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Abstract: Disruption of the skin microbial balance can exacerbate certain skin diseases and affect
prognosis and treatment. Changes in the distribution and prevalence of certain microbial species on
the skin, such as Staphylococcus aureus (SA), can impact the development of severe atopic dermatitis
(AD) or psoriasis (Pso). A dysfunctional skin barrier develops in AD and Pso due to SA colonization,
resulting in keratinization and chronic or progressive chronic inflammation. Disruption of the skin
barrier following SA colonization can elevate the production of T helper 2 (Th2)-derived cytokines,
which can cause an imbalance in Th1, Th2, and Th17 cells. This study examined the ability of
potential therapeutic skin microbiomes, such as Cutibacterium avidum R-CH3 and Staphylococcus
hominis R9, to inhibit SA biofilm formation and restore skin barrier function-related genes through
the activation of the aryl hydrocarbon receptor (AhR) and the nuclear factor erythroid-2-related
factor 2 (Nrf2) downstream target. We observed that IL-4/IL-13-induced downregulation of FLG,
LOR, and IVL induced by SA colonization could be reversed by dual AhR/Nrf2 activation. Further,
OVOL1 expression may be modulated by functional microbiomes via dual AhR/Nrf2 activation.
Our results suggest that our potential therapeutic skin microbiomes can prevent SA-derived Th2-
biased skin barrier disruption via IL-13 and IL-4-dependent FLG deregulation, STAT3 activation, and
AhR-mediated STAT6 expression.

Keywords: Staphylococcus aureus; aryl hydrocarbon receptor; skin barrier

1. Introduction

The bacterial community on the skin surface is essential for maintaining a functional
microbiome. The disruption of the skin microbial balance (dysbiosis) in certain skin diseases
can not only significantly affect the severity of the disease but can also be important for
prognosis and treatment [1,2]. Specifically, it has been discovered that changes in the
distribution of some skin microbial species and the predominance of certain species can
significantly influence the progression of some skin diseases [3]. For example, Staphylococcus
aureus (SA) is found on the skin of patients with atopic dermatitis (AD) at the site of lesions
caused by AD, and many studies report that it acts as a super-antigen against T cells,
impeding the function of the skin barrier or activating the inflammatory response [4,5].
Furthermore, psoriasis (Pso) is exacerbated by immune dysregulation and skin colonization
by SA, which alters the inflammatory response and contributes significantly to the severity
of Pso [6,7]. In this way, SA colonization leads to the increasing predominance of the
species, which is common to both diseases [8]. As a result of SA colonization, the biofilm
produced in the skin can damage the epidermal barrier, cause congenital and acquired
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immune regulation disorders, and cause chronic inflammatory cytokines in many skin
diseases, including AD, Pso, and acne [9–11].

SA colonization leads to skin lesions with a dysfunctional skin barrier due to the
reduction of β-defensin and cathelicidin [12,13]. Particularly, filaggrin (FLG) deficiency
induced by the formation of SA biofilms and suppression of involucrin (IVL) and loricrin
(LOR) gene expression in the skin barrier can lead to chronic exposure to SA and accelerate
chronic AD or Pso [9]. This can also lead to disruption of the skin barrier, triggering ab-
normal immune responses through T-helper 2 cells (Th2), the release of pro-inflammatory
cytokines from keratinocytes, and the stimulation of mast cell degranulation [14,15]. Skin
inflammation caused by skin barrier disruption is accompanied by increased levels of
Th2 cytokines, such as interleukin (IL)-4 and IL-13, which suppress the expression of
antimicrobial peptides [16,17]. IL-4/IL-13-induced responses can be driven by signal trans-
ducers and transcriptional activators (STAT) 6 and promote thymic stromal lymphopoietin
(TSLP) production, a cardinal keratinocyte-derived cytokine that contributes to Th2 immu-
nity [18,19]. Subsequently, epidermal keratinocytes of the skin, whose barrier is damaged,
create large amounts of TSLP, IL-25, and IL-33, which stimulate the production of IL-13,
forming a vicious cycle of conditions that promote AD [18,20,21]. Furthermore, chronic
skin colonization with SA can result in increased levels of IL-17, triggering the release of
pro-inflammatory cytokines, such as IL-6 and IL-8 [22,23]. During chronic or late stages of
AD, Th1, Th2, and Th17 cell ratios are out of balance and cause them to interact improp-
erly [23,24]. As a result of Th17 cell infiltration, epithelial cells produce IL-22 and IL-17A,
leading to tissue fibrosis, chronic inflammation, and progression of chronic inflammatory
skin lesions [24–26].

