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Cancer is a class of diseases characterized by out-of-control cells’ growthwhich affect cells andmake themdamaged.Many treatment
options for cancer exist. Chemotherapy as an important treatment option is the use of drugs to treat cancer. The anticancer drug
travels to the tumor and then diffuses in it through capillaries. The diffusion of drugs in the solid tumor is limited by penetration
depth which is different in case of different drugs and cancers. The computation of this depth is important as it helps physicians to
investigate about treatment of infected tissue. Althoughmany efforts have been made on studying andmeasuring drug penetration
depth, less works have been done on computing this length from a mathematical point of view. In this paper, first we propose
phase lagging model for diffusion of drug in the tumor. Then, using this model on one side and considering the classic diffusion
on the other side, we compute the drug penetration depth in the solid tumor. This computed value of drug penetration depth is
corroborated by comparison with the values measured by experiments.

1. Introduction

Chemotherapy is an important option for cancer treatment
which uses chemical substances (anticancer drug) to fight
cancer. Considering application of drug through blood
stream, drug travels to the cancer tumor and diffuses in it
through capillaries as is shown in Figure 1.

Drug concentration in the tumor is dependent on drug
production (supply, release, and activation), transport (dif-
fusion and advection), and elimination (decay, deactivation,
and cellular intake) [1]. These processes involve various bio-
chemical, mechanical, and biophysical factors which make
the process complex. Mathematical modeling provides a
mean to better understand this complexity. Also mathemat-
ical modeling allows scientists to link the laboratory exper-
iments with clinical applications by providing the means
to extrapolate the in vivo results from mouse models to
humans. There are valuable attempts in modeling of steps
which affect drug concentrations, which have been reported

in the literature.We can call themathematical/computational
models addressing drug vascular supply [2–6], drug release
and activation [7–13], drug diffusive transport [14–24], drug
advective transport [5, 25–27], and drug decay, deactivation,
and cellular uptake [28–31].

In chemotherapy, it is also important that drug reaches
the entire tumor, otherwise its effectiveness will be com-
promised [32]. So, in chemotherapy, a minimum effective
concentration is required in all parts of the tumor for the
effective treatment. One of the factors that come to account
in discussion about drug concentration is drug penetration
depth in the tumor. Penetration depth can be defined as the
depth from a capillary at which the minimum concentration
(required for cancer treatment) is achieved. Thus, studying
andmeasuring the drug penetration depth in solid tumor are
important issues in chemotherapy.

Beside numerous experimental studies which have been
done on measuring the drug penetration depth in solid
tumors [33–37], limited works on mathematical modeling
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Figure 1: Drug delivery and diffusion in the cancer tumor.

have been reported in the literature. Using vascular images,
Baish et al. designed a mathematical model that analyses
drug diffusion in irregularly shaped domains based on
maximumdistance in the tissue from the nearest blood vessel
(penetration depth) and a measure of the shape of the spaces
between vessels. Their model predicted how new therapeutic
agents alter the functional efficiency of the vasculature within
the tumor tissue [38].Welter and Rieger developed a vascular
tumor growth model, including vessel cooption, regression,
and angiogenesis, that extended by the interstitium, sources,
and sinks for interstitial fluid flow (IFF). Using this model,
they mathematically described the drug penetration depth
(the length scale on which the solution decays around
vessels). They found out that penetration depth for intersti-
tial fluid pressure (IFP) across the tumor boundary has a
variation in the radial profile. The experiments verified their
modeling results [39].

