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Abstract: Anti-inflammatory potential of orally administrated bioflavonoid-robinin, active sub-stance
of original drug Flaroninum™ (FL), was investigated in the combination with methotrexate (MTX)
and in monotherapy in rats suffering from adjuvant-induced arthritis (AA). Robinin (kaempferol-
3-O-robinoside-7-O-rhamnoside) was isolated from the aerial parts of Astragalus falcatus Lam. The
monotherapy with robinin was not efficient in alleviating symptoms of AA. The combination of
MTX with robinin was similarly active as MTX alone in reducing the hind paw volume and change
of body weight during the whole experiment. The combination, however, reduced plasma levels
of Interleukin-17Aand activity of gamma-glutamyl transferase in joint more efficiently then MTX
alone. Our results demonstrate that the novel combination of robinin and MTX mildly improved the
reduction of inflammation in experimental arthritis.
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1. Introduction

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease, which preferably
targets the synovial joints and is associated with premature mortality and socioeconomic
burdens [1]. The pathogenesis of RA is not fully understood yet, it is suggested that the
abnormal activation of inflammatory signaling pathways, hormonal imbalance, smoking,
and oxidative stress play significant roles in the development of RA [2]. Current treatment
strategies for RA are based on the aim to control disease activity, lower structural damages,
and enhance quality of life. In addition to conventional disease-modifying antirheumatic
drugs (DMARDs), that are particularly associated with different side effects, targeted
DMARDs are more suitable for the treatment of RA [3,4]. Clinical studies showed that
combinations of drugs are more effective than a single medicine alone for the management
of inflammatory arthritis. Methotrexate (MTX) is the first line drug in the treatment of
rheumatoid arthritis [5]. Natural remedies became a significant field of interest for the
development of newer medicines, because they are a rich source of different compounds
with potentially novel mechanisms of action. Indeed, anti-inflammatory phytomolecules
were shown to possess a wide scale mechanism of action including interactions with the
inflammatory pathways [6,7]. Robinin belongs to flavonoids, which are an essential group
of naturally occurring polyphenolic compounds, widely distributed in the plant kingdom
and exhibiting vast range of beneficial biological activities, including antiphlogistic (anti-
inflammatory) action. These effects may interact directly with pro-inflammatory signal
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proteins. Flavonoids may affect specifically the function of enzyme systems critically
involved in the generation of inflammatory processes, especially tyrosine and serine-
threonine protein kinases [8,9]. However, the use of these compounds in clinical praxis is
modest due to their low bioavailability [10]. In our experiment, we selected the higher dose
of robinin from our pilot study with robinin applied in two doses (unpublished results) to
partially compensate it’s low bioavailability.

Robinin is found in plants of the genus Astragalus which is broadly distributed through-
out the temperate and arid regions and known to contain phytochemicals, which are
found in most parts of the plant and have been associated with multiple actions i.e., anti-
inflammatory, pain relieving and protective effects [11,12]. Astragalus falcatus Lam. is widely
distributed in Georgia. This plant has been intensively investigated at the I. Kutateladze
Pharmacochemistry Institute (IKPI) of the Tbilisi State Medical University (TSMU) and hy-
poazotemic flavonoid glycoside robinin was isolated from its aerial parts [13,14]. Based on
this compound, the original preparation Flaroninum™ (FL) in the form of tablets has been
proposed [14]. FL has been approved as a drug by the Georgian and Russian healthcare
authorities. This medicine possess diuretic and hypotensive effects. The active substance of
this product is robinin, which is one of the derivatives of kaempferol (Figure 1). This sub-
stance has been isolated also from plants Pueraria hirsuta (Thunb.) Matsun. and Astragalus
sp. [15,16]. The bioflavonoid robinin (RB) exerts anti-inflammatory and strong antioxidant
activities. Eom et al. [17] have reported Kudzu leaf extract, with main constituent robinin,
reduced the expression of inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6,
and tumor necrosis factor-α. Robinin therapeutically improved lipid peroxidation in heart
tissue and inflammatory markers, cyclooxygenase-2 and lipoxygenase-15 and reduced car-
diotoxicity by modulating transforming growth factor beta 1signaling pathway in Sprague
Dawley rats [18]. Robinin inhibited the oxidized low-density lipoprotein (LDL) lipoprotein
(ox-LDL) induced toll-like receptors 2 (TLR2) and toll-like receptors 4 (TLR4) expression
and inhibited the translocation of nuclear factor kappa B (NF-κB) p65 by modulating
the TLR-NF-κB signaling pathway [19]. In this study, we examined the potential anti-
inflammatory properties of orally administrated robinin in the experimentally-induced
arthritis in monotherapy and in combination therapy with MTX. In this context, we used rat
adjuvant induced arthritis (AA) model: This well-known model is T-lymphocyte dependent
and is associated with hyperplasia of the synovium and inflammation in joints [20,21].
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Figure 1. Chemical structure of kaempferol 3-O-robinoside-7-O-rhamnoside (robinin (RB)).

