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Aims: Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy, diastolic
dysfunction and increased interstitialfibrosis. Current treatment is based onbeta-adrenoceptor (AR) and calcium
channel blockers. Since mice deficient of protein phosphatase-1 inhibitor-1 (I-1), an amplifier in beta-AR
signalling, were protected from pathological adrenergic stimulation in vivo, we hypothesized that I-1 ablation
could result in an improved outcome in a HCM mouse model.
Methods and results: We crossed mice deficient of I-1 with homozygous myosin-binding protein C knock-out
(Mybpc3 KO) mice exhibiting cardiac dilatation and reduced survival. Unexpectedly, survival time was shorter
in double I-1/Mybpc3 KO than in single Mybpc3 KO mice. Longitudinal echocardiographic assessment revealed
lower fractional area change, and higher diastolic left ventricular inner dimensions and end-diastolic volumes
in Mybpc3 KO than in WT mice. In comparison to Mybpc3 KO, double I-1/Mybpc3 KO presented higher left

ventricular end-diastolic volumes, inner dimensions and ventricular surface areas with increasing differences
over time. Phosphorylation levels of PKA-downstream targets and mRNA levels of hypertrophic markers did
not differ between I-1/Mybpc3 KO and single Mybpc3 KO mice, except a trend towards higher beta-myosin
heavy chain levels in double I-1/Mybpc3 KO.
Conclusion: The data indicate that interference with beta-AR signalling has no long-term benefit in this severe
MYBPC3-related cardiomyopathy mouse model.
© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hypertrophic cardiomyopathy (HCM) is mainly characterized by
asymmetric left ventricular hypertrophy, diastolic dysfunction and
myocardial disarray [1]. To date, HCM is known to be caused by muta-
tions in at least 23 different genes encodingmainly sarcomeric proteins
[2]. An early concept of HCM is a hyper-adrenergic state [3–6], which is
a rationale for beta-adrenoceptor (AR) blockade as treatment option for
HCM in humans. Beta-AR blocker treatment has proven to be beneficial
in patients with angina or dyspnea on exertion, especially when associ-
ated with left ventricular outflow tract (LVOT) obstruction, and is
perimental Pharmacology and
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frequently used to lower the occurrence of non-sustained ventricular
arrhythmias in HCM patients [7–9]. On the cellular level, beta-AR
blockade leads to lower cyclic AMP production. In pacemaker cells,
this lowers spontaneous beating activity with the consequence of a
lower heart rate, whereas in ventricular myocytes, protein kinase A
(PKA) activity is alleviated, leading to a lower phosphorylation status
of L-type Ca2+ channels (LTCC), phospholamban (PLB), cardiac tropo-
nin I (cTnI), cardiac myosin-binding protein C (cMybpc) and cardiac
ryanodine receptors (RyR2).

A downstream element of the cardiac beta-AR signalling pathway is
phosphatase-1 inhibitor-1 (I-1). I-1 inhibits protein phosphatase type-1
(PP1), the major isoform of Ser-Thr-protein phosphatases in the heart,
and thereby enhances PKA-mediated protein phosphorylation
[10–12]. In adult rat and in failing human cardiacmyocytes, overexpres-
sion of wild-type (WT) I-1 or a constitutively active I-1 (I-1c) mutant
protein enhanced beta-AR/cAMP/PKA-dependent contractile responses,
accentuating its amplifier role in the beta-AR signalling pathway [5,13].
In addition, inducible cardiac I-1c expression in adult mice protected
against ischemia–reperfusion-injury and was connected with smaller
e under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Analysis of survival of WT, single Mybpc3 KO (SKO) and double I-1/Mybpc3 KO
(DKO) mice. Kaplan–Meier cumulative survival curves of wild type (WT), singleMybpc3
KO (SKO) and double I-1/Mybpc3 KO (DKO) mice from birth on. Median survival rates
were: SKO = 48 weeks, DKO = 39 weeks, log-rank (Mantel–Cox) test, p b 0.001 vs. WT
for SKO/DKO, p b 0.05 vs. SKO. None of the WT mice died during the study period.
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infarct size and apoptotic injuries [14]. Recently, a study reported that I-
1c overexpressionwith adeno-associated virus (AAV) improved cardiac
function in a pig model of ischemic heart failure [15]. In contrast, in a
chronic isoprenaline infusion model, I-1 overexpression induced
detrimental effects, whereas I-1 deficiency was associated with
beneficial effects [16]. These effects were associated with lower
steady-state phosphorylation levels of both RyR2 and PLB, without an
influence on basal cardiac function, contractile reserve, phosphorylation
status of LTCC and key myofibrillar proteins suggesting that PP1 and I-1
strongly control RyR2 and PLB, apparently more than other PKA targets.
The data indicate that under conditions of increased adrenergic
drive the absence of I-1 is cardioprotective due to the lack of the
I-1-mediated intracellular amplification loop. Itwas therefore suggested
that I-1 deficiency acts as an ‘internal beta-blocker’ without influence
on heart rate and phosphorylation of LTCC and myofilament proteins
[17].