The Thiele modulus, a dimensionless group, can be used
to determine if a vesicle system is reaction or diffusion limited
without solving any ordinary differential equation (ODE) or
partial differential equation (PDE). Considering the charac-
teristic, time for internalization and catabolism is faster than
the time required for antibody to reach the most distant
tumor tissue; Thurber et al. used Thiele modulus in order
to develop a mathematical equation for drug concentration
in tumors [40]. From this model, they computed the drug
penetration depth in the tumor. The Thiele modulus was
verified by experimental results where two datasets, which
were not compounded by clearance effects, were chosen.
Theirmodel illustrates that, with the large resistance from the
tumor capillary, antibodiesmay bemore suitable for targeting
micrometastases than vascularized tumors. Ackerman et al.
rearranged theThiele modulus found byThurber et al. which
yields an expression predicting the distance that a prevascular
spheroidal metastasis will be penetrated by an antibody.
The governed equation predicts that penetration distance
will increase proportionally to antibody dose and inversely
proportional to antigen expression level. Accordingly, a 10-
fold decrease in antigen density is expected to yield a 10-fold
increase in penetration distance. Similarly, the model also
predicts that a 10-fold decrease in antigen density will negate
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Figure 2: Anticancer drug concentration in the tumor versus time
in case of different diffusivities.

the effect of a 10-fold decrease in antibody dose. They exper-
imentally tested these predictions. Overall, the experimental
results quantitatively validated themodel ofThurber et al. and
showed the importance of antigen-specific variables in tumor
penetration [41].

In this research by using two types of diffusion equations,
firstly we model the drug concentration in the solid tumor,
and then we compute the drug penetration depth from
equality of these models, as both of them explain the same
phenomenon. The computed value will be compared with
the real experiments’ results. The interesting point about
this model is that it considers the time delay for the rise of
diffusion in the tumor.

2. Method

2.1. Drug Concentration in the Tumor. In order to study the
drug penetration in the tumor, first we need to investigate
about drug concentration in the tumor versus time. As it was
mentioned in the last section, many researchers have done
extensive works in this area.

Figure 2 shows the general behavior of variations of
drug concentration in the solid tumor versus time in case
of different diffusivities [42–44]. It is noteworthy that these
concentration’s values were determined with respect to the
distance from vasculature. Also the dimensions of concen-
tration and time can be varied in case of different works.

In Figure 2, lower diffusivity of tumor causes lower value
for drug concentration. Also there is a general trend for
variation of drug concentration in the tumor. As it can be
seen in this figure, the drug concentration in the tumor
increases with time to reach amaximumvalue. After reaching
this maximum, concentration of drug decreases gradually till
reaching a stable value. In fact, at first, the diffusion of drug
in the tumor is high enough relative to the diffusion out of
it to steadily increase the concentration over time. After the
maximum concentration is reached, however, the diffusion-
out is greater than the diffusion-in, and the concentration
begins to decrease. It should be noted that based on the
conditions (tumor diffusivity and structure, blood velocity,
cellular uptake [29], etc.) the values of concentration, slope
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of curve, and the time periods in each step vary in case
of different experiments. The general behavior seen in this
plot can be seen in all investigations about anticancer drugs
concentration in case of different types of cancers [42–44].

An interesting point in this plot is the time delay
between the application of drug to the tumor and rise of
its concentration to the maximum value. In fact always
there is a lagging time that has not been considered in
any studies yet. For instance in application of Verteporfin
(anticancer drug) to patients and its activation by irradiation,
Verteporfin produces highly reactive singlet oxygen which
reacts within 40 nanoseconds and results in the destruction
of membrane bound organelles within the cell. Calcium ions
are released from organelles such as the mitochondria and
the endoplasmic reticulumwhich induces cell apoptosis [45].
So there will be a time delay between the drug application
and the rise of its concentration in tumor. This behavior
should be seen in case of application of all drugs as diffusion
phenomenon always has a time delay. Please note that, based
on the conditions, the lagging time can be so small but not
negligible.

Based on diffusion phenomenon and considering this
time delay, in the next section we will develop our model
which considers both aspects.

2.2. Phase Lagging Model of Drug Diffusion. Here, we model
and analyze the drug diffusion in the solid tumor from a
mathematical point of view using phase lagging equations.
The steps to generate the model are described here. Please
note that in this modeling we consider and analyze the drug
concentration in the tumor only due to drug diffusion.