2. Materials and Methods

Flavonoid glycoside robinin (≥95%) was isolated at IKPI. Flowers and leaves of As-
tragalus falcatus Lam. were collected from Didi Toneti, Kartli floristic region, Georgia, and
identified by botanists of Pharmacobotany, Department of Phytochemistry of IKPI. Voucher
specimens (N 16354) were deposited at the herbarium collection of IKPI (Herbarium Code-
TBPH). Air dried and crushed aerial parts (leaves and flowers) (10 kg) of Astragalus falcatus
Lam. were extracted with 70% ethanol three times (raw material:solvent, 1:10, w/v; at
room temperature) by maceration for 3 days. The combined extracts were dried under low
pressure (100–140 mm Hg,) at 70–80 ◦C to obtain 15 L of aqueous residue. The remaining
aqueous phase was filtered and treated with chloroform (1 L) 3 times to remove lipophilic
compounds; then, a small volume of organic solvent (chloroform) was added and kept
for 24 h. Formed crystals were filtered, washed with ethanol (45%), and air dried. This
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technical product was recrystallized from diluted ethanol (45%) and dried under vacuum
at 70–80 ◦C; the yield of obtained robinin was 1.72%. The flavonoid content was analyzed
by spectrophotometric method using aluminum chloride. In brief, the stock solution of
robinin (0.2%) was prepared in ethanol (70%) by gentle heating. The work solution (0.004%)
was obtained by appropriate dilution of stock solution with 70% ethanol. AlCl3 solution
(5 mL, 0.5%, w/v) was added to 5 mL of this (or standard 0.004%) solution and mixed. Then,
after 10 min of incubation at room temperature, samples were subjected to spectral analy-
sis. Absorbance measurements were performed on the spectrophotometer using 10 mm
width cuvette against a blank solution (which contained equal volumes (5 mL) of ethanol
(70%) and aluminium chloride (0.5%) solutions) at 390 nm. The concentration of standard
solution of robinin was 0.004%. Robinin standard (99% purity) was obtained in Phenolic
Compounds, Department of Phytochemistry of IKPI. For this experiment, the stock sus-
pension of tested compound was prepared on daily basis, as vehiculum redistilled water
was used. The incomplete Freund’s adjuvant (IFA) was obtained from MERCK (Sigma
Aldrich, St. Louis, MO, USA) and heat-inactivated Mycobacterium butyricum (MB) was
obtained from BD Difco™ (Sparks, MD, USA). Methotrexate (Ebewesol® inj. 20 mg/mL),
heparin (HEPARIN LÉČIVA® Praha, Czech Republic), tiletamine with zolazepam (Zoletil®

50, Virbac, Carros, France), and xylazine (Xylariem® 20 mg/mL, ECUPHAR N.V., Oost-
kamp, Belgium) were used for this experiment. Chemicals for γ-glutamyltransferase (GGT):
buffer (2.6 mM NaH2PO4, 50 mM of Na2HPO4, 15 mM, ethylenediaminetetraacetic acid
(EDTA), 68 mM NaCl; pH 8.1), 8.7 mM L-γ-glutamyl-p-nitroanilide, 44 mM methionine,
65% isopropyl alcohol, methanol were obtained from MERCK (Sigma Aldrich, St. Louis,
MO, USA).

