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Purpose: To compare the performance of various commercially available stethoscopes using 

standard acoustic engineering criteria, under recording studio conditions.

Materials and methods: Eighteen stethoscopes (11 acoustic, 7 electronic) were analyzed 

using standard acoustic analysis techniques under professional recording studio conditions. 

An organic phantom that accurately simulated chest cavity acoustics was developed. Test 

sounds were played via a microphone embedded within it and auscultated at its surface by the 

stethoscopes. Recordings were made through each stethoscope’s binaurals and/or downloaded 

(electronic models). Recordings were analyzed using standard studio techniques and software, 

including assessing ambient noise (AMB) rejection. Frequency ranges were divided into those 

corresponding to various standard biological sounds (cardiac, respiratory, and gastrointestinal).

Results: Loudness and AMB rejection: Overall, electronic stethoscopes, when set to a maximum 

volume, exhibited greater values of perceived loudness compared to acoustic stethoscopes. Sig-

nificant variation was seen in AMB rejection capability. Frequency detection: Marked variation 

was also seen, with some stethoscopes performing better for different ranges (eg, cardiac) vs 

others (eg, gastrointestinal).

Conclusion: The acoustic properties of stethoscopes varied considerably in loudness, AMB 

rejection, and frequency response. Stethoscope choice should take into account clinical condi-

tions to be auscultated and the noise level of the environment.
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Introduction
The essential concept of a medical stethoscope has remained unchanged since its 

invention by René Laennec in 1816. The form of the stethoscope using flexible bin-

aural tubes greatly improved the practicality of the instrument in the 1850s. While 

advances in materials, electronics, and construction methods have refined the design, 

no groundbreaking changes have been made since then. In parallel, as new imaging 

technologies appear, reliance on the human ear as a diagnostic device is decreasing. 

However, when imaging is not possible or is unavailable, auscultation can provide a 

wealth of information in a noninvasive and immediate manner.

Choosing the optimal stethoscope is vital for accurate auscultation and patient care. 

For a stethoscope to function well, it must auscultate clinically relevant sounds and reject 

unwanted sounds (eg, environmental noise, nonrelevant biological sounds [BIO]). Addi-

tionally, the frequency range of clinically relevant BIO varies, making one stethoscope 

ideal for a specific specialty and less ideal for another.1 The stethoscope guides available 
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focus on choosing a stethoscope on the basis of chest piece 

material, tubing durability, and ear piece comfort.2 Often, the 

decision to buy a particular stethoscope is influenced by its 

appearance rather than its acoustic properties and capability.3 

Price may be a factor, with stethoscopes ranging from under 

US $100–1,000. Digital stethoscopes may be better suited to 

situations where amplification of the sound is important, or 

where storage and transmission of auscultated sounds (such 

as in telemedicine) are required. This study compared the 

performance of the various leading commercially available 

stethoscopes using standard acoustic engineering criteria, 

under recording studio conditions. To maintain uniformity 

and control of testing conditions, performance was assessed 

using a biological phantom with acoustic properties similar 

to those of the human thorax.

Materials and methods
acoustic phantom creation
To accurately analyze and compare various stethoscopes in 

vitro, care was taken to simulate and normalize the entire 

auscultation system. As no “gold standard” exists to com-

pare stethoscopes against each other, an organic phantom 

that accurately simulated chest cavity acoustics was created 

( Figure 1). The organic phantom consisted of a lightweight 

plastic container (Ziploc Tupperware; SC Johnson, Racine, 

WI, USA) comprising an open cell foam (Carry Cases Plus, 

 Paterson, NJ, USA), an acoustically transparent plastic grid 

(3D printed at the lab), castor oil (Mineral oil; CVS, Woon-

socket, RI, USA), and a 0.5 cm layer of ballistics gel (Perma-

Gel Personal Ballistic Gel Test Kit; Perma-Gel, Inc.; Albany, 

OR, USA) as the “skin.” Food-grade castor oil was chosen 

because its sound wave propagation speed (1,490 m/s) is 

similar to that of the body.4 A 5 W transducer (DAEX25QLP; 

Dayton Audio, Springboro, OH, USA) driven by a 100 W 

Class A amplifier (RA300; Alesis, Cumberland, RI, USA) 

was embedded within the organic phantom to reproduce 

test sounds of varying frequency ranges corresponding to 

specific bodily sounds.