In our modeling, we introduce a time lag term that takes
care of the lag between the arrival of drug to the cancer
tumor and rise of its concentration in the tumor. Considering
the diffusion phenomenon, the constitutive relation to be
coupled with the conservation equation is

Ψ (𝑥, 𝑡 + 𝜏) = −𝐷
𝜕𝑊

𝜕𝑥
(𝑥, 𝑡) . (1)

In this equation 𝜕𝑊/𝜕𝑥 is the direct result of application of
the drug to the system. Also 𝜏 is the time lag that ensures that
the paradox of instantaneous propagation does not become a
factor.

By expanding the left side of (1) with Taylor’s series,

Ψ (𝑥, 𝑡) + 𝜏
𝜕Ψ

𝜕𝑡
(𝑥, 𝑡) ≅ −𝐷

𝜕𝑊

𝜕𝑥
(𝑥, 𝑡) . (2)

We derive (2) with respect to 𝑥:

Ψ
𝑥
+ 𝜏
𝜕Ψ
𝑥

𝜕𝑥
≅ −𝐷𝑊

𝑥𝑥
. (3)

Ψ
𝑥
can be written from the following conservation equation:

Ψ
𝑥
= −𝑊

𝑡
+ 𝑓 (𝑥, 𝑡) . (4)

In (4), 𝑓(𝑥, 𝑡) is the source/sink function that can be related
to drug decay, deactivation, cellular uptake, and so forth.

By substituting (4) into (3),

𝜏
𝜕
2

𝑊

𝜕𝑡2
+
𝜕𝑊

𝜕𝑡
= 𝐷

𝜕
2

𝑊

𝜕𝑥2
+ 𝑓 (𝑥, 𝑡) + 𝜏𝑓

𝑡
(𝑥, 𝑡) . (5)

Considering

𝑆 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) + 𝜏𝑓
𝑡
(𝑥, 𝑡) (6)

as the general source/sink term, then

𝜏
𝜕
2

𝑊

𝜕𝑡2
+
𝜕𝑊

𝜕𝑡
= 𝐷

𝜕
2

𝑊

𝜕𝑥2
+ 𝑆 (𝑥, 𝑡) . (7)

In (7), 𝜏 = 𝐷/𝑐2. In this research, 𝑐 is the speed of the drug
propagation through the solid tumor.The diffusivity term,𝐷,
is related to the resistance of the tumor to the drug; this is the
property of the tumor tissue which will dampen the drug as
it travels over the tissue.

The source/sink term, 𝑆(𝑥, 𝑡), is not considered here as the
only effect is related to drug diffusion in the tumor.

The initial conditions are defined as𝑊
0
= 0mol/m3 and

𝜕𝑊/𝜕𝑡 = 0 at 𝑡 = 0.
In order to solve (7), we introduce three new variables:

−𝜉 =
𝑥

𝐷1/2
,

𝜗 =
𝑡

𝜏1/2
,

Λ = 𝑊 −𝑊
0
.

(8)

The term 𝜉 is the newdistance-like variable, 𝜗 is the new time-
like variable, and Λ is the excess value of target parameter,
which is drug concentration in this research. By changing the
variables, (7) becomes

𝜕
2

Λ

𝜕𝜗2
+ 𝜏
−1/2

𝜕Λ

𝜕𝜗
=
𝜕
2

Λ

𝜕𝜉2
. (9)

The new initial conditions are defined as Λ = 0 and 𝜕Λ/𝜕𝜗 =
0 at 𝜗 = 0.

Applying Laplace Transform to (9),

𝑑
2

Λ̃

𝑑𝜉2
− 𝑠 (𝑠 + 𝜏

−1/2

) Λ̃ = 0. (10)

The general solution of (10) is

Λ̃ (𝜉, 𝑠) = 𝐵
1
(𝑠) exp {−𝜉 [𝑠 (𝑠 + 𝜏−1/2)]

1/2

}

+ 𝐵
2
(𝑠) exp {𝜉 [𝑠 (𝑠 + 𝜏−1/2)]

1/2

} .