To determine the possibility of skin barrier function recovery, we assessed the ef-
fects of skin microbiotas that inhibit SA growth and biofilm development on skin barrier
function recovery through the aryl hydrocarbon receptor (AhR)/nuclear factor erythroid-
2-related factor 2 (Nrf2) pathway. The dual activity of AhR and Nrf2 has been shown
to restore the downregulation of FLG, LOR, and IVL caused by IL-4/IL-13. IL-4 and
IL-13 expression and subsequent increases in STAT6 phosphorylation occur in response
to oxidative stress [27]. Keratinocytes activate Nrf2 and upregulate NAD(P)H quinone
oxidoreductase-1 to neutralize IL-4/IL-13-induced reactive oxygen species (ROS) or heme
oxygenase-1 to inhibit STAT6 phosphorylation [28]. Furthermore, oxidative stress decreases
the expression of skin barrier factors by activating STAT3 [29]. Thus, it is proposed that
Nrf2 signaling can reduce oxidative stress in keratinocytes and inhibit STAT3, thereby
preventing skin barrier factor suppression. The Nrf2 signaling pathway reduces immune
responses by inhibiting IL-4/IL-13-induced FLG downregulation, IL-13-induced STAT3 ac-
tivation, and IL-4/STAT6-induced Th2 cell differentiation, IgE production, and chemokine
expression [30,31]. Activation of AhR leads to upregulation of OVOL1, a crucial upstream
transcription factor involved in FLG and LOR signaling in addition to Nrf2 signaling [32].
As a result, OVOL1 nuclear translocation can potentially help restore the downregulation
of skin barrier factors, such as IVL, LOR, and FLG, induced by IL-4 and IL-13 through AhR
activation [33,34].

Disruption of the skin barrier associated with SA colonization on the skin can partially
explain the clinical and pathophysiological similarities between AD and Pso. To investigate
this association, this study aimed to identify microbes that control skin barrier function-
related genes to prevent SA colonization. Identifying potential therapeutic microbiomes
that inhibit SA colonization will provide novel insights into the common pathological
mechanisms underlying SA-associated AD and Pso, as well as guide the development of
therapies targeting metabolites identified from these potential therapeutic microbiomes.
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2. Results
2.1. Staphylococcus hominis and Cutibacterium avidum Significantly Inhibit the Growth of
SA-Derived Biofilms

To determine the specific microbial features of AD and Pso, we compared the microbial
composition of AD and Pso lesion sites with those of healthy controls. We used an open
dataset from a study by Tsoi et al. in the Gene Expression Omnibus (GEO) database. The
dataset contains 147 human skin whole transcriptome sequences, which includes 38 healthy
controls, 27 patients with AD, and 28 patients with Pso [35] (Figure 1a). Lesions in patients
with AD were enriched in SA, while S. hominis and Kocuria palustris were enriched in healthy
controls (Figure S1a). Even though SA was not significantly enriched in the lesions of Pso
patients like in the AD cohort, Staphylococcus hominis was considerably more prevalent
among healthy controls than in patients with Pso. Furthermore, Cutibacterium avidum was
enriched in the healthy controls compared to Pso lesion sites (Figure S1b).

We isolated S. hominis, K. palustris, and C. avidum from donors without a history of
skin disease to examine their ability to inhibit the formation of SA biofilms (Table 1). First,
we investigated the ability of S. hominis and K. palustris to inhibit the formation of SA
biofilms from the AD group. Both S. hominis and K. palustris considerably inhibited the
formation of biofilms in SA from the AD group. However, S. hominis inhibited SA biofilm
formation more than K. palustris (Figure 1b). Next, we investigated whether C. avidum,
detected considerably in healthy controls compared to the Pso cohort, could inhibit SA
biofilm formation in addition to the two bacteria found in the AD cohort. There was a
considerable inhibition of SA biofilm formation by all four isolates of C. avidum, but the
C. avidum R-CH3 strain showed the most significant inhibition (Figure 1c).

Table 1. List of the skin microbiomes used in this study.

Species Strains Abbreviated Name of
Bacteria

Closest Match (16S rRNA Gene
Similarity) Hemolysis

Staphylococcus hominis WF7R9 S. hominis_R9 Staphylococcus hominis (99%) Γ

Kocuria palustris WF3L4 K. palustris_L4 Kocuria palustris (100%) Γ

Cutibacterium avidum

R-CH3 C. avidum_R-CH3 Cutibacterium avidum (99%) γ

CSM5-2 C. avidum_C52 Cutibacterium avidum (100%) γ

CSM5-3 C. avidum_C53 Cutibacterium avidum (99%) γ

CSM5-4 C. avidum_C54 Cutibacterium avidum (99%) γ

We also compared the Pso group SA biofilm formation and growth-inhibiting abilities
of the three species, S. hominis, K. palustris, and C. avidum. SA biofilm formation was
inhibited by all three species, but K. palustris was significantly less effective in inhibiting
SA biofilm formation than the other two species. Further, compared to the baicalein set
as a positive control, K. palustris did not significantly inhibit the formation of SA biofilms
(Figure 1d).