2.1. Laboratory Animals

In this experiment Lewis male rats were purchased from Department of Toxicology
and Laboratory Animal Breeding, Centre of Experimental Medicine, SAS, Dobrá Voda,
Slovak Republic (SK CH 24016). Immediately after housing of animals, rat were submitted
to a seven-day quarantine. Animals had unlimited access to standard diet and tap water
ad libitum, as well as dark/light regime 12 h/12 h. The animal housing agrees with EU
Convention for the Protection of Vertebrate Animals Used for Experimental and Other
Purposes. The authorization of the protocol for this experiment was done by the Ethics
Committee of the Institute of Experimental Pharmacology and Toxicology, Center of Exper-
imental Medicine SAS in Bratislava, Slovakia (SK UCH 04018) and State Veterinary and
Food Administration of the Slovak Republic, Bratislava (3144/16-221/3).

2.2. Adjuvant Induced Arthritis in LEWIS Rats

The AA is a well-established model of inflammation [20,21]. The adjuvant arthritis
was induced in rats with weight of 160–180 g (6 weeks) by an individual intradermal im-
munization at the base of the tail with suspension of 0.1 mL of 12 mg/mL heat-inactivated
MB powder suspended in incomplete IFA according to our previous protocol [22,23].

2.3. Treatments and Design of Experiment

The animals were assigned to 5 groups of eight rats in each. Group one was used as
healthy controls. The second was untreated AA group. The remaining three groups were
AA rats treated as given in the study design below (Table 1).

The tested substance and MTX were administered orally (via gastric tube) during the
whole experiment (28 days); RB was partially dissolved in tap water and administered
daily; anti-rheumatic drug-MTX was diluted with tap water and applied two times a week
in dosage of 0.3 mg/kg of b.w. The b.w. of animals was measured before administration
of tested substances. On days 14 and 21, the blood was withdrawn into heparanized
tubes from the rat’s retro-orbital plexus using tiletaminum, zolazepamum plus xylazine
anesthesia. On the last experimental day, rats were sacrificed in anesthesia, the blood was
obtained, and tissues (spleen and hind paw joint) were collected from all animals. Blood
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samples were centrifugated at 2000× g for 15 min. This procedure depletes the platelets
from the samples of plasma. Samples were saved under −70 ◦C.

Table 1. Experimental design.

Group Treatment and Active Substance Posology

Group 1: Healthy controls (CO) vehiculum 0.5 mL

Group 2: AA untreated vehiculum 0.5 mL

Group 3: AA + treatment Methotrexate (MTX) 0.3 mg/kg of b.w. twice a week

Group 4: AA + treatment Robinin (RB) 50 mg/kg of b.w. daily

Group 5: AA + treatment Robinin+MTX (RB-MTX) 50 mg/kg + 0.3 mg/kg of b.w. twice
a week

AA—adjuvant arthritis, MTX—methotrexate, b.w.—body weight.

2.4. Evaluation of Experimental Arthritis

On the day 14th, 21st, and 28th after immunization of the animals, the hind paw
joints were assessed. Hind paw volume (HPV) was expressed as the average of the
elevation of percentage (%) of the hind paw volume of every rat, compared with HPV
measured at day 1 using a water plethysmometer (UGO BASILE, Comerio-Varese, Italy).
The HPV on the selected day was divided by the HPV on day 1 and expressed in per
cent according to the following formula w: ([n Day]/[Day 1]) × 100 − 100 = value [%].
The body weight of the animals was measured daily. The changes in body weight are
shown as average of the weight gain [g]. Weight measured on the day (n—day 14, 21 and
28) minus weight measured on day 1. The mathematical formula we used is as follows:
[n Day] − [Day 1] = value [g].

