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Abstract: Fibrosis is characterized by excessive deposition of the extracellular matrix and develops
because of fibroblast differentiation during the process of inflammation. Various cytokines stimulate
resident fibroblasts, which differentiate into myofibroblasts. Myofibroblasts actively synthesize an
excessive amount of extracellular matrix, which indicates pathologic fibrosis. Although initial fibrosis
is a physiologic response, the accumulated fibrous material causes failure of normal organ function.
Cardiac fibrosis interferes with proper diastole, whereas pulmonary fibrosis results in chronic hypoxia;
liver cirrhosis induces portal hypertension, and overgrowth of fibroblasts in the conjunctiva is a
major cause of glaucoma surgical failure. Recently, several reports have clearly demonstrated the
functional relevance of certain types of histone deacetylases (HDACs) in various kinds of fibrosis and
the successful alleviation of the condition in animal models using HDAC inhibitors. In this review,
we discuss the therapeutic potential of HDAC inhibitors in fibrosis-associated human diseases using
results obtained from animal models.
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1. Introduction

1.1. Fibrosis

Fibrosis is a type of reactive process characterized by excessive accumulation of fibrous connective
material in tissues or organs [1]. When tissues or organs are injured, a fibroma is formed during the
healing process [2], through a series of processes called scarring. Though fibrosis can sometimes be
resolved spontaneously [3], the most common types of fibrosis are tightly linked with pathologic
states [2].

Fibrosis is initiated by stimulated fibroblasts, and circulating fibrocytes also contribute
minimally [4]. Transforming growth factor (TGF)-β is the most well established pro-fibrotic
signal [5], and is mainly secreted by macrophages responding to inflammation in injured tissues [6].
Other notable factors include tumor necrosis factor (TNF)-α [7], platelet-derived growth factor
(PDGF) [8], basic fibroblast growth factor (bFGF) [9], and connective tissue growth factor (CTGF) [10].
These stimulants provoke fibroblast differentiation into myofibroblasts, which exacerbates extracellular
matrix deposition [11]. The molecular pathway for fibroblast activation, SMAD phosphorylation,
and subsequent SMAD nuclear translocation is well established [12]. The PI3K-AKT-mTOR signal
cascade also contributes to fibroblast activation [13].

During fibrosis, epithelial–mesenchymal transition (EMT), a type of transdifferentiation of
epithelial cells, is also an important step. Among the numerous intracellular regulators, the roles
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of SNAILs, basic helix-loop-helix (bHLH), and zinc-finger E box binding (ZEB) are well established
in transdifferentiation of epithelial cells [14]. In terms of induction, TGF-β strongly promotes EMT.
TGF-β causes transdifferentiation of epithelial cells predominantly through SMAD family signaling;
however, PI3K-AKT-mTOR and RHOA pathways are also activated in response to TGF-β stimuli [14].
The specific mechanism of EMT is quite similar to fibroblast differentiation.

1.2. HDAC and HDAC Inhibitors

Histone deacetylases remove the acetyl moiety from histone tails [15]. Posttranslational
modification of histone tails regulates transcriptional activity by modulating chromatin compaction [16].
Histone acetylation neutralizes the positive charge of lysine, which results in weakened binding of
histones with DNA, resulting in less compacted DNA. On the other hand, histone deacetylation induces
chromatin compaction. Removal of the acetyl group results in the tight association of the positively
charged lysine with the negatively charged DNA. Hence, transcriptional activity is suppressed by
histone deacetylation. Histone acetylation is mediated by histone acetyltransferases (HATs), whereas
histone deacetylation is carried out by histone deacetylases (HDACs). HATs and HDACs finely
regulate the histone acetylation status and thereby transcription.

Eighteen HDACs have been identified in mammals and are divided into four classes. HDAC1,
-2, -3, and -8 are class I HDACs. HDAC4, -5, -6, -7, -9, and -10 are class II HDACs. HDAC6 and -10
contain two copies of the catalytic site. Recently, class II HDACs have been subgrouped as class IIa
(HDAC4, -5, -7, and -9) and class IIb (HDAC6 and -10). The Sirtuin family (Sirt1-7) are classified as
class III HDAC. HDAC11 is the only member of class IV HDAC. Class I, II, and IV HDACs require
zinc ions to deacetylase their substrate and share a conserved functional deacetylation domain [17],
suggesting that a single compound could inhibit all zinc-dependent HDACs simultaneously. Unlike
zinc-dependent HDACs, sirtuins require NAD+ to execute deacetylation. Specifically, class III HDACs
can be suppressed by nicotinamides.

