v2.0 [55], whereas the
ASTRAL trees were reconstructed by the command line
java -jar astral.5.5.6.jar -i input -o output. The bootstrap
concatenation analysis was conducted with 100 boot-
strap replicates for the BT, AT, FP, FM alignments using
RAXxML with the GTRCAT model. To evaluate the ef-
fects of substitution models on species tree estimation,
species trees were reconstructed from the gene trees es-
timated with the JC, K80, and GTR models for the FM
alignments. The ASTRAL, STAR, NJst trees were recon-
structed from bootstrap gene trees and summarized by a
majority rule consensus tree (see above for detailed de-
scription). In the concatenation analysis, 100 bootstrap
concatenation trees were built from the alignments
concatenated across 5162 loci by RAxML with the JC,
K80, and GTR model.
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We calculated the Robinson-Foulds distance [56] be-
tween the reconstructed species trees from various align-
ments or substitution models. A coalescent bootstrap
likelihood ratio test (cbLRT) [57] was introduced to
identify significant incongruence among the concaten-
ation, ASTRAL, NJst, and STAR trees given a set of esti-
mated gene trees. Thus far, the strength of the data
behind a given coalescent species tree has most often
been gauged using the bootstrap, which is only an indir-
ect method of comparing two species trees in a coales-
cent context. Given a collection of gene trees known
without error, two species trees T (the null tree) and T,
(the alternative tree with a higher likelihood score) are
evaluated by the LRT statistic ¢=2(log(L,) - log(Lo)),
where Ly and L, are the likelihoods of T, and T; calcu-
lated by the species tree estimation program MP-EST
[58]. The null distribution of the test statistic ¢ is ap-
proximated by a parametric bootstrap technique. Specif-
ically, n bootstrap samples of gene trees are generated
from the null tree T, with branch lengths estimated by
MP-EST. The null distribution of the test statistic ¢ is
approximated by the test statistics {¢y,...,£,} calculated
from n bootstrap samples, and pvalue = P(t>t*|T) =~
Pl L2l here ¢ is the test statistic calculated from the
real data. If pvalue is less than or equal to a prespecified
a (typically, a = 0.05), we conclude that incongruence be-
tween two trees T and T; is significant and the LRT fa-
vors the alternative tree T;. For gene trees estimated
from the BT alignments, the concatenation, ASTRAL,
NJst, and STAR species trees were sorted by their logli-
kelihoods, and then we performed the LRT to compare
two consecutive trees. Similarly, the LRT was conducted
for the concatenation, ASTRAL, NJst, and STAR trees
estimated from the AT, FP, and FM alignments. Since
the loglikelihood is calculated under the multispecies co-
alescent model, the cbLRT is in favor of the trees (ASTR
AL, NJst, STAR trees) estimated from the coalescent
methods.