(11)

In fact, the solution has to be bounded when 𝜉 → ∞, as we
consider the solid tumor as the domain. This requires that
𝐵
2
(𝑠) → 0. Denoting 𝐵

1
(𝑠) ≡ 𝐵(𝑠),

Λ̃ (𝜉, 𝑠) = 𝐵 (𝑠) exp {−𝜉 [𝑠 (𝑠 + 𝜏−1/2)]
1/2

} . (12)

From (12), 𝐵(𝑠) is

𝐵 (𝑠) = [Λ̃ (𝜉, 𝑠)] exp {𝜉 [𝑠 (𝑠 + 𝜏−1/2)]
1/2

} . (13)
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In order to eliminate 𝐵(𝑠), we differentiate (12) with respect
to 𝜉:

𝑑Λ̃

𝑑𝜉
= − [𝑠 (𝑠 + 𝜏

−1/2

)]
1/2

𝐵 (𝑠)

⋅ exp {−𝜉 [𝑠 (𝑠 + 𝜏−1/2)]
1/2

} = − [𝑠 (𝑠 + 𝜏
−1/2

)]

⋅ Λ̃ (𝜉, 𝑠) .

(14)

Thus,

−Λ̃ (𝜉, 𝑠) = [𝑠 (𝑠 + 𝜏
−1/2

)]
−1/2 𝑑Λ̃

𝑑𝜉
. (15)

By taking the inverse Laplace Transform of (15),

Λ = −∫

𝜗

0

𝜕Λ

𝜕𝜉
T
0
(
𝜗 − 𝜉

2√𝜏
) exp(−𝜗 − 𝜉

2√𝜏
)𝑑𝜉. (16)

And then restoration of the original terms is as follows:

𝑊(𝑥, 𝑡) = 𝑊
0

− (
𝐷

𝜏
)

1/2

∫

𝑡

0

𝜕𝑊

𝜕𝑥
T
0
(
𝑡 − 𝑡
∗

2𝜏
) exp(−𝑡 − 𝑡

∗

2𝜏
) 𝑑𝑡
∗

.

(17)

Equation (17) provides the relationship for computation of
drug concentration.

The term 𝜕𝑊/𝜕𝑥 is related to the flux as 𝜕𝑊/𝜕𝑥 =

−(1/𝐷)0, where 0 is the flux. Applying this relation to (17),

𝑊(𝑥, 𝑡)

= 𝑊
0

+ (
1

𝐷𝜏
)

1/2

∫

𝑡

0

0T
0
(
𝑡 − 𝑡
∗

2𝜏
) exp(−𝑡 − 𝑡

∗

2𝜏
) 𝑑𝑡
∗

.

(18)

In [14] we have showed that 0 can be modeled as a Gaussian
pulse:

0 = 𝐴 exp[−
(𝑡 − 𝑡max)

2

𝜎2
] , (19)

where 𝐴 is the maximum flux, 𝑡 is the total time, 𝑡max is the
time ofmaximumflux, and 𝜎 is the standard deviation of flux.

By substituting (19) into (18),

𝑊(𝑥, 𝑡) = 𝑊
0
+ (

1

𝐷𝜏
)

1/2

∫

𝑡

0

𝐴 exp[−
(𝑡 − 𝑡max)

2

𝛿2
]

⋅T
0
(
𝑡 − 𝑡
∗

2𝜏
) exp(−𝑡 − 𝑡

∗

2𝜏
) 𝑑𝑡
∗

.

(20)

Equation (20) is solved for three values of diffusion coefficient
and lagging time and plotted in Figure 3. It shows drug
concentration versus time in the solid tumor.

As it can be seen in Figure 3, the drug concentration in all
cases rises to the maximum points.The time delay in all cases
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Figure 3: The solution of (20) in case of different diffusion
coefficients and time lags. Drug concentration versus time.

is clear in this figure. After reaching the maximum amount,
the drug concentration decreases gradually till reaching a
stable value. As it is clear in the plot, bigger values of diffusion
coefficient cause higher peak in the concentration plot. This
behavior mimics the trend seen in Figure 2, where at first
the diffusion of drug in the tumor is high enough relative to
the diffusion out of it to steadily increase the concentration
over time. Then, after the maximum point, the diffusion-
out is greater than the diffusion-in, and the concentration
begins to decrease. So phase lagging model defines the drug
concentration in tumors well and can be used for our further
investigations.