1.3. Functional Relevance of HDAC in Fibrogenesis

Previous reports have independently delineated the role of HDACs in the development of fibrosis.
Even though the specific mechanism of HDAC is somewhat different, cumulative evidence indicates
that HDACs accelerate fibrogenesis in a redundant manner and that HDAC inhibitors (HDACIs)
successfully regulate fibrosis. We briefly summarize the therapeutic potential of HDACIs in fibrosis in
Figure 1.

According to HDACI studies, HDACs function as pro-inflammatory molecules that trigger
secretion of pro-fibrotic cytokines [18]. HDACI interferes with expression and/or secretion of
interleukin (IL)-1β [19], IL-6 (a master regulator in inflammation) [20,21], and TNF-α [22]. Zhu et al.
observed that active HDAC3 specifically recruits NF-κB/p65 and thereby regulates TNF-α production
in response to lipopolysaccharide stimulation [22]. In the next steps, various subtypes of HDACs
are significantly associated with the inflammation process. In interferon gamma stimulated cells,
HDACs accumulate in the promoter region and provoke the expression of genes required for the
inflammatory response [23]. Specifically, HDAC1/2 and HDAC3 were identified as inflammatory
regulators in epithelial cells [17] and in fibroblast-like synoviocytes [24], respectively. Increased
expression of HDACs stimulates fibroblast differentiation into myofibroblasts [25]. During chronic
inflammation, various cytokines from inflammatory sites stimulate myofibroblast differentiation, which
indicates that anti-inflammatory properties could also regulate fibrosis in an indirect manner. However,
many previous reports show evidence supporting the direct regulation by HDACs in myofibroblast
differentiation [25,26]. To overcome the indirect effect of HDACI in vivo, fibroblasts were isolated
and cultured in vitro. HDACI significantly reduced myofibroblast differentiation triggered by TGF-β.
HDACs also incited extracellular matrix formation [27]. HDAC1 and HDAC2, as components of Sin3A,
epigenetically blocked collagen synthesis in a synchronous manner [28]. At least at particular points,



Int. J. Mol. Sci. 2019, 20, 1329 3 of 15

HDACs contribute in various ways in each step of fibrosis. Taken together, these results support the
concept that inhibition of HDACs is important for inhibiting the progression of fibrosis.
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Figure 1. Schematic demonstration of the anti-fibrotic property of HDACIs. Injured tissue or activated
immune cells secrete profibrotic factors, which induce fibroblast differentiation into myofibroblasts.
Myofibroblasts actively synthesize extracellular matrix. HDACIs negatively regulate fibrosis. Dashed
arrow: secretion; Blue arrow: stimulation; Black arrow: differentiation; Red blunted line: inhibition.
Abbreviation; HDACI, Histone deacetylase inhibitor.

1.4. HDAC Inhibitors and Their Therapeutic Potential

HDAC was first identified as a novel teratogenic factor [29]. Class I HDACs regulate cell
proliferation in a redundant manner. HDACs are closely linked with tumorigenic features such
as proliferation, distant metastasis, and aneuploidy [29], and, generally, increased expression of
HDACs is linked with poor prognosis [30,31]. Hence, pharmacologic inhibition of HDACs could
be a potential strategy in the development of cancer treatment. To date, at least four HDAC
inhibitors (HDACIs) have been approved by the United States Food and Drug Administration
(US FDA): Vorinostat (2006, Zolinza®), romidepsin (2009, Istodax®), belinostat (2014, Beleodaq®),
and panobinostat (2015, Farydak®). An HDACI was approved for hematologic malignancy [15,29].
Vorinostat and romidepsin were approved for cutaneous T cell lymphoma (CTCL) and peripheral T
cell lymphoma (PTCL). Belinostat was also approved for relapsing PTCL. Panobinostat was licensed
for multiple myeloma. The overall remission rate with these HDACIs ranges about 20–30%. However,
long-term survival benefits are limited [29]. HDACIs have been approved and highlighted as an
emerging option for anticancer regimens. Massive clinical trials have been undertaken to expand
the clinical indication of approved HDACIs or even de novo inhibitors for solid tumors. However,
the overall survival benefits are quite limited [32]. Many research groups have delineated the role of
HDACs in various human diseases as well as the beneficial effects of HDACIs in the animal models
of those diseases. Beyond showing anticancer properties, HDACIs successfully ameliorated the
progression of atherosclerosis [33], myocardial death by ischemia–reperfusion injury [34], Alzheimer’s
disease development [35], inflammation [18], and fibrosis-associated diseases.