Divergence time analysis

Divergence times were fit to the ASTRAL, STAR, and
concatenation trees using MCMCTREE [59, 60]. This
study adopted the same 21 fossil calibration points in
Liu et al. [34], which have a relatively even distribution
across the tree (see Fig. S7 in Liu et al. [34]). The ASTR
AL, STAR, and concatenation trees were estimated from
extracted C12 positions of the FM alignment. The C12
NJst tree was identical to the C12 STAR tree produced
here and to the C12 STAR tree in [34]. Divergence times
were also fit to the concatenation tree in [34] in order to
compare the time estimates produced from the new
alignments (5162 loci) in this study and those produced
from the alignments (4388 loci) in [34]. Thus, divergence
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times were fit to 4 species trees — ASTRAL, STAR, con-
catenation4388, concatenation5162. Liu et al. [34]
retained 3867 genes for dating analysis and divided them
into five quintiles. Two hundred genes were randomly
selected from the gene group quintile 1 of 773 genes. Di-
vergence time estimation was based on the selected 200
genes of the BT, AT, FP, and FM alignments. We used
the same parameter settings for the MCMCTREE ana-
lysis as those in [34]. Specifically, the number of parti-
tions was set to 200 and the clock model was set to
independent rates model. To evaluate the effect of align-
ment uncertainty on divergence time estimation, the di-
vergence times estimated from the AT, FP, and FM
alignments were compared with those of the BT align-
ments for the ASTRAL, STAR, concat4388, and con-
cat5162 trees. To evaluate the effect of substitution
models, divergence times were fit to the STAR tree esti-
mated from the FM alignments using MCMCTREE with
the JC, K80, and HKY models. Finally, we evaluated the
effect of the fossil prior on divergence time estimation
by running MCMCTREE without sequence data. The di-
vergence times produced from the fossil prior were com-
pared with the posterior distribution of divergence times
fitted to the STAR tree given the FM alignments. The
divergence times estimated from the FM alignments for
the STAR and concatenation4388 trees were also com-
pared with those in [34]. We compared two posterior
distributions of divergence times based on the standard-
ized divergence times defined as follows. Let x = {xy, ...,
xg1) and y ={y1,...,ys1} be the Bayesian estimates (ie.,
posterior means) of the divergence times at 81 inter-
nodes of the species tree (excluding 8 non-mammal out-
group species) for the BT and AT alignments. Suppose
that the 95% posterior interval of the divergence time x;
is (x;—d;x;+d;). The standardized divergence time is
defined as y; = (y;—«;)/d;. Thus, a standardized diver-
gence time y; > 1 indicates that the divergence time y;
falls outside the 95% posterior interval of x; and we con-
clude that divergence time y; estimated from the AT
alignments is significantly different from the divergence
time x; estimated from the BT alignments.

Results

Gene tree estimation

The distance analysis identified only 38 (0.7%), 43
(0.8%), and 41 (0.8%) gene trees with standardized tree
distance >1 for the AT, FP, and FM alignments, respect-
ively (Additional file 1: Figure S2a). Thus, the distance
analysis does not find significant difference for most
gene trees estimated from the BT, AT, FP, and FM
alignments. In the linear regression analysis for the aver-
age bootstrap percentages of different alignments, the
slope of the linear regression line for AT versus BT, FP
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versus BT, and FM versus BT is /3’ = 1.008, 0.988, 0.999,
respectively (Additional file 1: Figure S2b). Since the
slopes are close to 1, the average bootstrap percentages
of the BT, AT, FP, and FM gene trees are consistent
across alignments for each of the 5162 loci. Moreover,
the paired ¢ test finds no significant difference among
the average bootstrap percentages of the BT, AT, FP,
and FM gene trees. The tree distance analysis also sug-
gests that there is no significant difference among the
gene trees estimated with the JC, K80, and GTR models,
because the standardized tree distance is less than 1 for
the JC versus K80 and JC versus GTR comparisons
(Additional file 1: Figure S2a). The linear regression ana-
lysis suggests that the average bootstrap percentages es-
timated with the JC, K80, and GTR models are
consistent across 5162 loci (Additional file 1: Figure
S2b). The slope of the linear regression line for K80 ver-

sus JC and GTR versus JC is /;’ = 1.008, 1.006, respect-
ively. The average bootstrap percentages for substitution
models are more concentrated around the fitted regres-
sion line than those for alignment uncertainty (Add-
itional file 1: Figure S2b). The paired ¢ test finds no
significant difference among the average bootstrap per-
centages estimated for the JC, K80, GTR substitution
models.

