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Introduction
Genomewide-association studies (GWAS) have been successful 
in identifying common variants associated with complex 
human diseases in the past decade; however, the variants 
found explain only a small fraction of the overall genetic con-
tribution to disease.1,2 Inevitably, this shortcoming provoked a 
heated debate over the issue of missing heritability.3–5 It is now 
strongly believed that one underlying cause of missing heritabil-
ity is rare variants, which were not captured by GWAS but now 
can be genotyped using next-generation sequencing (NGS) 
technologies. In this regard, rare haplotype variants (rHTVs) 
are a rich source of rare variants. In fact, they are available not 
only from NGS data but also from GWAS data accumulated 
so far as rHTV can result from combinations of common single 
nucleotide polymorphisms (SNPs). Thus, there is a great deal of 
wealth that awaits mining from the GWAS data to explore the 

common disease rare variant hypothesis. Also, haplotypes are 
biologically relevant and methods based on them may be more 
powerful than SNP-based procedures, especially when there is 
a group of alleles operating in concert.6,7 Thus, methods and 
associated software that can handle the challenging problem of 
rHTV association are very much needed.

In addition to rare variants, another potential cause of 
“missing heritability” is identified to be gene–environment 
interaction (GxE), and thus currently is a subject of vigorous 
research. Failure to properly account for GxE has resulted in 
several investigations missing the opportunity to detect vari-
ants that work only in the presence of certain environmental 
covariates.8

Thus, it is clear that there is a great need for developing 
methods for detecting GxE, where G is rHTV. Aiming to fill 
this gap, Biswas et al.9 designed a software, LBL-GxE, based 
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on logistic Bayesian LASSO (LBL).10 Although it performs 
well, it is relatively computationally intensive and can only 
handle single environmental covariate with two levels. There-
fore, in this article, we propose an improved version of LBL-
GxE, which is computationally efficient and can also handle 
multiple environmental covariates, each with multiple levels. 
We also describe the software and apply it to a lung cancer 
dataset.

Method
First, we briefly review the original version of LBL-GxE, in 
particular, the likelihood used therein. Next we discuss how 
the likelihood computation is modified in the proposed ver-
sion to achieve computational savings. Then we describe the 
software, including its inputs and outputs.

The original version of LBL-GxE. Suppose we have 
a case–control sample of size n consisting of n1 cases and n2 
controls. Let Yi = 1/0 denote the case/control status of the ith 
individual, i = 1, …, n and Y = (Y1, …, Yn). Let Gi denote the 
genotype of the ith individual and G = (G1, …, Gn). As hap-
lotype pair of a person may not be deduced unambiguously 
from genotypes, we further let Zi denote the missing (phased) 
haplotype pair of the ith individual and Z = (Z1, …, Zn). Next 
we denote the vector of environmental covariates of individual 
i by Ei. LBL-GxE is based on a retrospective likelihood as 
follows:
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where Ψ is a vector consisting of regression coefficients 
and parameters associated with haplotype frequencies. c in the 
subscript of the likelihood L refers to “complete” as this is a 
likelihood of the complete data, which includes the missing 
data Z, making G redundant.

The individual terms in the above likelihood can be 
expressed in terms of frequencies of each haplotype pair in 
the control population, P(Z|E, Y =  0, Ψ), and the odds of 
disease for given haplotype pair and covariates, P(Y = 1|Z, 
E, Ψ)/P(Y = 0|Z, E, Ψ). Further, the former can be written 
in terms of frequencies of haplotypes f = {f1, …, fm} (assum-
ing m possible haplotypes in the population) and within-
population inbreeding coefficient d, which captures excess/
reduction of homozygosity. By modeling haplotype pair fre-
quencies using d, there is no need to make the assumption of 
Hardy–Weinberg equilibrium. The odds of disease is mod-
eled using logistic regression whose regression coefficients 
(β) capture the effects of haplotypes, covariate levels, and 
their interactions.

Next, prior distributions are assigned to the parameters 
(β, f, d). Each β coefficient is penalized through Bayesian 
LASSO by assigning a double exponential prior centered at 0 
with hyper-parameter λ. We then let λ follow Gamma(a = 20, 
b =  20) distribution. For f, we use Dirichlet (1, …, 1) prior 
consisting of a total of m 1’s for the m haplotypes. For d, the 
prior is Uniform (maxk{–fk/(1 − fk)}, 1).