Fibrosis itself is a physiological reaction; however, deposition of fibrous material interferes with the
normal functioning of organs or tissues [1]. Hence, proper control of fibrosis is important to maintain
physiological organ functions. In the clinic, limited options are available to control progression of
fibrosis-associated diseases. For example, glucocorticoids or tyrosine kinase inhibitors are prescribed
for pulmonary fibrosis, but the therapeutic outcomes are still limited [36]. Most patients suffer from
progressive deterioration of pulmonary function despite conventional treatment regimens. Developing
novel therapeutics to alleviate fibrosis is an urgent medical issue. In this review, we summarize
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the possible benefits of HDACIs as novel regulators of tissue fibrosis. We briefly summarize the
fibrosis-associated human diseases in Table 1.

Table 1. HDACIs tested in animal or cellular studies for human fibrosis-associated diseases.

HDAC
Inhibitor Selectivity Model Output

(Except Fibrosis) Reference

Liver cirrhosis

SAHA
HNHA

pan
pan

Bile duct
ligation

Improved hepatic
function

Survival ↑
[37]

MC1568 HDAC4/5/6 CCl4 HSC activation ↓ [38]

Valproate pan thioacetamide HSC activation ↓ [39]

Cardiac fibrosis

TSA
SK7041

pan
class I

Pressure
overload

Heart failure ↓
Cardiac hypertrophy ↓ [40]

Api-D class I Pressure
overload

Heart failure ↓
Cardiac hypertrophy ↓ [41]

TSA
Scriptaid

pan
pan

Pressure
overload

Heart failure ↓
Cardiac hypertrophy ↓ [42]

Valproate pan
Pressure
overload

MCT
RV hypertrophy [43]

TSA pan TgHopX
Cx40 ↑

Normalized
conduction

[44]

Tacedinaline class I TgHopX
pacing (dog)

Atrial fibrillation ↓
Immune cell
infiltration ↓

[45]

Lung fibrosis

TSA pan TGF-β
(NHLF cell)

Myofibroblast
differentiation ↓ [25]

SAHA pan Bleomycin Lung compliance ↑
Airway resistance ↓ [46]

SAHA
panobinostat

pan
pan

Primary cells
from IPF
patient

Correction of
epigenetic abnormality [47]

Renal fibrosis

TSA pan UUO Immune cell
infiltration ↓ [48]

TSA pan UUO Tubular cell apoptosis
↓ [49]

Valproate pan UUO Macrophage
infiltration ↓ [50]

CG200745 pan UUO Serum NGAL level ↓ [51]

TSA
Valproate

SK7041

pan
pan

class I
STZ Urine protein/Cr ↓

EMT ↓ [52]

Abbreviations: Api-D, apicidin derivative; CCl4, carbon tetrachloride; Cr, creatinine; EMT, epithelial-mesenchymal
transition; HNHA, N-hydroxy-7-(2-naphthylthio) heptanomide; HSC, hepatic stellate cells; IPF, idiopathic
pulmonary fibrosis; MCT, monocrotaline; NGAL, neutrophil gelatinase-associated lipocalin; NHLF, normal human
lung fibroblast; pan, pan-HDAC inhibitor; RV, right ventricle; SAHA, suberoylanilide hydroxamic acid; SK7041,
3-(4-substituted phenyl)-N-hydroxy-2-propenamide; STZ, streptozotocin; TGF-β, transforming growth factor beta;
TgHopX, transgenic mice expressing HopX; TSA, trichostatin A; UUO, unilateral ureteric obstruction. ↑, increase;
↓, decrease.