The stethoscopes evaluated in this study were auscultated 

at the phantom’s gel surface (Figure 2). The stethoscope head 

was placed on the surface of the phantom with a standard-

ized weight of 227 gm corresponding to the typical pressure 

applied by a hand when auscultating a chest.

The pressure of the chest piece on the phantom must be 

normalized within a study cohort to ensure electrical imped-

ance of the transducer system is equal for all test subjects. 

A weight of 227 g was calibrated for each stethoscope by 

placing a digital scale beneath the chest piece, and then filling 

the container with an appropriate number of copper balls to 

equal the total target weight for the study.

A total of 18 stethoscopes were evaluated (Table 1). Of 

those, 11 were acoustic and 7 were electronic stethoscopes. 

Acoustic stethoscope modes include diaphragm (D) mode 

or bell (B) mode, while electronic stethoscope modes can 

Figure 1 Phantom container system.
Notes: a simulation was constructed using materials to mimic the biological structure and sounds reproduced by an organic chest cavity. layers of foam were used to 
support and stabilize the transducer. The castor oil used shared similar sound wave propagation properties just like the human body.

Plastic container Ballistics gel “skin” 0.5 cm

Foam layer 1 cm

Foam layer 4 cm

Foam layer 2 cm

Support grid

Transducer

www.dovepress.com
www.dovepress.com
www.dovepress.com


Medical Devices: Evidence and Research 2019:12 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

43

acoustic analysis of popular stethoscopes

vary among D, B, wide (W), high (H), and low (L) modes. 

Each stethoscope was recorded in all of its available modes.

With a system created to mimic a true chordate body, the 

final consideration was to ensure that wave propagation and 

transmission is possible across all relevant frequency ranges. 

Frequency ranges are provided in Table 2. Figure 3 shows the 

recorded frequency responses for each stethoscope. It is clear 

that there is a significant transfer of all relevant frequencies 

through the system. Since this paper seeks only to assess the 

relative differences in response between various stethoscopes, 

it is not necessary that there be a flat frequency response 

through the phantom. Rather, it is only necessary that the 

shape of the phantom’s frequency response curve remains 

consistent between individual stethoscope tests.

Figure 2 Experimental setup.
Note: To minimize frequency interference, a shock-absorbing structure suspended the phantom container using wide elastic bands.

Weight container

Elastic suspension

Support structure

Stethoscope Phantom
container

Stabilizing armature

Table 1 stethoscope models evaluated

Acoustic stethoscopes D B Electronic stethoscopes D B W H L

adscope Platinum X  aDc adscope acc X X X   
Disposable Blue X  cardionic E scope      
Disposable Yellow X  Jabes analyzer X X X   
heine gamma 3.2 X X littman 3200 X X X   
littman cardiology iii X X Thinklabs da32a+ X X    
littman cardiology iV X X Thinklabs One   X   
Mabis legacy sprague lc X X Welch allyn Meditron  acc    X X
Mavis spectrum X        
Omron sprague Rappaport X X       
Ultrascope X        
Welch allyn harvey Elite X X       

Notes: The acoustic and electronic stethoscopes are listed, with each mode tested indicated by an “X.” D stands for diaphragm mode; B stands for bell mode, while 
electronic stethoscope modes can vary among diaphragm, bell, wide (W), high (h) and low (l) modes.

Test sounds
Assessment of the harmonics within the phantom system 

included a 20 Hz–20 kHz sine wave sweep reproduced 

by the embedded transducer and recorded at the surface 

of the phantom. All stethoscopes evaluated in this study 

were tested with calibrated audio levels to ensure that 

each stethoscope received the same acoustic energy at the 

auscultation point.

Pink noise (acoustical energy distributed uniformly by 

an octave throughout the audio spectrum) is useful for deter-

mining the broadband performance of an acoustic system for 

human use. To assess a stethoscope’s frequency response of 

BIO, pink noise was reproduced through the transducer and 

auscultated at the phantom’s surface under quiet conditions. To 
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assess a stethoscope’s ability to reject ambient noise (AMB), a 

separate recording was then created by reproducing pink noise 

through loudspeakers in the room at 80 dB sound pressure 

level. While auscultating at the phantom’s surface, no sound 

was reproduced through the phantom’s embedded transducer.