Here, we tested the hypothesis that this I-1 deficiency profile would
have also a beneficial effect in a mouse model of HCM. We crossed I-1
knock-out (KO) mice with a HCM Mybpc3 KO mouse model and
assessed the effect of I-1 deficiency on prognosis and cardiac function.
For comparison, we treated Mybpc3 knock-in mice (KI), another HCM
model with more similarity to human HCM [18], chronically with met-
oprolol. In contrast to our hypothesis, we observed higher mortality
combined with worse functional parameters in double I-1/Mybpc3 KO
(DKO) than in singleMybpc3 KO (SKO)mice and no apparent beneficial
effect of metoprolol on KI mice.

2. Materials and methods

2.1. Experimental animals and survival curve

The study complies with the Guide for the Care and Use of Laboratory
Animals published by theNIH (PublicationNo. 85-23, revised 1985).Mice
were handled andmaintained according to approved protocols of the an-
imal welfare committee of the University of Hamburg. For establishing
the DKO mouse line, homozygous SKO mice [19–21] were crossed with
I-1 KO mice [22]. Mice were maintained on the C57/BL6J genetic back-
ground. For the survival curve, 61 DKO, 58 SKO and 22WTmice were in-
cluded.Mybpc3-targeted knock-in (KI) mice were developed previously
and maintained on the Black Swiss genetic background [18].

2.2. Transthoracic echocardiography

For the longitudinal studywith DKO and SKOmice, cardiac function-
al parameters of 6 mice per group (WT, DKO, SKO) were analyzed by
transthoracic echocardiography at 7, 13, 20, 25 and 32 weeks of age
using the Vevo 770™ high resolution imaging system (Visual Sonics
Inc., Toronto, Canada) as previously described [23].

2.3. Long-term metoprolol treatment and echocardiography

Groups of 10 Mybpc3 WT or KI mice received either drinking water
without (control group) or with metoprolol (treatment group) starting
at the age of 6–8 weeks for a period of 6 months. Based on water
consumption, mice were dosed with 100 mg/kg/day of metoprolol.

Echocardiography was performed every 8–9 weeks using the Vevo
2100 System (VisualSonics, Toronto, Canada). The last echo was
performed after 6 months of treatment. Then animals were killed by
cervical dislocation and body parameters were obtained.

2.4. Expression analysis

For molecular biology analysis, 34–35-week old WT, SKO and DKO
mice were sacrificed by cervical dislocation; hearts were extracted and
frozen in liquid-nitrogen cooled isopentane for subsequent molecular-
biological analysis. RNA was isolated from powdered mouse ventricular
samples using the SV Total RNA Isolation kit (Promega) and 200 ng tran-
scribed into cDNA using the SuperScript® III Reverse Transcriptase kit
(Life Technologies) [24,25]. Quantitative determination of atrial natri-
uretic peptide (Nppa), brain natriuretic peptide (Nppb), α-skeletal
actin (Acta1) and beta-myosin heavy chain (Myh7) mRNA levels
was performed by real-time PCR using the Maxima SYBR Green/
Rox qPCR Master Mix (Thermo Scientific) and primers specific for
every sequence (Supplemental Table 1). Ct values were normalized
to G alpha s (Gαs). ΔΔCt values were related to WT.