2. Experimental Outcomes of HDAC Inhibitors in Animal Models of Fibrosis-Associated Disease

2.1. Liver Cirrhosis

Liver cirrhosis involves chronic irreversible changes of the hepatic parenchyma to scar tissue, i.e.,
the process of fibrosis. Notable causes of liver cirrhosis include chronic alcohol consumption [53,54],
non-alcoholic fatty liver disease [55], aflatoxin [56], and hepatitis virus infection [57]. Among the
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pathophysiologies of cirrhosis, chronic inflammation of the liver is a common underlying condition.
Park et al. demonstrated an improvement of severity in liver cirrhosis and in the survival rate by
the use of HDACIs [37]. Liver fibrosis was induced by bile duct ligation (BDL) in rats followed by
administration of HDACIs. Activation of hepatic stellate cells (HSCs), the major source of hepatic
myofibroblasts, was dramatically reduced in the HDACI-treatment group. HDACI arrested the cell
cycle and even induced apoptosis in HSCs. HDACI ameliorated the hepatic dysfunction exacerbated
by BDL and markedly improved the survival rate. Notably, the final outcome of HDACI treatment is
superior to that of cyclooxygenase inhibition, indicating that HDACIs exert complex effects, including
anti-inflammatory effects [29,37].

2.2. Cardiac Fibrosis

Accumulation of interstitial fibrosis in the heart aggravates cardiac dysfunction. The main
function of the heart is supplying nutrition and oxygen to the peripheral tissues. Regular beating
is thus mandatory for appropriate circulation. To control the series of sequential contractions, the
heart has its own regulatory system controlled by an electronic drive generated in the sinoatrial (SA)
node. Before contraction, the ventricle has to relax sufficiently to secure inflow of blood. In other
words, efficient ventricular relaxation, or diastole, wherein the ventricular chamber is filled with blood,
is important for effective pumping out, or systole. Cardiac fibrosis occurs in several conditions and
results in secondary problems as follows.

Fibrosis in the atria disturbs normal conduction from the SA node [58]. Frequently, fibrotic foci
generate additional autonomic signals, which are occasionally conducted to the ventricle resulting
in arrhythmia [59,60]. Atrial arrhythmia itself results in both turbulence and stasis of blood and
finally induces thrombosis, an important cause of cerebral infarction [61]. Furthermore, conduction
of irregular beats to the ventricle is a notable cause of heart failure [62]. Fibrous material can also
accumulate in the ventricle.

Cardiac hypertrophy is the major underlying mechanism of ventricular fibrosis [42,63–66].
Although cardiac hypertrophy is a kind of adaptive process to counter increased hemodynamics,
chronic uncontrolled stimuli exacerbate microinflammation and myofibroblast differentiation. Fibrous
changes in the ventricle might contribute to contractile force. However, they yield negative
outcomes in the diastole phase, which is referred to as diastolic dysfunction [67]. Fibrosis-induced
ventricular stiffness results in the failure of appropriate ventricular relaxation and decreases the
ventricular blood volume. If diastolic dysfunction is not controlled, it can proceed to diastolic
heart failure [68]. No effective drugs are available for diastolic heart failure. All clinical trials with
beta blockers [69], angiotensin converting enzyme (ACE) inhibitors/angiotensin receptor blockers
(ARB) [70,71], or aldosterone antagonists [72] failed to show improved survival rates in diastolic heart
failure patients [73].

HDACIs can successfully control both atrial fibrosis and ventricular fibrosis. Liu et al. clearly
demonstrated that trichostatin A (TSA), a pan-HDAC inhibitor, alleviated atrial fibrosis and subsequent
atrial fibrillation (AF) [44]. In addition, TSA normalized connexin 40 remodeling. HDAC inhibition
reversed conduction abnormalities and atrial automaticity. Seki et al. developed a canine model for
atrial arrhythmia and atrial fibrosis [45]. In addition to TSA, class I HDAC specific inhibitors were
tested. Both pan-HDACIs and class I HDACIs ameliorated atrial fibrosis and AF. Overall cardiac
function was also improved in the HDACI-administered group. Inflammatory cell infiltration was
markedly reduced.

A genetic ablation study of HDAC provided direct evidence to understand the role of HDAC
in arrhythmia. Montgomery et al. deleted both HDAC1 and HDAC2 and found that the L-type and
T-type calcium subunits were dysregulated [66]. Cacna1h and Cacna2d2 were markedly increased
in HDAC1 and HDAC2 double knockout mice and the mice presented with fatal cardiac arrhythmia.
Meraviglia et al. treated primary rat cardiomyocyte cultures with HDACI and suberanilohydroxamic
acid (SAHA), and measured calcium current [74]. SAHA-treatment in cardiomyocytes ameliorated
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intracellular calcium handling and contractile performance through acetylation of the sarcoplasmic
reticulum protein calcium ATPase 2. Taken together, these data suggest class I HDACs play a pivotal
role in the development of atrial fibrosis and atrial arrhythmia.