The posterior distributions are estimated using Markov 
chain Monte Carlo (MCMC) methods. The main goal of 
the method is to carry out association test rather than effect 
estimation (although posterior means and credible sets of all 
parameters are provided by the method). The inference for 
association is carried out using Bayes factor (BF). If BF for 
a certain effect exceeds 2, that effect is considered as signifi-
cant. More details about the likelihood, priors, posterior esti-
mation, and inference can be found in Biswas and Lin9 and 
Biswas et al.10

From a computational point of view, we note that as 
Zi ’s are usually unobservable, they are updated using Gibbs 
sampler in every MCMC iteration for all persons whose hap-
lotypes cannot be deduced unambiguously from their geno-
types, and this is computationally demanding. Further, even 
though, in principle, the method can handle multiple covari-
ates, each with multiple levels, the software could only handle 
one binary covariate, thus limiting its practical utility.

The improved version of LBL-GxE. To reduce the com-
putation time, we get around the need for updating Zi in every 
iteration. Following Kwee et  al.11, we consider the observed 
(rather than complete) data likelihood and sum over all hap-
lotype pairs that are compatible with the observed genotypes. 
For ith individual, suppose there are S(Gi) haplotype pairs that 
are compatible with the observed genotype Gi; ie, let S(Gi) 
denote the set of all possible haplotype pairs for Gi. Further, 
let Zir denote the rth component of S(Gi) or rth compatible 
haplotype for individual i. Then the retrospective observed 
data likelihood is written as
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As all compatible Zirs are summed over in the above 
likelihood, there is no need to update Zi any more in every 
iteration, which leads to savings in computation time. The rest 
of the modeling remains the same as in the original version. 
The equivalence of the two versions is justified as follows. The 
original version of LBL-GxE accounts for all possible hap-
lotype pairs of each person by summing over them in the 
MCMC algorithm (through update of missing Zi at every 
iteration), while the improved version achieves the same goal 
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by summing over them in the likelihood itself (through sum 
over S(Gi)).

In addition, in the improved version of the software, we 
enable handling of multiple covariates, each with as many lev-
els as needed.

Software description. Both original and updated versions 
of LBL-GxE (Versions 1.0 and 1.1) can be found at http://
www.utdallas.edu/∼swati.biswas/. LBL-GxE is an R pack-
age, which calls a C program internally for carrying out the 
MCMC algorithm. Here we discuss how to run LBL-GxE. 
The first required input is “dat”, which is a data frame consist-
ing of non-SNP and SNP data. The non-SNP data has affec-
tion status in the first column and environmental covariates, 
if any, in other columns. The SNP data can be in the allelic 
format if the “allelic” argument (optional) is set to be TRUE 
(default) or in the genotypic format if this argument is FALSE. 
Any missing allelic data can be coded as NA or “”, and missing 
genotypic data should be coded as “” if both alleles are miss-
ing or with one allele name if only one allele is available, eg, 
“A” if the other allele is missing. The second required input 
is “numSNPs”, the number of SNPs in the haplotype region 
under study.

The software package comes with an example data frame 
LBL.ex, which has affection status affected in the first column, 
a two-level covariate smoke in the second column, and five 
allelic formatted SNPs in the rest of the columns. The first 
five rows of LBL.ex are as follows:

Affected smoke M1.1 M1.2 M2.1 M2.2 M3.1 M3.2 M4.1 M4.2 M5.1 M5.2

1 1 1 1 0 0 0 0 1 1 1 1

1 0 1 1 1 0 1 0 1 1 1 1

1 1 1 1 0 0 0 0 1 1 1 1

1 0 1 1 1 1 1 1 0 0 0 0

1 0 1 0 0 1 0 1 1 0 1 0

Next, to analyze the input data (eg, LBL.ex) using LBL-
GxE, the R command is

.LBL(LBL.ex, numSNPs = 5)
There are some other optional arguments in the func-

tion LBL. Following is a brief description of some of these 
arguments:

•	 maxMissingGenos: maximum number of single-locus 
genotypes with missing data to be allowed for each sub-
ject. Default is 1.

•	 haplo.baseline: the haplotype to be used for baseline cod-
ing. Default is the most frequent haplotype.