Western blotting was performed as described previously [13,26].
Details on primary antibodies are provided in Supplemental Table 2.

2.5. Statistical analysis

Data are reported as mean ± S.E.M. Statistical differences between
the groups of mice were either calculated by one-way or two-way
ANOVA as indicated in the figure legends, using the GraphPad software
(GraphPad Software Inc.), version 5.02. Survival analysis of DKO vs. SKO
was calculated by the Kaplan–Meier method. A value of p b 0.05 was
considered significant.

3. Results

3.1. I-1-deficiency in a Mybpc3 KO mouse model impacts negatively on
survival

For long term evaluation of I-1-deficiency in the Mybpc3 KO mouse
model we performed a survival study with homozygous SKO, DKO
and WT mice. Both DKO and SKO had shorter survival rates than WT
mice (Fig. 1). Unexpectedly, DKO presented a significantly shorter me-
dian survival than SKO mice (39 vs. 48 weeks, p b 0.05), despite un-
changed survival rates of single I-1 deficient mice compared to WT
mice (data not shown). There was no gender difference (data not
shown). None of the WT mice died during the study period.

This outcome suggests that I-1-deficiency is not beneficial in this
Mybpc3 KO mouse model of severe HCM.

3.2. DKOmice show larger ventricles and higher diastolic volume than SKO
mice

To investigate why I-1 deficiency impacts negatively on survival in
our model we performed a longitudinal echocardiography study on an-
imals of each genotype (7 until 32 weeks of age). Echo analysis over the



Fig. 2. Longitudinal echocardiography study and body parameters of WT, SKO and DKO mice. A, Left ventricular mass/body weight ratio [LVM/BW], B, fractional area change
[FAC], C, left ventricular enddiastolic volume [LV Vol d], D, left ventricular internal enddiastolic diameter [LVIDd], E and F, external (Area epi d) and internal (Area endo
d) left ventricular enddiastolic areas were measured inWT, SKO and DKO, n= 6. G, ventricular weight (VW), lung weight (LW), tibia length (TL), ventricular weight/tibia length
ratio (VW/TL), lung weight/tibia length ratio (LW/TL) and body weight (BW) were assessed in 34–35-week old WT, SKO and DKO mice, n = 6–9. Data are expressed as mean ±
SEM, *p b 0.05, **p b 0.01 and ***p b 0.001 vs. WT, #p b 0.05, ##p b 0.01, and ###p b 0.001 vs. SKO, two-way ANOVA followed by Bonferroni comparison post-test or one-way
ANOVA followed by Dunnett's comparison post-test.
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course of time revealed no difference in fractional area change (FAC) at
the different ages between SKO and DKO (both were markedly reduced
compared to WT), but a higher left ventricular mass to body weight
ratio (LVM/BW) for DKO than SKO mice at the age of 7 and 25 weeks,
but no difference at 32 weeks of age (Fig. 2A, D).Furthermore, left ven-
tricular end-diastolic volume (LV Vold) and left ventricular inner di-
mensions in diastole (LVIDd) were higher in DKO than in SKO mice.
This difference increased over the course of time, illustrating a dilated
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phenotype with increased volume retention (Fig. 2B, C). External
and internal left ventricular areas in diastole (Area epi/endo d) were
also higher in DKOmice, supporting the observations of higher chamber
dimensions and a more pronounced dilation phenotype than in SKO
(Fig. 2E, F). Since the median survival of DKO mice was 39 weeks
(Fig. 1), we assessed ventricular, lung and body weight parameters
in 34–35-week old mice of all genotypes. Body and lung weights did
not differ between the different genotypes (Fig. 2G). SKO and DKO
mice showed a cardiomyopathic phenotype with higher ventricular
weight (VW) and ventricular weight to tibia length ratios (LV/TL)
than the WT. Ventricular and lung parameters (VW, VW/TL, LW,
LW/TL) showed a tendency to slightly higher values in DKO than in
SKO mice.