It should be noted that based on the value of parameters
(diffusion coefficient, reaction time, and drug specifications),
the values of concentration, slope of curve, and the time
periods in each step vary in case of different experiments.

3. Result

In the last section, we developed (20) which indicates the
relationship between the drug concentration and its spatial
derivative within the tumor.

From another view, writing the behavior of drug propa-
gation in the solid tumor by the classical model of diffusion,

𝑊(𝑥, 𝑡) = 𝑊
0
− √𝐷eff ∫

𝑡

0

𝜕𝑊

𝜕𝑥

1

√𝜋 (𝑡 − 𝑡
∗
)

𝑑𝑡
∗

. (21)

In (21), the effective diffusion coefficient, 𝐷eff , must be a
function of time. In order to find 𝐷eff , (17) and (21) are
combined:

∫

𝑡

0

𝜕𝑊

𝜕𝑥
[√
𝐷

𝜏
T
0
(
𝑡 − 𝑡
∗

2𝜏
) exp(−𝑡 − 𝑡

∗

2𝜏
)

− √𝐷eff
1

√𝜋 (𝑡 − 𝑡
∗
)

] 𝑑𝑡
∗

= 0.

(22)
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Figure 4: The variation of dimensionless diffusivity with the
dimensionless spatial variable.

Considering that (22) is valid for any 𝑡 > 0 and dividing both
sides of this equation by 𝜕𝑊/𝜕𝑥 ̸= 0,

√
𝐷

𝜏
T
0
(
𝑡

2𝜏
) exp(− 𝑡

2𝜏
) − √𝐷eff

1

√𝜋𝑡
= 0; (23)

hence,

𝐷eff = 𝐷
𝜋𝑡

𝜏
[T
0
(
𝑡

2𝜏
) 𝑒
−𝑡/2𝜏

]

2

. (24)

By replacing the temporal variable (𝑡) by speed of drug
propagation (𝑐) and spatial variable (𝑥) through

𝑡 =
𝑥

𝑐
(25)

and considering 𝛿 = 𝑐𝜏, we can write𝐷eff as a function of 𝑥:

𝐷eff = 𝐷
𝜋𝑥

𝛿
[T
0
(
𝑥

2𝛿
) 𝑒
−𝑥/2𝛿

]

2

. (26)

Here we introduce two dimensionless variables:

𝐷 =
𝐷eff
𝐷
,

𝜂 =
𝑥

𝛿
.

(27)

Using these variables, we rewrite (26) in a dimensionless
form:

𝐷 = 𝜋𝜂 [T
0
(
𝜂

2
) 𝑒
−𝜂/2

]

2

. (28)

Equation (28) provides the relationship between the diffusion
coefficient and the spatial variable in dimensionless forms.

Thevariation of dimensionless diffusivitywith the dimen-
sionless spatial variable is shown in Figure 4.

Figure 4 shows that dimensionless diffusivity increases as
𝜂 increases to reach itsmaximumvalue at 𝜂max. Based on (28),

Table 1: The experimental and modeled values of drug penetration
depth.

Drug
Experimental
penetration
depth (𝜇m)

Modeled
penetration
depth (𝜇m)

Doxorubicin (Dox-LTSL) 78 83.2
Doxorubicin (Doxil liposomes) 34 36.4
Cisplatin 20 21.3
Docetaxel 100 107.8
Paclitaxel 100 105.9
Fluorouracil 24 25.5
Mitoxantrone 37 39.4
Paclitaxel 30 31.9
Herceptin 150 160.7
Topotecan 100 106.8

maximum dimensionless diffusivity at 𝜂max = 1.53 has the
following value:

𝐷max = 1.38. (29)

Beyond 𝐷max, the value of 𝐷 starts to decrease, and after
some time interval, its value reaches a constant value. So the
spatial position of 𝐷max, which is 𝜂max = 1.53, becomes a
critical point.