As a final step, we performed the overlay clean zone test to determine whether
the three species of bacteria can directly inhibit the growth of SA. K. palustris showed
significantly lower SA growth inhibition activity compared to the other two bacterial
species. Even though the SA growth inhibitory activity of S. hominis was slightly higher
than that of C. avidum, it was practically identical to that of triclosan (positive control)
(Figure 1e).
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 Figure 1. Potential therapeutic microbiomes are capable of inhibiting Staphylococcus aureus
(SA)-derived biofilms that may initiate atopic dermatitis (AD) and psoriasis (Pso) pathogenesis.
(a) Schematic of GSE121212 transcriptome analysis and skin microbiome isolation. (b) Evaluation of
S. hominis R9 and K. palustris L4 to inhibit SA biofilm formation. *** p < 0.001 compared to control
group. (c) Evaluation of SA biofilm formation inhibition ability by C. avidum strains. *** p < 0.001
compared to control group. ### p < 0.001 compared to C. avidum R-CH3 group. (d) Comparing inhibi-
tion of SA biofilm formation by S. hominis (r9), C. avidum (R-CH3), and K. palustris (l4). *** p < 0.001
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compared to K. palustris L4 group; ns, non-significant. (e) Evaluation of SA growth inhibition ability of
S. hominis (r9), C. avidum (R-CH3), and K. palustris (l4). *** p < 0.001 compared to K. palustris L4 group;
# p < 0.05 between S. hominis R9 and C. avidum R-CH3 groups. (f) Gene set enrichment analysis (GSEA)
stratified by S. hominis abundance in AD and Pso cohorts (nominal [NOM] p < 0.001; interferon
gamma [IFN-γ] response, [NOM] p < 0.001; IL6-JAK-STAT3 signaling in AD cohort, [NOM] p < 0.001;
IFN-γ response, [NOM] p < 0.001; IL6-JAK-STAT3 signaling in Pso cohort). (g) Boxplots comparing
macrophages (M1), resting mast cells, follicular T helper cells, dendritic cells, and neutrophils
stratified by an abundance of S. hominis in AD and Pso. * p < 0.05, ** p < 0.01, *** p < 0.001 comparing
S. hominis high versus low group. Statistical significance was calculated using Bonferroni tests.
CIBERSORT algorithm was used for the Cancer Genome Atlas (TCGA) data of AD and Pso cohorts.

2.2. Characteristics of AD- and Pso-Induced Immune Alterations in Response to the Reduction in
S. hominis Abundance

We observed that S. hominis was significantly more abundant in controls than in AD
and Pso lesions, and that S. hominis inhibited SA biofilm formation and direct growth of SA.
Accordingly, we divided S. hominis into high and low abundance groups. Using the tool
Kraken2, zero counts were considered low abundance, and positive counts were considered
high abundance. We then performed gene set enrichment analysis (GSEA) to determine
differentially expressed genes (DEGs), their related signaling pathways, and their biological
significance. We observed that in the AD cohort, the interferon-gamma (IFN-γ) response
set (normalized enrichment score [NES] = −2.290, nominal [NOM] p < 0.001 and FDR
q-value < 0.001), TNF-α signaling through NF-κb signaling (NES = −2.225, NOM p < 0.001
and FDR q-value < 0.001), IL6-JAK-STAT3 signaling (NES = −2.182, NOM p < 0.001 and
FDR q-value < 0.001), and inflammatory response (NES = −1.763, NOM p < 0.001 and FDR
q-value = 0.001) were enriched in the S. hominis low group (Figures 1f and S1c). We also
analyzed differences in gene set enrichment under identical conditions to examine DEGs
in the Pso cohort. As in the AD group cohort, NES demonstrated that the IFN-γ response
set (NES = −2.576, NOM p < 0.001 and FDR q-value < 0.001), TNF-α signaling through
NF-κb signaling (ES = −0.451, NES = −1.854, NOM p < 0.001 and FDR q-value < 0.001),
IL6-JAK-STAT3 signaling (NES = −2.143, NOM p < 0.001 and FDR q-value < 0.001) and
inflammatory response (NES = −1.964, NOM p < 0.001 and FDR q-value < 0.001) were
significantly higher in the S. hominis high group (Figure 1f and Figure S1d).

To examine the composition of immune cells among the S. hominis high versus low
groups, digital cytometry was performed using the CIBERSORTx platform [36]. We found
that the S. hominis high group exhibited higher expression of resting mast cells than the S.
hominis low group in both AD and Pso. Further, follicular Th cells capable of activating
B cells were significantly lower in the S. hominis high group. In the S. hominis high group,
the level of activated dendritic cells (DCs) was characteristically lower in AD than in the S.
hominis low group. Moreover, the level of neutrophils and macrophages was lower in Pso
than in the S. hominis high group (Figure 1g). These findings suggest that S. hominis can
potentially reduce the onset of immune responses and tissue damage by reducing signs
and symptoms similar to those caused by allergic reactions to SA bioproducts.