Both right and left ventricular fibrosis was well controlled by HDACIs; however, few studies
have revealed the role of HDACs in right ventricular fibrosis. Cho et al. induced right ventricular
hypertrophy with monocrotaline or by pulmonary artery constriction [43]. Unlike captopril, an ACE
inhibitor, HDACI significantly suppressed the fibrotic changes in the right ventricle. There is limited
evidence on right ventricular hypertrophy and fibrosis, and more detailed studies are required. Left
ventricular hypertrophy and fibrosis have been repeatedly reported by various research groups [40–42,
63,64,75,76]. Pan-HDACI or selective class I HDACI alleviate the development of hypertrophy and
progression of fibrosis [40–42]. Long-term treatment with HDACI showed remarkable improvement in
heart failure transition and cardiac fibrosis in a rodent model [41,64]. HDACIs are notable therapeutics
for diastolic heart failure patients with cardiac fibrosis as the major underlying cause [77]. HDACIs
ameliorated both hypertrophy and cardiac fibrosis simultaneously. Hence, it is not clear whether the
anti-fibrotic effect of HDACI is a direct effect or an indirect outcome of improving hypertrophy. To
answer this question, Yoon et al. isolated and cultured cardiac fibroblasts from adult mice and observed
that myofibroblast differentiation by TGF-b is attenuated when HDAC2 is inhibited in vitro [76]. Taking
these data together, we conclude that HDACIs can directly regulate cardiac fibrosis.

2.3. Pulmonary Fibrosis

Pulmonary fibrosis is characterized by a chronic irreversible decline in pulmonary function.
Typical symptoms include dry cough, shortness of breath, and limitation of exercise [78]. When the
cause of pulmonary fibrosis is not determined, patients are diagnosed with idiopathic pulmonary
fibrosis (IPF) [79]. Air pollution, cigarette smoking, and viral infection are regarded as causes of
pulmonary fibrosis. Thus far, effective regimens to block the progression of pulmonary fibrosis remain
limited [80]. The common pathophysiology of pulmonary fibrosis includes chronic inflammation in
the lung parenchyma and deposition of fibrous extracellular matrix, which finally results in thickening
of the alveolar wall. In the case of a known underlying cause, the primary cause of disease should be
controlled adequately. However, there is no reported cause of IPF, and inhibition of fibrosis is the only
therapeutic strategy [80,81].

Notable studies have reported the therapeutic potential of HDACIs in IPF. Guo et al. utilized
normal human lung fibroblasts (NHLF) and induced fibrosis using TGF-β [25]. TSA abrogated
NHLF differentiation into myofibroblasts and small interfering RNA against HDAC4 blocked smooth
muscle alpha actin accumulation. In a separate result, Coward et al. demonstrated that epigenetic
abnormalities in cyclooxygenase-2 expression were restored by HDAC inhibition, which induces
resistance to pulmonary fibrogenesis [47].

2.4. Renal Fibrosis

Renal fibrosis is also determined by aberrant growth of residential fibroblasts and accumulation
of excess fibrous materials in the renal parenchyma. Renal fibrosis is often associated with
glomerulonephritis [10,82], focal segmental glomerulosclerosis [83], IgA nephropathy [84], and diabetic
nephropathy [85]. Commonly, loss of glomeruli and substitution of fibrotic foci is observed [86].
For the molecular signaling cascade, the roles of TGF-β/SMAD and signal transducer and activator
of transcription (STAT) 3 are well established [86,87]. The rodent model for renal fibrosis induced by
unilateral ureteral obstruction (UUO) is widely used [88]. Pan-HDACIs, such as TSA [48,49,89] or
CG200745 [51], have been shown to exhibit a renoprotective effect. HDACIs alleviated glomerular
destruction and aberrant expansion of interstitial fibrosis. Similar to the results obtained with the
in vivo administration of HDACIs, STAT3 signal was inhibited in vitro by TSA in NRK49F, a rat kidney
fibroblast cell-line [89]. Beside directly inhibiting fibroblast differentiation, HDACIs also regulate
epithelial–mesenchymal transition. Noh et al. injected streptozotocin (STZ) to induce diabetes in
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rats and treated them with TSA. The HDACI potently decreased fibrotic changes in STZ-treated rats.
To visualize the direct effect of TSA on fibrosis, a rat kidney epithelial cell line, NRK52E, was also
utilized. Treatment with TGF-β in the culture medium successfully induced fibrosis in NRK52E cells,
and TSA effectively prevented these changes. Through a series of studies, HDAC2 was indicated as a
master regulator in renal fibrosis [52].