Recalling 𝜂 = 𝑥/𝛿, we name

𝑥 = 𝜂max𝛿 (30)

“drug penetration depth.” In fact, anticancer drug can pene-
trate in the solid tumor at this depth. We claim that this drug
penetration depth should be the same as drug penetration
depth measured from experiments. Computing the drug
penetration depth using (30) verifies this issue.

Based on (30), here we computed the penetration depth
in case of different drugs (look at Table 1) and compared
the results with the experimental results (in case of animals
or humans, in different types of cancer) done by other
researchers [46–52] (look at Figure 5). Please note that the
required values of parameters for our calculations in each
case were brought from the literature. It is noteworthy that
the value of reaction time in some cases governed through
its formulation with 𝑐 and 𝐷. Also (look at Table 1) it is
noteworthy that the reason of having the same drug but
different experimental andmodeled penetration depth values
in some cases is due to the application of drug in case of
different types of cancer or the condition of application (for
instance animal versus humans). The value of 𝑅-squared
(𝑅2 = 0.9999) in the scatter plot shows very good fit. We also
computed root mean squared error (RMSE). The computed
value of 5.49 𝜇m for root mean squared error stands for
acceptable accuracy of our model (attention to the range
of variation of experimental penetration depth values) for
prediction of penetration depth in case of different drugs.

Also please note that in all cases the computed value is
bigger than the experimental value. It is due to the fact that
modeling conditions differ from real conditions and all these
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Figure 5: Comparison between the experimental and modeled
values of drug penetration depth in case of different drugs.

conditions will cause less penetration of drug in the tumor.
For instance in the real experiment there are some decays of
drugs that have not been considered in the modeling steps.

In this research, we successfully developed a model for
computation of drug penetration depth in solid tumors.
Based on the required penetration depth in case of each
tumor, the values of parameters from (30) can be advised. So
the proper drug(s) with the required dosage can be applied
based on themodeling outcome and considering the patient’s
general health condition. So thismethod can speed up clinical
practice for cancer patients and drug, design development,
and therapy for cancer drugs.

4. Discussion

In this paper, first we proposed the phase lagging model for
drug diffusion in the solid tumors. This model provides a
relation between the drug concentration in the solid tumor
and its spatial derivative at any given moment of time and
location. Using this model on one side and classical diffusion
model on the other side, we considered the equality of these
models within a one-dimensional domain (solid tumor). As a
result, dependence of the diffusivity in a dimensionless form
on the spatial domain was studied, and a characteristic length
was found that has same characteristics as drug penetration
depth in the solid tumor. In fact, beyond this length, effective
diffusion starts to decrease, and thus the drug starts to
disappear. Comparison of the computed penetration depth
using this model with the drug penetration depth measured
in the real experiments verified the significance of our claim.
The efficiency of this method enables fast, accurate, and
comprehensive computation of drug penetration depth in
solid tumors. This technique can be used in case of different
drugs applied in treatment of different types of cancer.

It is noteworthy that our mathematical model can be
developed to be more precise by considering some phenom-
ena and factors (such as some environmental factors) that
have dominant effect on drug diffusion and penetration in
the solid tumor. In this way, the error caused in our prediction
will be reduced.

Similar to most of the mathematical models in biology
and medicine, the mathematical model proposed in this
research is based on some experimental data. The advantage
of using this model over direct measurement of drug diffu-
sion and penetration depth is the abilities that this model
provides for us. For instance, thismodel is well suited for test-
ing combinations of multiple parameters that can be varied
simultaneously in a controlled manner and over a wide range
of values. Such a broad screening of drug or tissue conditions
is a hard and expensive job in laboratory experiments, but
it is relatively easy and cheap in computer simulations. These
theoretical screenings can help to determine the properties of
therapeutic compounds which are optimal for their efficient
interstitial transport or make decisions regarding the most
effective drug and its application protocol.

In general, the mathematical models that are properly
integrated with experimental data, such that both models
and laboratory experiments inform each other, can provide
tools for interpreting data, evaluating the most important
parameters for designing new experiments, and developing
strategies to improve tumor treatment.
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