2.3. Immune Suppression Mediated by SA-Derived Mechanisms in C. avidum Is Similar to
S. hominis

GSEA was performed in the Pso cohort to investigate the DEG-related signaling path-
ways and to determine if immune responses are similar between S. hominis and C. avidum
enrichment levels. GSEA showed that the C. avidum low group had inflammatory responses
comparable to the S. hominis low group, as well as increased INF-α response, INF-γ re-
sponse, TNF-α signaling via NF-κb signaling, and IL6-JAK-STAT3 signaling (Figure 2a).
Even in the C. avidum low group, the IFN-γ response set (NES = −2.619, NOM p < 0.001 and
FDR q-value < 0.001), TNF-α signaling via NF-κb signaling (NES = −2.059, NOM p < 0.001
and FDR q-value < 0.001), IL6-JAK-STAT3 signaling (NES = −2.235, NOM p < 0.001 and
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FDR q-value < 0.001), and inflammatory response (NES = −2.148, NOM p < 0.001 and FDR
q-value < 0.001) were consistent with those seen in the S. hominis low group in AD as well
as Pso (Figure 2b). Furthermore, the heatmap of the Pso cohort also showed that immune-
related genes, including those involved in IL6-JAK-STAT3 signaling, INF-γ signaling, and
TNF-α signaling, were expressed at higher levels in the C. avidum low group than in the
C. avidum high group (Figure 2c).
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Figure 2. Characterization of AD and Pso-induced immune modifications concerning functional mi-
crobiome abundance and immune suppression mediated by SA-derived mechanisms. (a) Normalized
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enrichment scores (NES) of gene set enrichment analysis (GSEA)-based gene sets stratified by
C. avidum abundance in a Pso cohort. (b) The top four gene sets of the C. avidum high group in GSEA.
([NOM] p < 0.001; IL6-JAK-STAT3 signaling, [NOM] p < 0.001; IFN-γ response, [NOM] p < 0.001;
inflammatory response, [NOM] p < 0.001; TNF-α signaling via NF-κB). (c) Heatmap representing sig-
nificant immune-related genes in the analysis of differentially expressed genes, comparing C. avidum
high versus low groups. (d) Boxplots comparing macrophages (M1), resting mast cells, activated
dendritic cells, and naïve CD4 T cells accordingly stratified by the abundance of C. avidum in Pso.
* p < 0.05, ** p < 0.01, **** p < 0.001 comparing C. avidum high versus low groups. (e) Measurement of
mRNA levels of IL-25, IL-33, and TSLP relative to 18S rRNA. *** p < 0.001 compared to SA treatment
group. ### p < 0.001 between S. hominis R9 and C. avidum R-CH3 groups. (f) Measurement of mRNA
level of IL-5 relative to 18S rRNA. *** p < 0.001; ns: not-significant compared to SA only treatment
group. ### p < 0.001 between S. hominis R9 and C. avidum R-CH3 groups. (g) Measurement of mRNA
level of IL-31 relative to 18S rRNA. *** p < 0.001 compared to control group. ### p < 0.001 between
S. hominis R9 and C. avidum R-CH3. Statistical significance was calculated using Bonferroni tests.
CIBERSORT algorithm was used for the TCGA data of the Pso cohort.

Next, we analyzed the composition of immune cells between the high and low
C. avidum groups using digital cytometry. In the C. avidum high group, resting mast cells
were significantly more abundant than in the C. avidum low group, and macrophages were
significantly less abundant than in the C. avidum low group. Furthermore, the relative abun-
dance of DCs was significantly lower in the C. avidum low group than in the high group
(Figure 2d). Taken together, these results suggest that both S. hominis and C. avidum are
capable of inhibiting the formation of SA biofilms. In addition, similarities were observed
in their immune response mechanisms in accordance with their bacterial abundance.

We then analyzed the expression of interleukin (IL)-25, IL-33, and TSLP to confirm
that previously screened samples, such as S. hominis R9 and C. avidum R-CH3, inhibited SA
biofilm formation but also inhibited the induction of immune responses. IL-25, IL-33, and
TSLP mRNA expression increased from a minimum of 8-fold to a maximum of 13-fold in
SA-treated HaCaT cells compared to normal HaCaT cells. Alternatively, when SA-treated
HaCaT cells were treated with S. hominis R9 and C. avidum R-CH3, significant reductions
in mRNA levels of IL-25, IL-33, and TSLP were observed in both groups compared to the
SA-alone treated group (Figure 2e). Moreover, IL-5 expression that increased with SA
treatment significantly reduced after treatment with S. hominis R9 and C. avidum R-CH3
supernatant. This reduction in IL-5 expression was more significant in the C. avidum R-CH3
treated group compared to S. hominis R9 (Figure 2f). In addition, IL-31 expression was also
elevated during SA treatment, but S. hominis R9 and C. avidum R-CH3 significantly reduced
this expression, and C. avidum R-CH3 significantly reduced IL-31 levels relative to S. hominis
R9 (Figure 2g). Hence, S. hominis R9 and C. avidum R-CH3 inhibit the induction of Th2
cell-mediated immune responses by interfering with SA colonization, suggesting a possible
reduction in B-cell activation and inhibition of allergen-specific Ig E production [37].

2.4. The C. avidum R-CH3 Strain Exerts Greater Effects on SA-Derived Th2-Biased Cytokines
than the S. hominis R9 Strain

The hyperproliferation of SA results in increased levels of IL-4 and IL-13, which
ultimately destroys the skin barrier due to mast cell degeneration and Th2 cell bias [11]. To
determine the effects of IL-4 and IL-13, we divided the high and low abundance groups of S.
hominis and C. avidum based on IL-4R and IL-13R1 expression. The function of heterodimers
IL-4Ra and IL-13Ra1 in response to IL-4/IL-13 is to activate Janus kinase 2 (JAK2) and
tyrosine kinase 2 (TYK2), as well as signal transducer and activator of transcription (STAT)3
and STAT6 [38,39].