2.5. The Activity of γ-Glutamyltransferase in the Hind Paw Joint and Spleen Tissue

The cellular activity of γ-glutamyltransferase (GGT) was measured on day 28 in
the spleen and hind paw joint tissue homogenates using the method of Orlowski and
Meister [24] and modified by Ondrejickova et al. [25]. The tissues were homogenized in a
buffer (2.6 mM of NaH2PO4, 50 mM of Na2HPO4, 68 mM of NaCl,15 mM of EDTA; pH
8.1) at 1:9 (w/v) by Ultra Turax TP 18/10 (Janke and Kunkel) for one min at 0 ◦C. The
biochemical substrates (44 mM of methionine and 8.7 mM of L-γ-glutamyl-p-nitroanilide)
were dissolved in isopropyl alcohol (65%) to final concentrations of 2.5 mM and 12.6 mM,
respectively. After one hour incubation at 37 ◦C, the reaction was stopped by adding 2.3 mL
of cold methanol. Tubes were centrifuged at 5000 rpm for 20 min (Centrifuge Eppendorf).
Supernatant’s absorbance (product p-nitroaniline) was determined on spectrophotometer
Specord 40 at 406 nm. Solution mix without or without substrate or acceptor were used
as blanks.

a =
A
k

× 3.2
0.5

× 1
13, 813

× 1000
tissue [mg]

× 1
60

× 1000 [ nmol p − nitroaniline/min/gtissue]. (1)

Mathematical formula explanatory note:

A—absorbance;
c—concentration of p-nitroaniline [µg/mL];
k—coefficient from calibration curve A = k. c.

2.6. Levels of Interleukin 17A in Plasma Samples

The level of plasmatic Interleukin-17A (IL-17A) was determined using an enzyme-
linked immunosorbent assay type kit (eBioscience®; Waltham, MA, USA) according to
the instruction of the manufacturer. Statistical analyses. The average values ± SEM were
calculated. Significant differences between control animals, untreated animals, and treated
groups of animals were determined by ANOVA. The post hoc test (Tukey-Kramer) was
applied in cases where differences between groups was significant. The levels of signif-
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icance after the post hoc screening were specified as followed: not significant (p > 0.05),
significant (p ≤ 0.05), very significant (p ≤ 0.01), and highly significant (p ≤ 0.001).

3. Results
3.1. Change of the Body Weight (CBW)

AA animals have significantly lower weight gains in comparison to the controls. This
effect was observed within the duration of the whole experiment. RB had no effect on this
parameter at any analyzed day. MTX alone was partly active at day 14 and 21. Similarly,
the combination decreased the loss of weight versus the control group at the same days.
At the end of the experiment, however, none of the treatment significantly modified this
parameter (Figure 2).
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Figure 2. The effect of RB administered alone or in combination with MTX on the change of the body
weight on days 14, 21 and 28. CO—control animals, AA—adjuvant arthritis controls, AA-MTX—
adjuvant arthritis group treated with methotrexate 0.3 mg/kg of b.w. twice a week, AA-RB—adjuvant
arthritic animals treated by RB in dosage of 50 mg/kg, AA-RB-MTX—adjuvant arthritic animals
treated with RB (50 mg/kg) and 0.3 mg/kg of b.w. twice a week. Results were expressed as
mean ± SEM, n = 8. Significant difference: *** p < 0.001 AA vs. CO, +++ p < 0.001 treated groups vs.
AA, ++ p < 0.01 treated groups vs. AA, + p < 0.05 treated groups vs. AA. Weight measured on the
day (n–day 14, 21, and 28) minus weight measured on day 1. The mathematical formula we used is
as follows: [n Day] − [Day 1] = value [g].

Hind Paw Volume (HPV)