Microphones (TC-30; Earthworks, Glimanton, NH, 

USA) were attached to both binaurals and simultaneously 

recorded. All recordings were made using studio quality 

transformerless mic preamps (C84; Seventh Circle Audio, 

Oakland, CA, USA) and analog-to-digital conversion method 

Table 2 clinically relevant frequency ranges

Frequency ranges (Hz) Relevant bodily sounds and pathologies

Full range general loudness capability
synthesized heart sound a relatable metric for general clinical use
20–200 standard cardiac sounds (s1 + s2), gallops (s3 + s4), innocent heart murmurs, mitral stenosis
200–700 Ventricular septal defect, atrial septal defect, aortic stenosis, pulmonary stenosis, tetralogy of Fallot, mitral 

regurgitation, patent ductus arteriosus, pulmonary crackles, rhoncus, interstitial pulmonary fibrosis, arterial bruits, 
egophony

700–2,500 general respiratory sounds, general wheezes
100–1,000 general gastrointestinal
2,500–8,000 (Partial) blood clots, (partial) swallow sounds, (partial) tracheal sounds

Note: Frequency ranges listed with corresponding relevant bodily sounds and clinical pathologies.

Figure 3 Frequency responses for each stethoscope.
Note: The phantom is capable of transmitting the full range of audible frequencies.
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(Aurora 8; Lynx Studio Technology, Inc., Costa Mesa, CA, 

USA). Audio recording and playback were accomplished 

using Sonar X2 professional recording software (Cakewalk, 

Inc., Boston, MA, USA).

All recordings obtained were uncompressed with a 48 

kHz sample rate and 24-bit word length. This format was 

supposed to be of sufficient resolution for the frequency 

ranges reproduced by the stethoscopes in the study. Electronic 

stethoscopes were recorded using binaural microphones to 

simulate human use, as well as their own electrical output 
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to represent a machine interface, if available. All electronic 

stethoscopes were recorded at the maximum volume.

Data analysis
loudness and pink noise measurements
Pink noise results were analyzed for ITU BS 1170-3 per-

ceived loudness using Adobe Audition CS6 (Adobe Sys-

tems, Inc., San Jose, CA, USA). These measurements are 

represented in Loudness Units relative to digital Full Scale 

(LUFS). This unit takes into account the nonlinear frequency 

response of human hearing. It should be noted that a 10 dB or 

LUFS decrease or increase in volume correlates with halving 

or doubling of perceived loudness, respectively.

aMB rejection
The degree of AMB rejection was derived by subtracting the 

LUFS value of AMB from the LUFS value of BIO (DLUFS) 

(Figure 4). The loudness of any sample auscultated from the 

phantom is arbitrary and does not have a numerical reference. 

The AMB rejection amount of a stethoscope should only be 

compared to the rejection amount of other stethoscopes in 

this study. No AMB rejection (0 DLUFS) would indicate that 

Figure 4 aMB rejection.
Note: The spectrogram depicts pink noise signals auscultated (left column) using a Thinklabs stethoscope and the aMB detected (right column) by microphones attached 
to both binaurals.
Abbreviations: aMB, ambient noise; l, left; R, right.
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the stethoscope system detects 80 dB sound pressure level of 

broadband noise in the atmosphere at the same level as the 

test signal presented in the phantom.

clinically relevant frequency ranges
The full spectrum pink noise samples were divided into 

frequency ranges derived from the literature5–24 to assess the 

performance of each stethoscope for specific clinical condi-

tions (Table 2). To accomplish this, BIO and AMB recordings 

were duplicated and then band-pass filtered into each range. 

LUFS measurements were taken of each sample.

While the spectrographic analysis is useful for an exten-

sive analysis into the specifics of a stethoscope’s frequency 

response, researchers focused on frequency band loudness 

measurements as a more useful metric for correlation with 

clinical utility.

Results
Overall perceived loudness and aMB 
rejection
Overall, electronic stethoscopes, when set to a maximum 

volume, exhibited greater values of perceived loudness com-

pared to acoustic stethoscopes. The three loudest electronic 

stethoscopes were the Thinklabs ds32a+ (–20.66 LUFS in B 

mode), the Jabes Analyzer (–23.91 LUFS in B mode), and the 

Littmann 3200 (−22.30 LUFS in B mode). Of the electronic 

stethoscopes evaluated, the Littmann 3200 exhibited the most 

AMB rejection (21.40 DLUFS).