We found that in both AD and Pso cohorts, the expression rate of the IL4R gene was
significantly lower in the high abundance group of S. hominis or C. avidum compared to the
low abundance group. Furthermore, the expression of IL-13Ra1 was significantly lower
in the C. avidum high group in the Pso cohort. In the S. hominis high group, IL-13Ra1
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expression was lower in AD and Pso cohorts than in the S. hominis low group. However,
these differences were not statistically significant (Figure 3a).
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stratified by an abundance of S. hominis and C. avidum in AD and Pso cohorts. (b) Measurement
of mRNA level of IL-4 relative to 18S rRNA. (c) Measurement of mRNA level of IL-13 relative to
18S rRNA. (d) Measurement of mRNA level of IL-6 relative to 18S rRNA. (e) Measurement of the
mRNA level of IL-24 relative to 18S rRNA. (f) Measurement of mRNA levels of STAT3 and STAT6
relative to 18S rRNA. (g) Measurement of mRNA levels of IL-17A, IL-17F, and IL-22 relative to 18S
rRNA. (h) Measurement of the concentrations of IFN-γ, TNF-α, and IL-1β cytokines using ELISA after
treatment with S. hominis R9 and C. avidum R-CH3 derived microbial supernatants in the SA treatment
group. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to SA only treatment group. ### p < 0.001 between
S. hominis R9 and C. avidum R-CH3. ns: not-significant compared to; ns: not-significant compared to
SA only treatment group. Statistical significance was calculated using Bonferroni tests.

As a critical cytokine involved in the development of allergic inflammation, IL-4 is
primarily responsible for transforming naive T cells into Th2 lymphocytes through the
generation of many effector cytokines, including IL-5, IL-6, and IL-13 [40,41]. SA increased
IL-4 expression more than six-fold, and S. hominis R9 and C. avidum R-CH3 significantly
reduced IL-4 expression following SA treatment. Additionally, the C. Avidum R-CH3
treatment group significantly reduced IL-4 expression to a greater extent than the S. hominis
R9 treatment group (Figure 3b).

In addition, IL-13 promotes the development of atopic inflammation via IL-4Rα/IL-
13Rα1 and contributes to the activation of STAT6/STAT3 by activating downstream
JAK1/TYK2/JAK2 [42]. Together with IL-4, IL-13 can induce Th2-biased T cell differ-
entiation, IgE production in B cells, and Th2-associated chemokines, such as CCL17 and
CCL22 in dendritic cells (DCs) [27]. In response to SA, the expression of IL-13 significantly
increased, while the expression of IL-13 with S. hominis R9 and C. avidum R-CH3 treatment
significantly decreased. On the other hand, it was observed that treatment with C. avidum
R-CH3 significantly reduced the expression of SA-derived IL-13 to a greater extent than
S. Hominis R9 treatment (Figure 3c). Furthermore, both S. Hominis R9 and C. Avidum R-CH3
significantly reduced the production of SA-derived IL-6. Interestingly, we also observed
that C. Avidum R-CH3 significantly reduced SA-induced expression of IL-6 to a greater
extent compared to S. hominis R9 (Figure 3d). Therefore, not only did SA significantly
enhance the expression of IL-24, and both S. hominis R9 and C. avidum R-CH3 significantly
reduced the expression of SA-derived IL-24, but C. avidum R-CH3 was once again shown
to significantly reduce IL-24 expression to a greater extent than S. hominis R9 (Figure 3e).
Furthermore, it was shown that STAT3 and STAT6 significantly increased in SA-treated
AD and Pso groups. It was established that S. hominis and C. avidum contributed to the
effective reduction of STAT3/STAT6. For both STAT3 and STAT6, C. avidum R-CH3 showed
a significantly greater decrease compared to the SA-only treated group and the S. hominis
R9 treated group (Figure 3f).

We also examined IL-17/IL-22 signaling and chronic SA colonization to determine
whether chronic AD or Pso could progress due to chronic SA colonization. IL-17A, IL-17F,
and IL-22 all showed significant increases in their mRNA expression during SA treatment.
Additionally, compared to the SA-treated group, both S. hominis R9 and C. avidum R-
CH3 treatment groups showed a significant decrease in IL-17A/F and IL-22 production
(Figure 3g). After verifying the activation potential of Th1, Th17, and Th22 cells according
to an increase in IL-17/IL-22 signals induced by chronic SA colonization, treatment with
S. hominis R9 and C. avidum R-CH3 was examined to determine if the protein levels of
IFN-γ, TNF-α, and IL-1β could be significantly decreased upon treatment with these
bacterial species. A significant increase in IFN-γ, TNF-α, and IL-1β protein expression was
observed following SA treatment, but their expression was significantly decreased after
treatment with S. hominis R9 and C. avidum R-CH3. Additionally, C. avidum R-CH3 showed
a significantly lower increase in protein expression than the S. hominis R9 treated group
(Figure 3h).