Hind paw swelling is a consequence of inflammatory, as well as arthritic, changes
occurring in AA rats. AA animals have significantly higher hind paw volumes in compari-
son to the controls (Figure 3). This effect was observed within the duration of the whole
experiment. RB had no effect on HPV at any day measured. MTX alone was significantly
active in reduction of HPV at day 14. However, on days 21 and 28, the effect of MTX was
only partial. Similar trend was observed with the combination being significantly active in
reduction of HPV at day 14, but, on days 21 and 28, only moderate effect was measured
(Figure 3).
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Figure 3. The effect of RB administered alone or in combination with MTX on hind paw volume (HPV)
on days 14, 21, and 28. CO—control animals, AA—adjuvant arthritis controls, AA-MTX—adjuvant
arthritis group treated with methotrexate 0.3 mg/kg of b.w. twice a week, AA-RB—adjuvant arthritic
animals treated by RB in dosage of 50 mg/kg, AA-RB-MTX—adjuvant arthritic animals treated with
RB (50 mg/kg) and 0.3 mg/kg of b.w. twice a week. Results were expressed as mean ± SEM, n = 8.
Significant difference: *** p < 0.001 AA vs. CO, +++ p < 0.001 treated group vs. AA, ++ p < 0.01
treated group vs. AA. The HPV volume on the selected day (n—day 14, 21, and 28) is divided by the
HPV volume on day 1. All this is multiplied by 100 and, finally, minus 100, we get the percentage.
The mathematical formula we used is as follows: ([n Day]/[Day 1]) × 100 − 100 = value [%].

3.2. Activity of Cellular γ-Glutamyl-Transferase in the Hind Paw Joint and Spleen Tissue

Differences in enzymatic activity of GGT in spleen and joint are shown on Figure 4
on day 28. GGT increased by 46% in joint and 250% in spleen compared with the healthy
control group (Figure 4A). The MTX administration caused an insignificant reduction of
GGT activity in both tissues. Application of RB did not influence, as well, the activity
of GGT in both tissues (Figure 4A), but the combination of MB with MTX significantly
reduced the activity of GGT in the hind paw joint but not in the spleen (Figure 4).
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Figure 4. The effect of RB administered alone or in combination with MTX on the activity of GGT in joint (A), spleen
(B) on day 28. CO—control animals, AA—adjuvant arthritis controls, AA-MTX—adjuvant arthritis group treated with
methotrexate 0.3 mg/kg of b.w. twice a week, AA-RB—adjuvant arthritic animals treated by RB in dosage of 50 mg/kg,
AA-RB-MTX—adjuvant arthritic animals treated with RB (50 mg/kg) and 0.3 mg/kg of b.w. twice a week. Results were
expressed as mean ± SEM, n = 8. Significant difference: *** p < 0.001 AA vs. CO; ** p < 0.01 AA vs. CO, + p < 0.05 treated
group vs. AA. The activity of cellular γ-glutamyltransferase was calculated according to the formula already mentioned in
Section 2.5.
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3.3. Interleukin-17A in Blood Plasma

The concentrations of IL-17A in blood plasma were determined on experimental days
14, 21, and 28. In the model group (AA), IL-17A concentration were markedly enhanced
at day 14 and then gradually dropped within the duration of the experiment and were
only insignificantly higher at the end of the experiment. Only on day 14 in the MTX group
did the plasma levels of this cytokine decrease significantly compared to AA group. The
treatment of combination of RB-MTX group showed a significant decrease (Figure 5) in
levels of this cytokine on days 14 and 21 when compared to untreated AA rats. Additionally,
plasma levels of IL-17A in the combination group of RB-MTX were decreased by 42.6% and
12.7% more efficiently, when compared to MTX monotherapy on days 21 and 28 (Figure 5).
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Figure 5. The effect of RB administered alone or in combination with MTX on the levels of IL-17A
in blood plasma on days 14, 21, and 28. CO—control animals, AA—adjuvant arthritis controls,
AA-MTX—adjuvant arthritis group treated with methotrexate 0.3 mg/kg of b.w. twice a week,
AA-RB—adjuvant arthritic animals treated by RB in dosage of 50 mg/kg, AA-RB-MTX—adjuvant
arthritic animals treated with RB (50 mg/kg) and 0.3 mg/kg of b.w. twice a week. Results were
expressed as mean ± SEM, n = 8. Significant difference: *** p < 0.001 vs. CO, ++ p < 0.01 vs. AA,
* p < 0.05 vs. CO, + p < 0.05 vs. AA.