2.5. Miscellaneous Diseases

Polycystic kidney disease (PKD) is an inherited disease whose main characteristics include
progressive growth of cysts [90]. In addition to the kidney, cyst formation simultaneously occurs in
different organs such as the liver, pancreas, or aortic root, which results in aneurysms [91]. A variety
of genetic mutations have been indicated to be responsible factors in PKD. Polycystin-1 (PKD1),
polycystin-2 (PKD2), and GANAB (PKD3) [92–94] are also indicated. Chronic interstitial inflammation
and consequent fibrosis is a major feature of PKD. Because PKD mainly arises from genetic problems,
no established therapeutics are available [90]. Ultimately, kidney transplantation would be required
in end-stage renal disease patients. Several studies have applied animal models for human PKD
and tested various chemicals to suppress disease progression [95–97]. Pkd1 mutation induced robust
upregulation of HDAC6, which induced cystic fibrosis transmembrane conductance regulator (CFTR)
and fibroblast cell proliferation. Tubacin, an HDAC6-specific inhibitor, attenuated cyst formation
in a rodent model. Renal function was also improved in the tubacin-treated group. Thus, an
HDAC6-targeted approach could be considered as a therapeutic strategy for PKD in the future [95].

Cystic fibrosis is a hereditary disease that generates cysts of varying sizes in most parts of
the body including the liver, lung, kidney, and intestines [98]. Life-threatening comorbidities
includes repeated-pulmonary infection and difficulty in breathing [99]. Mutation in cystic fibrosis
transmembrane conductance regulator (CFTR) is a major pathophysiology of this fatal genetic disorder.
Specific deletion of phenylalanine 508 (∆F508) results in unconventional folding and removal of
CFTR, total loss of which results in failure to maintain the osmotic gradient [98]. Several studies have
revealed that HDACIs can be considered as a therapeutic target for cystic fibrosis [100,101]. Recently,
Bodas et al. utilized a transient overexpression system in HEK293 cells with ∆F508-CFTR and tested
several HDAC inhibition approaches such as SAHA, Tubacin, and HDAC6-shRNA [100]. HDACIs
successfully restored the intracellular trafficking that was abolished by misfolding of ∆F508-CFTR.
In the presence of HDACIs, proteosomal degradation due to unconventional accumulation of
∆F508-CFTR in endoplasmic reticulum was markedly reduced. Furthermore, chronic treatment
of HDACIs restored ion current malfunction of ∆F508-CFTR [102]. Possible mechanism, how HDACIs
specifically ameliorates channel function defect of ∆F508-CFTR was further supported by another
report. Pankow et al. cultured bronchial epithelial cells and evaluated the functional complex of
∆F508-CFTR by use of SAHA treated cell. ∆F508-CFTR formed different complex from wild type
CFTR, SAHA exerted interactome remodeling of ∆F508-CFTR. Finally, SAHA-exposed human primary
bronchial epithelial cells carrying ∆F508-CFTR was able to successfully regulate osmosis [101]. Thus,
targeting HDACI could be a management strategy for cystic fibrosis patients.

During surgical procedures, skin fibroblasts are easily activated and are deeply associated with
scarring [103]. Most of the scar formation by fibrosis is not harmful but is a cosmetic problem.
However, fibrosis in the eye may restrict vision or interfere with drainage of aqueous humor and hence
might be fatal [104]. Trabeculectomy surgery is considered an option to release the increased ocular
pressure [105]. The main purpose of trabeculectomy is to generate a drainage outflow track for the
aqueous humor [105]. Scar formation around the outflow track halts drainage, indicating surgical
failure. Hence, anti-fibrotic management is important to improve surgical outcomes. Eye drops with
steroids are widely used after trabeculectomy intervention; however, fatal side effects of topical steroids
have been reported, including wound infection, hypotony, and paradoxical elevation of intraocular
pressure [106,107]. Sung et al. administered TSA in a rat trabeculectomy model and compared the
results with the clinical outcome of the steroid administered group. Topical TSA dramatically reduced
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fibrosis and vascularity, as effectively as steroids, without any apparent corneal epithelial toxicity.
HDACI could thus be an alternative modality to steroids after trabeculectomy surgery [108].