Int. J. Mol. Sci. 2022, 23, 9551 10 of 21

2.5. C. avidum R-CH3 Can Inhibit Intracellular ROS-Induced Apoptosis via AhR/Nrf2
Dual Signaling

We examined whether AhR-mediated signaling can reduce the generation of reactive
oxygen species (ROS) by attenuating Th2-biased skin inflammation caused by increased
SA colonization. Using the SA abundance of the entire dataset, we divided groups by
high versus the low abundance of SA. We then plotted the AhR signal, Nrf2 signal, and
gene sets corresponding to skin barrier functions on a heat map (Figure 4a). Neither SA
high nor low groups significantly increased AHR gene expression, but the SA high group
showed a significant increase in AhR-nuclear translocator (ARNT) and cytochrome P450
(CYP1) family gene expression. In addition, both NFE2L2, as well as downstream HMOX1
and NQO1, were significantly increased in the SA low group. In the SA high group, an
increased expression of FLG, LOR, and CLDN1 was observed. We further investigated
the accumulation of ROS in skin keratinocytes following SA colonization by analyzing
the expression levels of genes involved in classical AhR signaling, such as AHR, ARNT,
CYP1A1, and PTGS2 (Figure 4b). A slight reduction in AHR expression was observed in the
C. avidum R-CH3 treatment group, but no significant differences were observed between
the S. hominis R9 treatment and SA-alone groups. The C. avidum R-CH3 treatment group
also demonstrated a small decrease in AHR expression compared to the S. hominis R9
treatment group.
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 Figure 4. Functional microbiomes modulate ROS-induced keratinocyte apoptosis via dual AhR/Nrf2
signaling and induce epidermal terminal differentiation. (a) Heatmap showing AhR signaling, Nrf2
signaling, and skin barrier-related genes stratified by SA abundance. (b) Measurement of mRNA
levels of AhR, ARNT, CYP1A1, and PTGS2 relative to 18S rRNA. * p < 0.05, ** p < 0.01, *** p < 0.001
compared to control group (HaCaT). # p < 0.05, ### p < 0.001 between S. hominis R9 and C. avidum
R-CH3. (c) Measurement of mRNA levels of NFE2L2, NQO1, and HMOX1 relative to 18S rRNA.
** p < 0.01, *** p < 0.001 compared to control group (HaCaT). ### p < 0.001 between S. hominis R9
and C. avidum R-CH3. (d) Boxplots of gene expression values for FLG, LOR, and CLDN1 stratified
by an abundance of C. avidum in the Pso cohort. ** p < 0.01 between S. hominis R9 and C. avidum
R-CH3. (e) Measurement of mRNA levels of AHR, CYP1A1, NFE2L2, and OVOL1 relative to 18S
rRNA in SA and SA and C. avidum treated groups with or without AHR gene silencing in HaCaT cells.
*** p < 0.001 compared to each si-control group. (f) Measurement of mRNA levels of FLG, LOR, IVL,
and CLDN1 relative to 18S rRNA in SA and SA and C. avidum treated groups with or without AHR
gene silencing in HaCaT cells. *** p < 0.001, ns: not-significant compared to each si-control group.
### p < 0.001 between SA treatment group and C. avidum R-CH3 treatment group after SA treatment
in AHR-silenced HaCaT cells. Statistical significance was calculated using Bonferroni tests.

The expression of ARNT and CYP1A1, downstream genes regulated by AhR activity,
were significantly increased during SA treatment; however, their expression significantly
decreased in the S. hominis R9 and C. avidum R-CH3 treatment groups. The C. avidum R-CH3
treatment group had a significantly greater decrease in ARNT and CYP1A1 expression
than the S. hominis R9 treatment group, consistent with previous analyses. PTGS2, which
encodes the cyclooxygenase-2 (Cox-2) protein, is also involved in AhR activation induced
by various stimuli, such as growth factors and cytokines [43]. SA significantly increased the
expression of PTGS2, whereas both S. hominis R9 and C. avidum R-CH3 treatment groups
significantly decreased the expression of PTGS2 after SA treatment. As with CYP1A1, C.
avidum R-CH3 significantly reduced the expression of PTGS2 to a greater extent than the
S. hominis R9 treatment group. Taken together, activation of AhR signaling by SA may
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contribute to the increased expression of CYP1A1 and PTGS2, as well as the generation
of ROS.

Accumulation of ROS in cells can lead to apoptosis due to MAPK signaling [44,45]. By
correlating the results of the previous experiments with transcriptome analyses (Figure 2b,c),
we evaluated the levels of gene expression of TNFAIP8, TNIP, and NFκB1 in S. hominis
and C. avidum by abundance grouping (Figure S2a). There was a notable decrease in
the expression of all three genes when the abundance of C. avidum decreased. We next
examined the Bax/Bcl-2 ratio in the S. hominis R9 and C. avidum R-CH3-treated groups
compared to the SA-only treated group to determine the degree of apoptosis induced
by ROS (Figure S2b). Both microbiotas significantly reduced the Bax/Bcl-2 ratio, which
could be used as a proxy for reducing SA-induced apoptosis. The expression of Bcl-2
did not significantly change in the C. avidum R-CH3 treated group, and the expression
of Bax was markedly reduced compared to the S. hominis R9 treated group, indicating a
significant decrease in the Bax/Bcl-2 ratio. Overall, C. avidum R-CH3 was seen to reduce
ROS generated by SA by regulating the secretion of various cytokines and classical AhR
signaling, and potentially counteracted the effects of TNF-α and MAPK signaling to reduce
the occurrence of apoptosis.

Next, the expression of genes in the Nrf2 signaling pathway, such as NFE2L2, NQO1,
and HMOX1, was analyzed as a possible compensatory mechanism for reversing the ele-
vated levels of intracellular ROS (Figure 4c). Expression of NFE2L2 is essential for initiating
Nrf2-dependent signal transduction. It was significantly lower in the SA-treated group
compared to normal HaCaT cells. In contrast, the expression of NFE2L2 was significantly
higher in the S. hominis R9 and C. avidum R-CH3 treated groups compared to the SA treat-
ment group. Downstream genes NQO1 and HMOX1 were also expressed consistent with
NFE2LE, and the C. avidum R-CH3 treatment group showed significantly higher NQO1 and
HMOX1 expression than the S. hominis R9 treatment group.