4. Discussion

This is the first in vivo study, were the anti-inflammatory effect of the active substance
robinin (RB) on the development of adjuvant arthritis (AA) was investigated. We have also
examined the combined administration of RB with antirheumatic drug MTX. Adjuvant
arthritis is recognized as one of extensively used animal model for studying the series
of inflammatory processes that occur in RA and validating novel anti-inflammatory and
anti-rheumatic drugs [20,21,26,27]. The key drugs for RA treatment are disease modifying
anti-rheumatic drugs (DMARDs), including MTX. MTX is able to decrease synovial, as
well as systemic, inflammatory processes, and it improves the function of joints [28,29].
To determine the effectiveness of the substance tested, MTX was chosen as the most
commonly used drug in RA. In our previous studies, MTX has been proved as a good
standard to examine the efficiency of experimental treatments [28]. Furthermore, MTX
is the cornerstone in the therapy of RA either as a single drug or in combination with
other drugs to maximize the therapeutic efficacy [30–32]. It is little known about the
bioavailability of robinin. In previous studies we examined the possible involvement
of membrane efflux transporter (P-glycoprotein) in oral absorption of this compound.
According to the obtained results P-glycoprotein, located in the intestinal epithelial cells
may be responsible for its low oral bioavailability [33]. Robinin is a very safe compound,
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its LD50 is higher than >1 g/kg in mice [34,35]. According to this acute toxicity study, a
safe dose of 50 mg/kg of RB was selected for this experimental design.

AA animals have a quick onset and progression of disease with poly-articular inflam-
mation, which is manifested by increased volume of the hind paw and a typical course of
loss of body weight [36].

In all AA rats, the body weight gain was significantly lower than in control animals
(Figure 2), which may be due to the alterations in the metabolic activities caused by systemic
inflammation during AA [37]. Earlier findings suggested that major clinical markers, HPV
and body weight gain, are remarkably worsened due to inflammation and were effectively
diminished by administration of compounds with anti-oxidative and/or anti-inflammatory
properties [38–40]. The protective effect of MTX against AA development agrees with
previously reported results [23,28,37,40,41] as well as with changes of HPV shown in
Figure 3. Combination of RB with MTX did not improve these protective effect of MTX
(Figures 2 and 3). Gamma-glutamyl transferase (GGT) is an enzyme found in cell surface
of various tissues of the body and considered as one of the pathogenic factors involved
in the inflammatory processes. Raised expression and activity of GGT in joint tissue is a
good experimental standard for synovial inflammation in collagen-induced arthritis. It is
thought that neutralization of GGT with anti-GGT antibody might be novel therapeutic
agents for attenuating joint destruction in RA patients [42,43]. In this study, the GGT
activity was higher in AA animals than in healthy controls in the spleen and in the joints
homogenates (Figure 4). These data resemble the clinical studies of patients suffering
RA with raised activity of GGT not only in the urine and serum, but in synovial fluid
too [44]. The combination of MTX and RB had a significant effect in lowering the GGT
activity in joints of animals (Figure 4A). The effectivity of MTX was marked also in studies
with a similar setting and design of the experiment [37,45]. In earlier investigations, we
demonstrated a positive agreement between the GGT activity in joint tissue and the hind
paw volume of AA animals [46]. Correspondingly, as it is shown in Figure 4A, our previous
results [37,45,46] are also in a good agreement with the current observation in changes of
HPV (Figure 3).