Species tree estimation

The average Robinson-Foulds distance among the con-
catenation trees estimated from the BT, AT, FP, and FM
alignments is 5.7 (Fig. 2a). By contrast, the average dis-
tance among the ASTRAL, STAR and NJst trees is 3.3, 1
and O, respectively (Fig. 2a). Among the 6 comparisons
(BT-AT, BT-FP, BT-FM, AT-FP, AT-FM, FP-FM), the
BT versus FM comparison has the largest average
Robinson-Foulds distance for all 4 species tree estima-
tion methods (ASTRAL, concatenation, NJst, STAR),
and the average distance decreases for the BT-FP and
BT-AT comparisons (Fig. 2a). This decreasing trend in
tree distance is expected because the BT and FM align-
ments are the two ends of the trimming and filtering
process and they are the most dissimilar alignments
compared to the other two intermediate products (AT
and FP alignments) of the trimming and filtering
process. The average tree distances for the BT-AT, BT-
FP, BT-FM comparisons are larger than the average dis-
tances for the AT-FP, AT-FM, FP-FM comparisons, and
the average tree distance is 0 for the FP-FM comparison
for all 4 species tree reconstruction methods (Fig. 2a).
Thus, trimming is the major factor of alignment uncer-
tainty influencing species tree estimation, whereas our
ML protocol of filtering additional long branches of the
ML gene trees has little impact on species tree estima-
tion. The average Robinson-Foulds distance of the
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concatenation trees estimated with the JC, K80, and
GTR models is 2.7, whereas the average distance is 0 for
the ATRAL, STAR, NJst trees (Fig. 2b), indicating that
the coalescent methods for estimating species trees are
more robust to the choice of substitution models than
the concatenation methods. In the cbLRT, the concaten-
ation tree has the smallest loglikelihood and the NJst
tree has the largest loglikelihood for all alignments
(Additional file 1: Figure S3a-d) and substitution models
(Additional file 1: Figure S3e-f). The cbLRT consistently
rejects the concatenation tree when compared to the
ASTRAL tree (pvalue < 0.01), and further favors the NJst
tree over the ASTRAL tree (pvalue<0.01) across all
alignments and substitution models (Additional file 1:
Figure S3a-f). Thus, incongruence among the concaten-
ation, ASTRAL, and NJst trees is statistically significant,
and the NJst tree is the best tree selected by the cbLRT.
The NJst tree with high bootstrap support values (> 90)
is topologically identical with the species tree in Liu
et al. (see Fig. 1 in [34]).

Divergence time estimation

The points in the scatter plot of the divergence times es-
timated from the AT, FP, and FM alignments against
those from the BT alignments are close to the 1:1 line
(Additional file 1: Figure S4). High similarity of diver-
gence time estimates across different alignments is con-
sistently exhibited for all 4 species trees (Additional
file 1: Figure S4). In addition, most standardized time es-
timates of the 4 species trees for the AT alignments fall

in the interval [- 1, 1] (Fig. 3), indicating that trimming
does not have major effect on divergence time estima-
tion. In contrast, an increasing number of points for the
FP and FM alignments fall below the - 1 line (Fig. 3), in-
dicating that removing sequences (due to the protocol of
Irisarri et al.) may result in more recent time estimates
for some internodes. Nevertheless, two diversification
rate shifts at 54 Ma and 83 Ma (Additional file 1: Figure
S5) estimated by the birth-death-shift model [61] are
consistent with the estimates in Liu et al. [34]. The
choice of the substitution model appears to have little ef-
fect on divergence time estimation, because the points in
the scatter plots are close to the 1:1 line (Fig. 4a) and all
standardized divergence times of the JC and K80 models
are between - 1 and 1 when compared to the divergence
times of the HKY model (Fig. 4b).

The prior mean of divergence times tends to be larger
than the corresponding posterior mean, because there
are more points above the 1:1 line (Fig. 5a). Meanwhile,
98% standardized time estimates from the prior distribu-
tion without the sequence data are either less than -1
or greater than 1 (Fig. 5b), suggesting that there is sub-
stantial difference between the posterior and prior distri-
butions of divergence times. Thus, although the fossil
prior is important in divergence time estimation, the
Bayesian estimates of divergence times are primarily
driven by the sequence data. In contrast, the estimated
divergence times from the new alignments versus the
alignments in [34] are close to the 1:1 line (Fig. 5a), but
because the posterior standard deviations of those points
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are very small, there is still a large proportion (59% for
STAR and 68% for concat4388) of the standardized time
estimates falling outside the interval [-1, 1] (Fig. 5b).
Interestingly, all points outside the interval [-1, 1] fall
below the — 1 line, indicating that the new alignments in
this study tend to produce more recent time estimates,
in contrast to the time estimates in Liu et al. [34].