2.6. C. avidum R-CH3 Induces Epidermal Terminal Differentiation via the AhR Signaling Pathway

Based on the oxidation/antioxidant status of the ligand, activation of AhR leads
to increased Nrf2 signaling transduction that neutralizes oxidative stress [46]. The AhR
signaling axis also stimulates the expression of OVOL-1 like 1 (OVOL1) transcription
factor [47]. FLG and LOR are both regulated by the AHR-OVOL1 pathway, but IVL appears
to be upregulated by AhR independently of OVOL1 [34]. Based on the observation that
C. avidum R-CH3 can regulate AhR signaling activity, we first compared the expression of
FLG and LOR genes, which are epidermal differentiation factors, based on S. hominis or
C. avidum abundance in the AD and Pso cohorts. Moreover, we analyzed whether CLDN1,
one of the essential components of the epidermal tight junction, which forms a dynamic
pericellular barrier of the epidermis, is also affected by S. hominis and C. avidum abundance.
Both AD and Pso cohorts of the S. hominis high group did not show significant differences
in expression of any of the three genes (Figure S3a). In contrast, the C. avidum high group
demonstrated significantly higher FLG and LOR expression than the C. avidum low group
in the Pso cohort. We also found that the C. avidum high group had significantly increased
expression of CLDN1 in the Pso cohort, similar to FLG and LOR (Figure 4d).

C. avidum R-CH3 was next evaluated to determine whether it modulates AhR directly
by partly blocking AhR signaling or modulates CYP1-related gene expression, such as
CYP1A1 for antioxidant activity and OVOL1 axis activity through the AhR signaling
pathway. Initially, we silenced AHR and examined the correlation between the initiation of
Nrf2 signaling and the onset of OVOL1 axis activity according to AhR activity by the SA
treatment group (Figure 4e). We observed significant reductions in AHR gene expression
in the SA and C. avidum R-CH3 treated groups and in the SA-alone group compared
to si-Control when AHR was silenced. Furthermore, the expression of CYP1A1, a gene
downstream of AHR, was significantly suppressed when the AHR gene was silenced,
regardless of treatment with SA alone or in combination with C. avidum R-CH3. After si-
AHR treatment, the expression of NFE2L2 and OVOL1 significantly decreased in all groups.
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We conducted additional analyses by silencing CYP1A1 to determine the effect on
the expression of AhR, CYP1A1, NFE2L2, and OVOL1. Moreover, to determine whether
C. avidum R-CH3 could directly regulate the expression of downstream genes of AhR
signaling, we silenced CYP1A1 in this treatment group. We analyzed the expression of
AHR, CYP1A1, NFE2L2, and OVOL1 genes in the same manner (Figure S3b). In contrast to
previous results, a significant increase in AHR expression was observed when si-CYP1A1
was added to both SA alone and SA with C. avidum R-CH3 treatment groups. NFE2L2
and OVOL1 expression was significantly increased with an increase in AHR, regardless of
CYP1A1 silencing.

Lastly, we assessed the differences in gene expression of epidermal differentiation
factors, such as FLG, LOR, IVL, and CLDN1, with attenuation of AhR signaling (Figure 4f).
We observed that FLG and LOR expression was reduced by about half in the SA-treated
group following AHR silencing, while IVL expression was reduced more than FLG and LOR.
Furthermore, when C. avidum R-CH3 was added to the SA-treated group, the expression of
FLG and IVL, but not LOR, increased significantly. In contrast, we found that the expression
of CLDN1, which codes for a critical protein that forms skin-tight junctions, did not differ
significantly from that of si-Control during AHR silencing and was significantly decreased
following SA treatment. Additionally, C. avidum R-CH3 reversed the SA-induced decrease
in CLDN1 expression.

3. Discussion

Dysbiosis of the skin microbiota can adversely affect skin homeostasis, and the pre-
dominant species SA in AD and Pso correlates with gene expression associated with the
diseases [48]. Moreover, it is widely recognized that both AD and Pso are inflammatory
skin diseases, and while different pathways are involved in the progression of AD and Pso,
most of the dysregulated genes in the two diseases are shared [35]. Hence, we present the
findings of this study, which examines the mechanisms underlying the skin barrier function
regulated by AhR and the therapeutic potential of SA-derived inflammatory recovery.

First, we demonstrated that the reduction of functional microbiomes due to SA predom-
inance suggests the possibility of distinct common immunological mechanisms involved
in the progression of the two diseases. Chronic SA is caused by Th2-biased immunity,
resulting in a dysfunctional skin barrier. A compromised skin barrier promotes frequent
colonization by SA, compromising other functional barriers, including FLG, LOR, IVL, and
CLDN1 [49]. Therefore, we identified potential therapeutic skin microbes, such as S. hominis
R9 and C. avidum R-CH3, that inhibit SA colonization. Moreover, these microbes inhibited
the biofilm formation of SA and reduced SA colonization in keratinocytes. According to
the findings of this study, the reduction in the expression of skin barrier-forming factors,
such as FLG, LOR, IVL, and CLDN1, caused by SA colonization can be reversed via the
AhR signaling pathway. Patients with AD and Pso may exhibit impaired AhR signaling in
SA-induced conditions, resulting in type 2 immune deviation through Th2 cell activation
via type 2 chemokines [50,51].