Suppressing cytokines with natural products has become an important focus in the
development of new drugs to treat RA [47]. Inflammatory processes in RA, such as swelling
of the synovium of the joint, with subsequent destruction of articular structures are as-
sociated with activation of synovial fibroblasts and Th-lymphocytes [48]. In the last few
years, various studies figured out that the manifestation of RA is critically dependent on
expression of TLR family members expression, which in turn is acknowledged to play a
crucial role in T-lymphocytes function and differentiation [49–51]. Previous studies have
shown the importance of TLR4 and TLR2 function in the pathogenesis of RA. Since the
expression of these genes is increased and regulated by proinflammatory cytokines. Acti-
vation of TLRs intensifies T-helper lymphocytes (Th17) cell expansion in pro-inflammatory
cytokine-dependent signaling, with increased accumulation of interleukin IL-17 [52,53]. IL-
17A is the key cytokine of the Th17 population and has been involved in the inflammatory
processes of RA. Anti-IL-17 treatments could improve approaches to control the disease
chronicity. Several studies have shown the increased concentration of IL-17A and/or
Th17 in inflamed joints and blood of the patients suffering RA. It was recently shown a
relation of IL-17A concentrations with the disease activity or joint damage [54,55]. Recent
understanding of the etiopathogenesis of RA emphasized the role of the cytokine network
in the initialization and development of the illness, which has bought a novel class of drugs
for RA directly targeting cytokines [56]. Experimental, as well as clinical, proofs exhibit
that IL-17A is a therapeutically appropriate target for RA interventions [57]. Multiple
hypotheses, including alteration of cytokine profiles, have been proposed to explain the
mechanism of MTX efficacy in RA [58]. MTX has been found to influence cytokine produc-
tion and inhibits the up-regulations of IL-17A in the co-culture of T-cells and fibroblasts.
Li et al. (2012) showed that MTX can suppress IL-17 production, which could support
its anti-inflammatory activity in the therapy of RA [59]. Luo et al. [60] hypothesized that
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MTX may exert its therapeutic effect by inhibiting the expression of TLR2 and TLR4. The
antioxidant and anti-inflammatory phytochemicals can be used as potential therapeutic
agents for arthritis.

In our study, we examined the effect of RB on the plasma concentration of IL-17A dur-
ing the development of AA. Recent works suggests that IL-17 contributes to RA chronicity
and late pathogenic responses through synovial inflammation and hyperplasia [61].

This also applies for AA [62–64]. RB alone has no effect on the IL-17A levels in plasma
(Figure 5). However, RB in combination with MTX decreased the IL-17A levels in plasma
on days 14 and 21 significantly (Figure 5). Our previous results with fatsiphloginum,
especially in combination with MTX, are comparable, with results from this study [41].
The anti-inflammatory activity of robinin could be explained also via its metabolites.
Administration of robinin to rats resulted in the urinary excretion of kaempferol with
smaller amounts of p-hydroxyphenylacetic acid. Formation of p-hydroxyphenylacetic acid
was increased in animals that had previously received a diet containing kaempferol or
robinin. The same metabolites were shown to be formed on incubation of robinin with
the microflora [65]. The 3-flavonols kaempferol and robinin undergo a cleavage reaction
analogous to that reported for quercetin, and these metabolites were reported to have
biological activities [66]. Kaempferol as a major metabolite of robinin possesses also anti-
inflammatory effects. These might be responsible for anti-inflammatory effects observed
after per oral administration of robinin, as well. The in vitro study of Lee et al. (2010) has
shown that kaempferol has significantly inhibited cyclooxygenase 1 and 2 (COX2) reaction.
Kaempferol and cytokines have been incubated with isolated human hepatocytes, and it
was noted that COX2 and inducible NO-synthase levels were decreased [67]. Moreover,
kaempferol also suppressed the release of IL-6, IL-1β, IL-18, and TNF-α in lipopolysaccha-
ride plus adenosine triphosphate-induced inflammatory response in cardiac fibroblasts [68].
Probably the beneficial anti-inflammatory activity of RB in combined with MTX might be
due to the inhibition of the release of pro-inflammatory cytokines in joints of AA animals.

5. Conclusions

In this study, the anti-inflammatory and anti-arthritic activity of robinin (RB) was
evaluated for the first time. RB in monotherapy was not efficient in reducing any of pa-
rameters measured. The beneficial properties of MTX monotherapy were not enhanced by
the co-administration of RB on CBW and HPV. However, the combination of MTX-RB was
more effective in decreasing the activity of GGT in the hind paw joint and in lowering the
plasmatic level of IL-17A than MTX alone. However, further investigations on the mecha-
nism of anti-inflammatory and anti-arthritic action, as well as the oral pharmacokinetic
profile of RB, are needed for better understanding of robinin efficacy in RA. Importantly,
RB is a very safe compound and, hence, potentially suitable for combination regimens.
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