Discussion

Phylogenetic inference may be compromised by several
types of errors, some of which can be reduced with fur-
ther sampling but all of which necessarily incur a trade-
off between bias and variance [62]. Estimation errors of
phylogenies and divergence times reflect the degree of
uncertainty in estimating phylogenetic parameters due
to random sampling of genes and taxa [63] . Large esti-
mation errors result in unresolved phylogenies and wide
confidence intervals (or Bayesian credible regions) for di-
vergence time estimates but can be reduced by increas-
ing the sample size of genes or alignment lengths. In
contrast, systematic errors due to data artifacts and
model misspecifications cannot be alleviated by sampling
more data; a large sample size often leads to even more
pronounced systematic errors and can further bias
phylogenetic inference. For the mammal data set,

alignment uncertainty and substitution model misspeci-
fication have little impact on gene tree estimation.
Moreover, the gene-tree-based species tree estimation
methods (ASTRAL, STAR, NJst) are robust to alignment
uncertainty, because a small number of bad gene trees
will not bias the species tree estimates of those methods.
In contrast, the concatenation methods are sensitive to
alignment uncertainty of the mammal data set, because
a sufficiently misleading locus could potentially domin-
ate the estimate of the species tree, which is more likely
when most loci have few informative sites and one locus
(perhaps due to very long branches) has many more in-
formative sites than average. Similarly, the choice of sub-
stitution models of the mammal data set has a greater
effect on the concatenation approach than on the gene-
tree-based species tree estimation methods tested here.
It should be noted, however, that more variable perform-
ance of concatenation compared to coalescence methods
given the different alignments does not necessarily sig-
nify higher accuracy.

In our analyses, alignment uncertainty had a strong in-
fluence on divergence time estimation for the mammal
data set. Removing problematic sites (trimming) and se-
quences (filtering) may yield more recent dates at some
internal nodes of the species tree. This effect of
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alignment uncertainty is primarily due to sequence fil-
tering, whereas the trimming and the choice of substitu-
tion models had little effect on divergence time
estimation. In addition to alignment uncertainty, other
factors including the choice of calibration scheme and
clock models (i.e., autocorrelated or independent rates
model) may also have a strong impact on divergence
dates [64—66]. Moreover, trimming rather than filtering
is the main alignment factor influencing the species tree
topology. Trimming is not universally agreed to be a
positive step in improving alignment quality. Tan et al.
[67] suggested that trimming worsened phylogenetic
analysis in many cases. Edwards et al. [68] suggested that
their analyses showed only slight reductions in phylo-
genetic accuracy under unusually severe levels of trim-
ming (e.g., >40% of sites trimmed). In our analyses, the
sequences were trimmed on average by about 38%. The
subsequent phylogenetic analysis showed that the recon-
structed gene trees were not significantly impacted by
trimming. Our addition of a further filtering step on top
of those proposed by Irisarri et al. [49] is easy to

compute and may prove useful in automated pipelines
in some contexts, but with the mammal data analyzed
here it had minimal impacts. Overall our results support
the tree topology of Liu et al. [34] and others, adding an-
other analysis favoring the Atlantogenata hypothesis
[44].

As for the species tree approaches, the coalescent
models were less likely to be influenced by trimming or
substitution models than the concatenation methods.
Trimming and substitution models worsen concatenated
analyses probably because inaccuracies in the alignment
or substitution model assumed for each gene com-
pounds a misspecified model. In contrast, individual
alignments, which do not have much information, would
not be as strongly affected by model misspecifications,
resulting in a more consistent species tree. The low in-
formation content of individual alignments or genes has
been flagged as a criticism of coalescent methods, but in
some cases this dearth of information for each gene may
be an advantage when models are misspecified. Esselstyn
et al. [44] achieved robust estimation of the tree for