3.3. No difference in levels of hypertrophic markers and calcium-handling
proteins between DKO and SKO

Transcript levels of the hypertrophicmarkersNppa,Nppb, Acta1, and
Myh7 were markedly higher in SKO and DKO than in WT, confirming
the disease phenotype, but did not differ between SKO and DKO
which is in line with unchanged Nppa and Nppb levels between I-1
deficient and WT mice [16]. An exception could be detected for Myh7
levels that were higher by trend in DKO (Fig. 3A–D).

Both SKO and DKO showed higher beta-myosin heavy chain steady-
state protein levels than WT (Fig. 4A). Quantification of sarcoplasmic
reticulum Ca2+-ATPase pump (SERCA) and total PLB protein levels
revealed no differences between the three genotypes (Fig. 4B, C). PLB
phosphorylation levels at Ser16 and Thr17 showed a stronger signal in
SKO and DKO than in WT. Analysis of the total and phosphorylated
states of the sarcomeric PKA target cardiac cTnI showed no difference
in total levels, but a tendency to higher phosphorylation in SKO and
DKO than in WT (Fig. 4D). This hyperphosphorylation could
indicate an increased adrenergic signalling. I-1 mRNA levels were
undetectable in DKO mice, but ~40% lower in SKO than in WT mice
which is in agreement with lower I-1 mRNA and protein levels in
failing human hearts and in response to chronic isoprenaline
Fig. 3. Expression of markers of the hypertrophic gene program. mRNA levels of A, Nppa, B, Np
mice. Data are expressed as mean ± SEM. *p b 0.05, **p b 0.01 and ***p b 0.001 vs. WT, one-w
treatment [27,28]. There was no difference in PP1 mRNA levels
indicating no compensatory changes on gene expression level
(Supplemental Fig. 1).

3.4. Long-term metoprolol treatment has no effect on cardiac function in
Mybpc3 KI mice

In order to evaluate whether a classical beta-AR blockade has a simi-
larly detrimental effect on cardiac function as I-1 deficiency in the
Mybpc3 KO mouse model, we supplemented the drinking water of
Mybpc3 KI mice, another HCM mouse model, with the beta-AR antago-
nist metoprolol, starting at 6–8 weeks of age. Homozygous KI mice
show only 10–20% ofMybpc3 protein andmRNA levels, and their disease
phenotype mimics Mybpc3 KO and severe HCM cases [3,29,30]. Cardiac
function was measured by echocardiography before, during and at the
end of the study. During the study none of the KI mice died. After
6 months of metoprolol treatment, no differences in LVM/BW, LV Vol d,
LVIDd, FAC, Area epi and endo dwere observed between treated and un-
treated KI mice (Fig. 5A–F). We also assessed ventricular, lung and body
weight parameters at the end of the study. Similarly, no differences be-
tween treated and untreated KI mice could be seen (Fig. 5G).