The loudest acoustic stethoscopes were the Welch Allyn 

Harvey Elite (–39.02 LUFS in B mode), the Littmann Cardi-

ology III (–36.52 LUFS in D mode), and the Heine Gamma 

3.2 (−38.55 LUFS in B mode). Of the acoustic stethoscopes 

analyzed in this study, the Heine Gamma had the best AMB 

rejection (8.00 DLUFS).

Frequency range-specific results
gastrointestinal sounds (97–1,034 hz)
Among the acoustic stethoscopes, Littman Cardiology IV 

(45.982 LUFS in B mode), Mabis Spectrum (44.51 LUFS 

in D mode), and Littman Cardiology III (41.95 LUFS in D 

mode) demonstrated the highest perceived loudness to sounds 

within the frequency range correlating to gastrointestinal 

sounds (Figure 5). Overall, the electronic stethoscopes 

examined were more sensitive to sounds in the 97–1,034 

Hz frequency range than most of the acoustic stethoscopes. 

Many of the electronic stethoscope models similarly per-

ceived loudness values in this frequency range (39.486–32.6). 

The electronic stethoscopes which demonstrated the most Fi
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perceived loudness included the Jabes Analyzer (39.486 in 

D mode), ADC Adscope Acc (39.466 in D mode), and the 

ADC Adscope Acc (39.408 in W mode).

The Littman 3200, in all three of its modes, exhibited the 

most noise rejection (Figure 6) of all stethoscopes. Overall, 

the noise rejection capability of the acoustic stethoscopes 

was superior to the electronic stethoscope noise rejection. 

Among the acoustic stethoscopes, the Welch Allyn Harvey 

Elite (16.816 LUFS in B mode) has the best noise rejection 

followed closely by the Littmann Cardiology III (16.44 LUFS 

in B mode) and the Heine Gamma 3.2 (16.202 LUFS in D 

mode). Stethoscopes with relatively poor AMB rejection at 

frequency 97–1,034 Hz include the Omron Sprague Rappa-

port (1.776 LUFS in B mode), ADC Adscope Acc (2.824 in 

B mode), and Welch Allyn Meditron Acc (–3.884 in H mode 

and –11.968 in L mode).

cardiac sounds (22–281 hz: s1–s4 murmurs, mitral 
stenosis [Ms])
Within the 22–281 Hz frequency range, the acoustic stetho-

scopes Mabis Spectrum (in 44.948 LUFS in D mode), Litt-

man Cardiology IV (42.168 LUFS in B mode, 42.048 LUFS 

in D mode), and Littman Cardiology III (41.55 LUFS in D 

mode) had the highest loudness values. Of the electronic 

stethoscopes, the Littman 3200 (39.416 in the B mode), 

Thinklabs One (38.29 in W mode), and Welch Allyn Meditron 

Acc (37.456 in H mode) exhibited the highest perceived 

loudness (Figure 7).

Of all stethoscopes evaluated, the Littman 3200 rejected 

the most noise within the frequency range associated with 

S1–S4, innocent murmurs, and MS cardiac sounds. However, 

many of the electronic stethoscopes exhibited poor noise 

rejection. Of the electronic stethoscopes, the Welch Allyn 

Meditron Acc (–19.004 in L mode) rejected the least noise. 

The Omron Sprague Rappaport (–18.198 in B mode) and the 

Mabis Legacy Sprague LC (–12.704 in B mode) are acoustic 

stethoscopes which exhibited poor noise rejection (Figure 8).

cardiac sounds (205–775 hz: ventricular septal 
defect [VsD], atrial septal defect [asD], aortic 
stenosis [as], and pulmonic stenosis [Ps])
Among acoustic and electronic stethoscopes, the Littman 

Cardiology IV (44.324 LUFS in B mode) exhibited the 

most perceived loudness of sounds within frequencies 

205–775 Hz. In this frequency range, many of the electronic 

stethoscopes show a similar performance, with the Jabes 

Analyzer (39.404 in D mode) showing the most sensitivity 

to cardiac pathology sounds such as VSD, ASD, AS, and PS. Fi
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Although the Littman 3200 (38.87) in D mode is sensitive, 

the same stethoscope (22.376) in B mode is not as sensitive 

in this frequency range (Figure 9).