Du et al. BMC Evolutionary Biology (2019) 19:203

placental mammals despite the fact that many of their
genes did not recover specific uncontested branches in the
species tree. We did not attempt another promising type of
filtering, namely enriching for genes that recover an uncon-
tested branch in the species tree [69]. Shen et al. [13]
showed that single rogue genes, or sites within genes, could
have a substantial effect on phylogenomic analyses con-
ducted under concatenation, but less so for species tree
methods, which they did not test extensively. Their study is
not completely comparable to ours; whereas they focused
primarily on sites which strongly supported one tree or an-
other (using alignments that were fixed and presumably ac-
curate), we focused on alignment uncertainty. Still, the
sensitivity to inclusion of individual sites in their study was
similar to changes in alignment of our study. We suggest
that by removing a specific site (random or otherwise) from
every gene in a phylogenomic study for coalescent methods,
but not for concatenation methods (where they tended to
remove individual sites or genes from the entire alignment),
the results in their Fig. 4 do not allow a clear comparison of
the coalescent and concatenation methods. To the extent
that our trimming analyses removed sites considered ran-
dom in their study, without strong support for alternative
trees, our results are similar to theirs in showing very little
effect on phylogenetic analysis using coalescent methods.
This study suggests that coalescent-based methods are in-
sensitive to alignment uncertainty. Other two-stage
methods (first estimating gene trees and then estimating
species trees from the estimated gene trees) would get simi-
lar insensitivity to alignment even though they are not
coalescent-based methods, especially when those methods
only use gene tree topologies to infer species trees. How-
ever, the coalescent-based methods (maximum tree [70] or
STEM [71]) that use gene tree branch lengths in estimating
species trees may have more sensitivity to alignment, be-
cause changing the alignment will change the estimated
branch lengths in the gene trees. It would also be interest-
ing to compare the Bayesian multispecies coalescent
models (BEST [72] or *BEAST) and evaluate their sensitiv-
ity to alignment uncertainty, although such analyses are be-
yond our available computational resources. Nevertheless,
we would expect that BEST and *BEAST are more sensitive
to alignment than two-stage topology approaches but less
sensitive than concatenation.

Divergence times were estimated under the concaten-
ation model in MCMCTREE. This approach does not take
into account the effect of coalescence process, where we
expect gene coalescence times to pre-date species diver-
gence times, sometimes substantially [73, 74]. Angelis and
dos Reis [75] suggested that estimates of divergence times
could be substantially impacted by ancestral population
size and incomplete lineage sorting. However, currently
available dating methods incorporating the multi-species
coalescent model are computationally expensive and
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impractical for big datasets [75]. There is still a lingering
disconnect between coalescent methods for phylogenetic
topology and compatible methods for estimating diver-
gence times. Still, we were able to demonstrate that there
is substantial difference between the fossil prior and the
posterior distribution of divergence times, indicating that
our Bayesian estimates of divergence times are driven by
the sequence data rather than the pre-specified fossil
priors [39].

The coalescent bootstrap likelihood ratio test [57] that
we used to assesses the fit of various species tree estima-
tion methods to a given gene tree data set should be help-
ful in allowing phylogeneticists to compare different trees
directly to one another via a LRT. The test offers a con-
venient way to compare the strength of a set of gene trees
to reject alternative species trees. Such tests are preferred
over bootstrap measures of support, which have been
widely used in the context of coalescent species trees [76,
77], but which are only indirect ways to test competing
phylogenetic hypotheses. The test also highlights a key dif-
ference between popular methods for species tree estima-
tion, such as ASTRAL, which perform well but are not
based on an explicit likelihood model, and methods like
MP-EST, *BEAST or BPP, which are founded, to varying
degrees of complexity, on the full multispecies coalescent
likelihood model [58, 78, 79]. However, the test described
here is limited because it assumes that the gene trees are
given without error. This is clearly a drawback and might
result in rejecting a proposed species tree unnecessarily —
a Type I error. In the case of ‘two-step’ species tree
methods, gene trees are estimated and should not be
taken as given. Our proposed test can be improved by
generating bootstrap samples of DNA sequences using the
estimated gene trees to produce sets of bootstrapped gene
trees and thus achieve a more reliable likelihood of species
trees. Full Bayesian comparison of topologies in a coales-
cent framework are also possible using Bayes Factors [2],
although such tests are difficult to implement on large
data sets such as we have analyzed here.