Hypertrophic scars, or keloids, are a fibrosis-associated disorder [103]. It is difficult to manipulate
because surgical procedures or similar intervention could cause reaggravation. Despite a limited
number of reports, HDACI could be a novel therapeutic option for keloid or hypertrophic scars.
Fitzgerald et al. observed upregulation of HDAC2 in keloid scars [109]. Furthermore, Russell et al.
found that epigenetic alteration in keloid fibroblasts was normalized after treatment with TSA [110].
Diao et al. injected TSA in hypertrophic scars and observed regression of a pre-established scar [111].
Taken together, these data indicate that topical administration of HDACI could be an effective method
to control the overgrowth of skin fibroblasts.

3. Limitations and Future Perspectives

Multiple HDACs are involved in various kinds of human disease. Sometimes, more than two
HDACs play an opposite role in the development of a single disease, suggesting that pan-HDACIs can
result in unwanted effects. HDAC2, a class I HDAC, induces cardiac hypertrophy, whereas class IIa
HDACs potently suppress that response [75]. To minimize adverse drug reactions, subtype specific
inhibitors should be developed. HDAC1 and HDAC2, class I HDACs, are highly expressed in most
cells, and molecular homology between HDAC1 and HDAC2 is quite high [112,113]. Furthermore,
class I, II, and IV HDACs share a conserved catalytic domain, indicating that it is difficult to develop a
subtype-specific inhibitor [15,16,29]. However, few HDACIs are available for subtype specific HDAC
inhibition. Only HDAC6, a class IIb HDAC, can be specifically blocked by a single compound [114].
Otherwise, more than two HDACs are affected simultaneously.

Besides histones, numerous “non-histone” proteins undergo acetylation dynamics. For this reason,
HDACIs simultaneously induce histone compaction by modulating histones as well as affecting
enzyme activity by non-histone protein acetylation, which indicates that HDAC inhibition might
contribute to fatal side effects. Our group already reported the toxic side effects of an HDACI in a
vulnerable subject in vascular calcification. Thus, HDACI fatally accelerates calcium deposition [115].
Hence, indirect inhibition should be considered to bypass these issues. Our group treated cultured
cardiac fibroblasts with an Hsp70 inhibitor to mimic the inactivation of HDAC2. Hsp70 inhibition
effectively attenuated myofibroblast differentiation as did HDACI [76]. Use of an indirect method to
suppress a certain type of HDAC after understanding the detailed pathophysiology could overcome
the adverse drug reaction to HDACIs without loss of efficacy.

4. Conclusions

In this review, we briefly summarize multiple types of animal studies regarding human diseases
that share chronic inflammation and tissue fibrosis as underlying mechanisms. Tissue fibrosis results in
interference with normal organ function, and no therapeutics are currently available for the condition.
Therefore, anti-fibrotic agents need to be urgently developed for increasing both quality of life and
survival rate of patients with fibrosis and related conditions. Numerous reports have repeatedly
demonstrated the therapeutic potential of HDACIs in animal models of fibrosis-associated human
disease. Hence, to create additional therapeutic options, it may be worth considering clinical trials for
these diseases using FDA-approved HDACI.
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AF Atrial fibrillation
BDL Bile duct ligation
CFTR Cystic fibrosis transmembrane conductance regulator
HAT Histone acetyltransferase
HDAC Histone deacetylase
HDACI Histone deacetylase inhibitor
HSC Hepatic stellate cells
IPF Idiopathic pulmonary fibrosis
NHLF Normal human lung fibroblast
PKD Polycystic kidney disease
PTCL Percutaneous T cell lymphoma
STAT Signal transducer and activator of transcription
STZ Streptozotocin
TGF-β Transforming growth factor β
TNF-α Tumor necrosis factor α
TSA Trichostatin A
UUO Unilateral ureteral obstruction
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