•	 cov.baseline: the baseline to be used for each covariate. 
Default is a vector of zeros (ie, the covariate category 
labeled as 0) whose length is the number of covariates.

•	 interaction: an indicator of whether or not to model 
GxEs. Default is TRUE.

•	 seed: the seed to be used for the MCMC sampling 
scheme. Default is NULL, ie, system generates a seed 

automatically, which may change each time the code 
is run.

•	 burn.in: the burn-in period of the MCMC sampling 
scheme. Default is 20,000.

•	 num.it: the total number of MCMC iterations, including 
the burn-in iterations. Default is 50,000.

LBL-GxE internally calls pre.hapassoc function from 
the R package Hapassoc12 to pre-process the input dataset 
and thereby borrows directly some of the above-mentioned 
arguments and data formats from pre.hapassoc, such as dat, 
numSNPs, maxMissingGenos, haplo.baseline, and allelic. 
Users do not need to run pre.hapassoc separately as a call to it 
is built into the software.

The outputs from LBL-GxE are the following:

•	 BF: Bayes factors for all regression coefficients.
•	 OR: estimated odds ratios (this is exp(β̂ )).
•	 CI.OR: 95% credible sets for the ORs.
•	 freq: posterior means of the haplotype frequencies.
•	 CI.freq: 95% credible sets for the haplotype frequencies.
•	 CI.lambda: 95% credible set for l, which is a hyper-

parameter of the prior distribution of regression coefficients.
•	 CI.D: 95% credible set for d, which is within-population 

inbreeding coefficient and is used to model Hardy–Wein-
berg disequilibrium, if present.

Usually BF and OR are of most interest, while CI.lambda 
and CI.D are not of direct interest.

Results
Analysis of lung cancer data. We use the updated ver-

sion of LBL-GxE to analyze lung cancer data downloaded 
from the National Institute of Health’s database of Geno-
types and Phenotypes (dbGaP). These data were collected 
in the Environment and Genetics in Lung cancer Etiology 
(EAGLE) study and the Prostate, Lung, Colorectal, and 
Ovarian (PLCO) Cancer Screening Trial. There are a total 
2728 cases and 2821 controls. As smoking is an established 
risk factor for lung cancer, we use it as an environmental cova-
riate in our model. It has three levels: never smoker, former 
smoker, and current smoker.

Rotunno et  al.13 conducted a haplotype analysis with 
eight SNPs (rs2854455, rs3766934, rs2292566, rs2260863, 
rs2234922, rs34143170, rs2292568, rs1051741) in gene 
EPHX1 on Chromosome 1. They found one protective 
and one risk haplotypes to be significantly associated with 
lung cancer. They did not study interaction effects of haplo-
types with smoking. Some other authors have investigated 
the SNP rs2234922 but have found conflicting evidence 
against the direction of the effect.14–20 Few papers have also 
explored interaction of rs2234922 with smoking but found 
it to be non-significant.20,21 One paper found interaction 
of this SNP with smoking to increase risk with smoking 
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modeled as non-smoker, light smoker, and heavy smoker.22 
These results, combined together, seem to indicate that 
there may be multiple causal SNPs in cis formation, which 
may be possibly interacting with smoking to affect the risk 
of lung cancer.

Of the eight SNPs used in the Rotunno et al study, only 
two are present in dbGap lung cancer data: rs2234922 and 
rs1051741, and they are compatible with four possible hap-
lotypes. We first combined the second and third levels of 
smoking-status to form a combined “smoker” level. We used 
the most frequent haplotype, AC, to be the baseline. LBL-
GxE reveals no significant main or interaction effect other 
than a highly significant main effect of smoking.

Next, we used the original three-level smoking-status 
variable and redid the analysis. We used the same base-
line haplotype (AC). The results are reported in Table 1. As 
expected, smoking is a highly significant risk factor for both 
current and former smokers. However, for current smokers, 
the interaction effect with AT, a rare haplotype, is also found 
to be significant (BF .2). The carriers of AT haplotype have 
about four times lower risk of lung cancer than non-carriers 
among current smokers.

Finally, we also fit a model with two covariates–smoking 
(three levels) and sex (two levels). The results are similar to as 
reported in Table 1. The main effect of sex or its interaction 
effects with haplotypes are not significant.