4. Discussion

Current treatment of humanHCM is based on the use of beta-AR and
calcium channel blockers. Both have negative inotropic effects and can
reduce outflow tract obstruction. Moreover, they could be advanta-
geous in light of the early concept of hyper-adrenergic state in HCM
[7,8,31]. Beta-AR blockers in particular have shown to be beneficial in
patients with angina or dyspnea, particularly when associated with
LVOT obstruction [9]. These effects are induced by lowering heart rate,
contractility and stiffness of the ventricle, which results in improved
ventricular relaxation, increased time for diastolic filling, and reduced
tendency to arrhythmias [32,33]. Despite these beneficial effects, the ul-
timate impact of beta-AR blockers on outcome in HCMpatients remains
undefined [34].
pb, C, Acta1, D,Myh7 in 34–35-week oldWT, SKO and DKO mice. Values are related to WT
ay ANOVA followed by Dunnett's comparison post-test, n = 5–8 per group.
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Fig. 4. Analysis of calcium-handling proteins inWT, SKO and DKOmice. RepresentativeWestern blots stained with antibodies directed against A, β-myosin heavy chain (β-MHC), B, sar-
coplasmic reticulum Ca2+-ATPase pump (SERCA), C, total and phosphorylated phospholamban (PLB), and D, total and phosphorylated cardiac troponin I (cTnI) or alpha-actinin/
calsequestrin (protein loading control). Molecular weight markers (MW) as indicated. Protein levels were normalized to alpha-actinin/calsequestrin and related to WT protein levels.
Data are expressed as mean ± SEM, ***p b 0.001 vs. WT, one-way ANOVA followed by Dunnett's comparison post-test, n = 3–6.
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Experimental approaches in HCM mouse models have produced
positive and negative results. Whereas treatment with drugs as diltia-
zem, losartan, spironolactone and HMG-CoA-reductase inhibitors has
shown beneficial effects, application of calcineurin inhibitors worsened
the phenotype [35–39]. Lately, it was reported that genetic normali-
zation of myofilament Ca2+ sensitivity by pseudophosphorylated
TnI inhibits disease development in HCM tropomyosin mice [40].
Gene therapy approaches directed towards normalization of
pathologically low mRNA and protein levels in Mybpc3 KI mice, ei-
ther by repair of mutated RNA [41–43] or by introduction of the cor-
rect full-length Mybpc3 cDNA have provided significant disease
prevention [3].

This study shows the importance of a more comprehensive eval-
uation of a potential “therapeutic target/strategy” in different types
of heart diseases to be really able to assess the therapeutic potential
of such strategy. We tested the hypothesis that intracellular
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modulation of the beta-AR cascade by I-1 ablation could be advanta-
geous in a Mybpc3 KO mouse model by reducing the sensitivity of
beta-AR signalling without lowering heart rate or contractility (e.g.
by lower LTCC and myofilament phosphorylation), but rather by
targeting intracellular calcium handling. Similar to results we ob-
tained in human heart failure samples and in rats after chronic ISO
stimulation [27,28], SKO mice demonstrated lower I-1 mRNA levels
than WT mice, which could indicate a protective mechanism against
excessive adrenergic drive in heart failure. We previously demon-
strated that I-1 deficiency slightly reduced the inotropic response
to beta-AR stimulation in isolated heart muscle preparations, but
did not affect basal contractility [16]. Accordingly, in the current
study we did not observe a difference in FAC between SKO and
DKO mice. However, DKO exhibited even more pronounced LV dila-
tation and earlier death, clearly indicating that, in this Mybpc3 KO
mouse model, I-1 deficiency has adverse effects albeit unchanged
LV dimensions in single I-1 deficient mice [16]. There are two possi-
ble explanations. In heart failure, beta-AR blockers should not be ini-
tiated in acutely decompensated patients because of further
worsening of pump function [44]. Both Mybpc3 mouse models
which were used in the study show severe systolic and diastolic dys-
function and ventricular dilatation at the homozygous state. A high-
dose beta-AR blocker treatment could therefore promote heart fail-
ure decompensation as seen in the case of the DKO. At first sight,
the observation that beta-AR blockade by metoprolol did not worsen
cardiac function inMybpc3 KI does not support this theory. However,
KI in this genetic background (Black Swiss) had a much better con-
tractile function than the SKO, suggesting that this may well be due
to a difference in severity of the cardiomyopathy phenotype in the
two mouse models. And it was apparent that metoprolol treatment
did not improve cardiac function or reduce the degree of hypertro-
phy inMybpc3 KI mice. Thus, most likely,Mybpc3 KO mice with a se-
vere form of cardiomyopathy need a certain level of adrenergic
signalling downstream of the beta-AR receptor for compensation
and this reserve was depressed by I-1 ablation.