Of acoustic stethoscopes evaluated, the Heine Gamma 3.2 

(16.504 in D mode) rejected the most noise, while the Welch 

Allyn Harvey Elite (4.338 in D mode) rejected the least noise 

in the frequency range associated with VSD, ASD, AS, and 

PS. The Littman 3200 is the electronic stethoscope which 

exhibited the most noise rejection (20.328 in W mode) and 

Welch Allyn Meditron Acc (–3.978 in H mode, –8.952 in L 

mode) exhibited the least noise rejection at this frequency 

range (Figure 10).

Respiratory sounds (689–2,584 hz)
Among the acoustic stethoscopes, respiratory sounds with 

a frequency range 689–2,584 Hz could be heard best by 

the Mabis Spectrum (22.938 in D mode) and the Litt-

man Cardiology IV (22.504 in B mode). The Welch Allyn 

Meditron Acc (29.245 in L mode) and the ADC Adscope 

Acc (29.006 in W mode, 29.096 in D mode) are the elec-

tronic stethoscopes which exhibited the most perceived 

loudness (Figure 11).

Most electronic and acoustic stethoscopes exhibit poor 

AMB rejection when auscultating respiratory sounds. Of all 

stethoscopes examined, the Littman 3200 exhibited the most 

noise rejection (14.162 in W mode and 9.452 in D mode). 

The acoustic stethoscope which rejected the most noise was 

the Mabis Spectrum (6.382 in D mode; Figure 12).

Tracheal sounds and swallow sounds  
(2500–8,000 hz)
All stethoscopes demonstrate a large amount of attenuation 

in this range. The software used to measure LUFS outputs 

a null result for all models due to this attenuation. It should 

also be noted that only very loud sounds (gastrointestinal, 

swallow, and tracheal sounds) may be audible in this range 

on some stethoscopes.

Discussion
This study has demonstrated a considerable variation 

among commercially available stethoscopes, both in terms 

of capturing clinically relevant sounds and in the ability to 

reject AMB. The Jabes Analyzer electronic stethoscope, for 

example, had excellent frequency response but poorer AMB 

rejection. While the Littman 3200 electronic stethoscope 

exhibited exceptional AMB rejection, it was not among the 

most sensitive stethoscopes.
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Among the acoustic stethoscopes examined, the Mabis 

Spectrum and the Littman Cardiology IV were the most sensi-

tive stethoscopes when auscultating frequency ranges asso-

ciated with gastrointestinal, cardiovascular, and respiratory 

sounds. The perceived loudness of the electronic stethoscopes 

examined varied. Gastrointestinal sounds and cardiovascular 

murmurs were most audible when auscultating with the Jabes 

Analyzer and the ADC Adscope. The Welch Allyn Meditron 

also exhibited exceptional sensitivity to respiratory sounds.

Consistently, for all frequency ranges examined, the 

Littman 3200 is the electronic stethoscope which exhibited 

the most noise rejection. On the contrary, the Welch Allyn 

Meditron poorly rejected AMB, which may be due to its 

requirement of firm auscultating pressure to achieve normal 

performance. Of the acoustic stethoscopes, Omron Sprague 

poorly rejected AMB among all frequency ranges. Noise 

rejection analysis showed that there was no single top per-

forming acoustic stethoscope. The Heine Gamma 3.2, Mabis 

Spectrum, Littman Cardiology III, and the Welch Allyn 

Harvey Elite were all capable of considerable AMB rejection.

Conclusion
An in vitro analysis of a variety of stethoscopes, both acous-

tic and electronic, has demonstrated considerable variation 

in stethoscope performance. A clinician should interpret 

these results for the frequency range relevant to their field 

of practice or for their envisioned operating environment 

(eg, noisy emergency room vs quiet office setting) to help 

facilitate stethoscope selection. The Littmann Cardiology 

IV and low-cost Mabis Spectrum were consistently the top 

two performers across all assessed parameters, thus possibly 

making both a reasonable choice for most acoustic stetho-

scope applications. The Littmann 3200 was an outstanding 

performer in the electronic category especially for low 

frequencies. However, it should be noted that all electronic 

stethoscopes had very similar performance below 1,000 Hz.

The data generated in this study demonstrate the need for 

new stethoscope technology that is better suited for capturing 

higher frequency (2,500–8,000 Hz) information. Advances in 

material science, mechanical design, digital signal process-

ing, and data analysis should facilitate the development of 

groundbreaking stethoscope technology that breathes new 

life into the art of auscultation.
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