Performance comparison. Here we illustrate the equiv-
alence of the two versions in terms of accuracy of estimates 
and inference. For this, we consider three settings with 6, 9, 
and 12 haplotypes as used in Biswas et al.9 and as shown in 

Table  2. We generate 100  samples under each setting, and 
analyze each sample by both versions. Then we calculate dif-
ference in regression estimates (β̂ ) from the two versions, and 
calculate mean and standard deviation of the differences over 
100 replicates for each setting. As hypothesis test is the main 
goal of this method, we also calculate the percentage of repli-
cates in which each regression coefficient is found to be signif-
icant (BF .2) by each version. Then we report the difference 
in this percentage for the two versions for each setting. This 
essentially estimates the difference in power (if there is true 
association) or type I error rates (if there is no association) for 
each effect. The results are given in Table 2. Note that because 
of random variability associated with MCMC updates, differ-
ent runs of the same sample by even the same version will give 
slightly different results. It is clear that the improved version 
has practically the same accuracy, power, and type I error rate 
as the original version. Also, we see that this result holds irre-
spective of the number of haplotypes.

Computation time comparison. We carried out all com-
putations reported in this article on a 3.60 GHz Xeon proces-
sor under Linux operating system with 15.55 GB RAM. In the 
above lung cancer analysis with the two-level smoking-status 
variable, the updated version takes 218 seconds, while the orig-
inal version takes as long as 758 seconds. The computation time 
is actually directly related to the number of haplotypes. As the 
lung cancer data have only four haplotypes, we also compared 
computation time of the original and the improved versions on 
simulated datasets with a larger number of haplotypes.

Specifically, we consider the same three settings with 6, 
9, and 12 haplotypes used above and earlier in Biswas et al.9 
Three datasets are simulated accordingly, each having a simu-
lated two-level covariate (as the original version cannot handle 
more than two levels). The fitted models include main effects 
of haplotypes, covariates, and their interactions.

A comparison of computation times is shown in Table 3. 
It is clear that the improved version provides substantial sav-
ings of time, and the savings increase as the number of haplo-
types increases.

Discussion
Rare variants and GxE have been heralded as keys to solving 
the pressing problem of the so-called “missing heritability”. 
Although some methods have been proposed for dealing with 
these two problems when G is rHTV, computation time is a 
usual limitation of haplotype analysis, especially when inter-
action terms are fitted. So, the work in this paper of reduc-
ing the computing time is important from a practical point of 
view. When applied to the lung cancer data with the two-level 
smoking-status variable, the improved version of LBL-GxE 
saves 71% of the time used by the original version. The savings 
are even more as the number of haplotypes increases. Espe-
cially, when applied to a simulated dataset with 2000 samples 
and 12 haplotypes, the updated version saves as much as 85% 
of the time cost by the original version.

Table 1. Analysis of lung cancer data. The haplotype frequency 
estimates are obtained using Hapassoc.

Type Overall  
Freq

Case  
Freq

Control  
Freq

OR BF

AT 0.0024 0.0026 0.0022 1.17 0.48

GC 0.0943 0.0938 0.0948 0.91 0.12

GT 0.0960 0.0899 0.1019 0.95 0.10

Former smoker 0.4300 0.4600 0.4000 3.53 .100*

Current smoker 0.4000 0.4600 0.3500 4.18 .100*

AT X former 
smoker

– – – 1.41 0.61

GC X former 
smoker

– – – 1.14 0.17

GT X former 
smoker

– – – 0.88 0.18

AT X current 
smoker

– – – 0.25 3.28*

GC X current 
smoker

– – – 1.02 0.11

GT X current 
smoker

– – – 0.93 0.13

Note: *BF .2.
Abbreviation: Freq, frequency.
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Table 2. Comparison of performance between the original (Version 1.0) and the improved (Version 1.1) versions of LBL-GxE. Mean and SD 
are mean and standard deviation (over 100 replicates) of the difference in regression estimates (β̂ ) from the two versions. %(BF .2) is the 
difference in powers (for effects with OR .1) or type I error rates (for effects with OR = 1); it is the difference in the percentages of replicates in 
which each regression coefficient is found to be significant (BF .2) for the two versions.