An alternative or additional explanation for the adverse conse-
quences of I-1 ablation in the DKO relates to diastolic function. For-
merly we reported that SKO mice showed a relaxation deficit and
higher PLB phosphorylation levels. In this study, SKO and DKO
showed higher PLB and cTnI phosphorylation levels than the WT as
well. This was unexpected for DKO mice since in a former study sin-
gle I-1 KOmice presented PLB hypophosphorylation [16]. This higher
phosphorylation status could be a compensational mechanism to ac-
celerate Ca2+ uptake into the SR and therefore hasten relaxation
[21]. In this respect, stimulation of beta-AR in Mybpc3-related HCM
could be a beneficial compensatory mechanism that alleviates
diastolic dysfunction caused by the relative or complete lack of
Mybpc3. I-1 deficiency in theMybpc3 KOmodel would then negative-
ly interfere by misbalancing beta-adrenergic signalling and causing
exaggerated cardiac hypertrophy and lower survival rates in DKO
compared to SKO.

4.1. Study limitations

The study has several limitations. 1) While we used different ap-
proaches to understand the nature of the augmented phenotype in
(I-1/Mybpc3 KO) mice, including gene and protein expression levels
of genes usually deregulated in cardiomyopathy, we were not able to
identify critical molecular difference between SKO and DKO mice
Fig. 5. Longitudinal echocardiography study and body parameters ofMybpc3WTand KImice±
before (6–8 weeks of age) and duringmetoprolol treatment (14–17, 22–25, 32–34weeks of ag
left ventricular enddiastolic volume [LV Vol d], D, left ventricular internal enddiastolic diam
enddiastolic areas were measured in Mybpc3 WT and KI mice ± metoprolol (Meto), n = 8–1
tibia length ratio (VW/TL), lung weight/tibia length ratio (LW/TL) and body weight (BW) we
*p b 0.05, **p b 0.01 and ***p b 0.001 vs. WT, two-way ANOVA followed by Bonferroni compar
with respect to the observed phenotype. An unbiased approach to
identify potential genetic modifiers, e.g. by whole-genome tran-
scriptomics or proteomics, was however beyond of scope of the cur-
rent study. 2) Most importantly, Mybpc3 KO and KI mice do not
exhibit a typical HCM phenotype. Whereas humans generally devel-
op a HCM phenotype with only one allele mutated, heterozygous
Mybpc3 KO and KI exhibit only mild signs of diastolic dysfunction,
but no cardiac hypertrophy. The present experiments were therefore
performedwith homozygous KO/KI mice which are severely sick, but
rather with a dilated cardiomyopathy phenotype and severe systolic
and diastolic dysfunction. This mimics the rare cases of neonates
with two diseased alleles [45,46]. Both models are obviously not per-
fect for themore common form of heterozygous HCMwith normal or
even supra-normal ejection fraction. The results can therefore not be
directly transferred to the human situation and further studies using
heterozygous Mybpc3 KO and KI mouse models on an I-1 deficient
background might help to elucidate the full picture of beta-AR sig-
nalling blockade in clinical settings of HCM. Yet, the clearly harmful
effects of I-1 ablation in the Mybpc3 KO model indicate that benefi-
cial effects seen previously under strong beta-AR stimulation [16]
cannot be simply transferred to all cardiac pathologies. And, together
with the lack of beneficial effect of beta-AR blocker treatment in the
KI model, the data argue against a beneficial effect of beta-AR treat-
ment on severe Mybpc3-related cardiomyopathies. 3) Finally we
cannot rule out any adverse effects of I-1 ablation on extra cardiac
tissue which might contribute to the observed phenotype in the
DKO. Construction of a tissue-restricted I-1 KO mouse model may
help in clarifying this issue in the future.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ijcha.2015.05.010.
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