This study analyzed the alignments of 90 mammal
species to evaluate the effects of alignment artifacts and
substitution model misspecification on phylogenetic in-
ference. Although mammals represent a major group of
the tree of life, a general conclusion on the effects of
alignment and substitution model artifacts requires
phylogenetic analyses of genome-scale sequence data for
the species sampled from other parts of the Tree of Life.
Simulation will certainly also be useful for encompassing
a wide range of biological scenarios under which phylo-
genomic data may be generated.

Conclusions
In this study, the aligned DNA sequences of 5162 loci from
90 species were trimmed and filtered using trimAL and two
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filtering protocols. The final dataset containing 4 sets of
alignments was used to evaluate the effects of alignment
uncertainty, substitution models, and fossil priors on gene
tree, species tree, and divergence time estimation. Our ana-
lyses suggest that alignment uncertainty of the mammal
data set and the choice of substitution models have little
impact on tree topologies yielded by coalescent methods
for species tree estimation, whereas they are more influen-
tial on the concatenation trees. Given the choice of calibra-
tion scheme and clock models, divergence time estimates
are robust to the choice of substitution models, but remov-
ing alignments deemed problematic by trimming algo-
rithms can lead to more recent dates. Although the fossil
prior is important in divergence time estimation, Bayesian
estimates of divergence times in this data set are driven pri-
marily by the mammal sequence data.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512862-019-1534-9.

Additional file 1: Figure S1. Summary of the BT, AT, FP, and FM
alignments. a) Boxplot of the proportion of informative sites across 5162
loci. b) The proportion of significant genes for which the number of
informative sites is significantly different between two alignments. c)
Boxplot of GC content across each of 5162 loci of the BT, AT, FP, and FM
alignments. d) The bar plot of base frequencies for each of the four
alignments. Figure S2. The effect of alignment and substitution model
uncertainty on gene tree estimation. ML and bootstrap gene trees were
estimated from the BT, AT, FP, and FM alignments. a) Histogram of the
standardized tree distance across 5162 loci. The distance between two
ML gene trees is standardized by the maximum distance calculated by
bootstrap gene trees. In the first three plots, the ML gene trees of the AT,
FP, and FM alignments are compared with the ML gene trees of the BT
alignments, and the maximum distance is calculated by the bootstrap
gene trees of the BT alignments. In the last two plots, the ML gene trees
estimated with the K80 and GTR models are compared with the ML gene
trees estimated with the JC model, and the maximum distance is
calculated by the bootstrap gene trees estimated with the JC model. b)
Scatter plot of bootstrap percentages across 5162 loci. The first three
plots are the bootstrap percentages of the gene trees estimated from the
AT, FP, and FM alignments against the BT alignments, and the last two
plots are the bootstrap percentages of the gene trees estimated with the
K80 and GTR models against the JC model. Figure S3. Significant
incongruence among the estimated species trees by a likelihood ratio
test. The LRT is conducted to compare the concatenation tree (the null
tree) versus the ASTRAL tree (the alternative tree), and the ASTRAL tree
(the null tree) versus the NJst tree (the alternative tree) for a) BT, b) AT, ¢
FP, d) FM alignments and e) JC, f) K80 substitution models. The log
likelihoods of three trees are calculated by MP-EST, and then subtracted
from the minimum of three loglikelihoods. Asterisks indicate that the test
rejects the null tree and favors the alternative tree with pvalue < 0.01. Fig-
ure S4. The effect of alignment uncertainty on divergence time estimation.
The posterior means of divergence times estimated with MCMCTREE for the
AT, FP, and FM alignments are plotted against the posterior means of diver-
gence times for the BT alignments for a) the ASTRAL tree, b) the STAR tree,
) the concatenation tree in Liu et al. [34], and d) the concatenation tree es-
timated from the FM alignments of the C12 data sets in this study.
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