Setting 1 Setting 2 Setting 3

Effect OR Mean SD %(BF .2) Effect OR Mean SD %(BF .2) Effect OR Mean SD %(BF .2)

h1 1 0.00 0.05 0.01 h1 1 0.00 0.05 0.00 h1 1 0.00 0.05 0.00

h2 3 0.01 0.25 0.00 h2 1 0.00 0.04 0.00 h2 1 0.00 0.06 0.01

h3 1 0.00 0.14 0.01 h3 3 0.00 0.05 0.00 h3 1 0.00 0.06 −0.01

h4 1 0.00 0.03 0.00 h4 1 0.01 0.14 −0.01 h4 1 0.00 0.03 0.00

h5 1 0.00 0.05 0.00 h5 1 0.00 0.09 0.01 h5 1 0.00 0.03 0.00

E 1 0.00 0.06 0.00 h6 1 0.00 0.05 0.00 h6 1 0.00 0.05 0.00

h1xE 1 0.00 0.06 0.00 h7 1 0.00 0.06 0.00 h7 3 0.00 0.12 −0.02

h2xE 1 0.00 0.10 0.01 h8 1 0.00 0.05 0.01 h8 1 0.00 0.17 0.00

h3xE 3 0.00 0.10 0.03 E 1 0.00 0.04 0.00 h9 1 0.00 0.05 0.00

h4xE 1 0.00 0.05 0.01 h1xE 1 0.00 0.05 0.00 h10 1 0.00 0.04 0.00

h5xE 1 0.00 0.03 0.00 h2xE 1 0.00 0.04 0.00 h11 1 0.00 0.03 0.00

– – – – – h3xE 1 0.00 0.09 0.01 E 1 0.00 0.05 −0.01

– – – – – h4xE 1 0.00 0.18 0.00 h1xE 1 0.00 0.05 0.00

– – – – – h5xE 3 0.00 0.19 0.00 h2xE 1 0.00 0.04 0.00

– – – – – h6xE 1 0.00 0.04 0.00 h3xE 1 0.00 0.03 0.00

– – – – – h7xE 1 0.00 0.04 0.00 h4xE 1 0.00 0.04 −0.01

– – – – – h8xE 1 0.00 0.05 −0.01 h5xE 1 0.00 0.08 0.00

– – – – – – – – – – h6xE 1 0.00 0.03 0.00

– – – – – – – – – – h7xE 1 0.00 0.11 0.00

– – – – – – – – – – h8xE 3 0.00 0.10 0.02

– – – – – – – – – – h9xE 1 0.00 0.03 0.00

– – – – – – – – – – h10xE 1 0.00 0.03 0.00

– – – – – – – – – – h11xE 1 0.00 0.07 0.00

 

Table 3. Comparison of computation time (in seconds) between the original (Version 1.0) and improved (Version 1.1) versions of LBL-GxE.

Data Sample Size # Haplotypes Version 1.0* Version 1.1

Lung cancer data: two-level smoking 5549 4 758 218

Lung cancer data: three-level smoking 5549 4 – 312

Lung cancer data: three-level smoking and sex 5549 4 – 387

Simulated data 1: two-level covariate 2000 6 341 127

Simulated data 2: two-level covariate 2000 9 906 200

Simulated data 3: two-level covariate 2000 12 2123 308

Note: *Version 1.0 can only handle one covariate with two levels.

In addition, the new version can handle multiple 
environmental covariates, each with multiple levels. Our 
real data analyses illustrate the importance of this exten-
sion aptly as a significant interaction effect of smoking with 
an rHTV was only detected when smoking was modeled as 
a three-level covariate. This type of modeling is consistent 
with the literature as smoking is typically modeled using 
three levels (either the same way as ours or as non-smoker, 

light smoker, and heavy smoker).20–22 These analyses are 
also an important contribution to the lung cancer literature 
as there have been conflicting results on the studied region. 
Our results point to potential involvement of a rare rHTV 
interacting with smoking. Specifically, the protective effect 
we found adds to the growing evidence to support why 
some smokers have lower risk of lung cancer compared to 
other smokers.
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It should be noted that a key assumption of LBL-GxE 
is gene–environment independence. We checked this assump-
tion using a test of independence between the haplotypes con-
sidered here and smoking (for both two and three levels), and it 
appears to be satisfied. However, when the assumption is vio-
lated, this method may not be valid. Our ongoing work involves 
extending the approach to deal with scenarios when this gene–
environment independence assumption may not hold.
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