There is no clear understanding of how SA-induced activation of AhR and downstream
signaling accelerates keratinocyte differentiation. As shown in Figure 4, although there
were no significant differences in AHR expression between the two treatment groups based
on the abundance of SA, there were differences in ARNT expression in establishing the
AhR signaling pathway. This could explain ROS accumulation in keratinocytes due to the
significantly increased expression of CYP1 family genes (CYP1A1, CYP1A2, CYP1B1) and
PTGS2 [45]. This accumulation of intracellular ROS may increase AhR-CYP1A1-mediated
oxidative stress [52], which may further induce the production of pro-inflammatory cy-
tokines, such as IL-1, IL-4, IL-6, IL-8, and IL-13 [29,53]. Our findings suggest that the
S. hominis and C. avidum low groups may contribute to the development of AD and Pso
through similar pathophysiological immune networks. Further, IFN- γ response, TNF- α
signaling through NF-κb signaling, and inflammatory response are key mechanisms in the
progression of both diseases associated with SA skin infection. Specifically, it is possible
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that TNF-α and IFN-γ signaling may cause increased expression of the mitochondrial Bax
gene in keratinocytes, resulting in mitochondrial apoptosis [54,55]. Eventually, through the
breakdown of the skin barrier, SA colonization may disrupt the AhR signal transduction
system [56,57], leading to a cascade of inflammatory responses and apoptosis induced
by excessive intracellular oxidative stress [58]. Therefore, this implies that the change in
abundance of functional microbiomes by SA colonization plays an important role in the
immune responses in AD and Pso.

It is also interesting to note that, as suggested by our data, AhR/ARNT signaling can
regulate the progression of AhR signaling and the expression of AhR/Nrf2 signaling and
the OVOL1 transcription factor [32,33]. C. avidum R-CH3 stimulates AHR expression and
inhibits intracellular ROS generation via Nrf2 signaling, critical for promoting epidermal
terminal differentiation through OVOL1 and skin barrier repair [46]. However, AHR
silencing demonstrated that SA is directly involved in expressing both AHR and CYP1A1,
which are classical AhR signaling components. However, it can be observed that CYP1A1
silencing could not modify AHR, NFE2L2, and OVOL1 expression after SA treatment.
These results suggest that the expression of NFE2L2 is regulated independently of CYP1A1
and that Nrf2 signaling may be triggered by various immune factors derived from SA in
addition to ROS generation following classical AhR signaling. In addition, the findings
of this study suggest that C. avidum R-CH3 can contribute directly to the activation of
AhR-related genes, suggesting that the expression of CYP1A1, NFE2L2, and OVOL1 is
regulated according to AhR activation signals. Therefore, we can infer that C. avidum
R-CH3 does not directly regulate CLDN1 expression via the AhR-OVOL1 axis, but rather
C. avidum R-CH3 suppresses SA colonization to decrease the cascade of immune responses
and generation of ROS. Based on these results, we concluded that C. avidum could enhance
the skin barrier function by modulating AhR signaling.

Based on the increased severity of SA biofilm colonization in epidermal keratinocytes,
increased IL-4 and IL-13 bind to the IL-4α1/IL-13Rα1 receptors and activated downstream
Janus family tyrosine kinases (JAKs), leading to STAT3/STAT6 phosphorylation [42]. The
progression of this mechanism results in the downregulation of genes that function as skin
barriers. For example, AhR-mediated upregulation of FLG, LOR, and IVL is inhibited by
activation of the IL-13/IL-4-JAK-STAT6/STAT3 axis [27]. In this study, we hypothesized
that STAT6 activation in response to IL-13 increases IL-24 expression in keratinocytes,
suppressing FLG expression via STAT3 [42]. The activation of STAT6 by IL-13 induces ker-
atinocytes to increase the expression of IL-24, suppressing FLG by activating STAT3 [59,60].
Furthermore, IL-4/IL-13 signaling could interact with group 2 innate lymphoid cells and
Th2 cells to impair AhR-mediated FLG expression and promote skin barrier dysfunction by
activating OVOL1 [61,62].

We reported that C. avidum R-CH3 and S. hominis R9 significantly inhibited SA colo-
nization, thus reducing cytokines, such as TSLP, IL-25, and IL-33 produced in the barrier-
disrupted epidermis. The increase in expression of TSLP, which is referred to as the biggest
problem after SA colonization [20], promotes a Th2 cell population in skin keratinocytes,
which produce IL-4, IL-5, and IL-13. In response to SA colonization, Th2 cytokines are
released, including IL-5, IL-25, and IL-33 [20], leading to the proliferation of eosinophils,
synthesis of serum IgE, differentiation, and chemotaxis, resulting in the differentiation
of DCs into Th2 cells [63]. It is suggested that when the composition ratio of C. avidum
is lowered, activated DCs may cause an imbalance of Th1, Th2, and Th17 cells. Hence,
functional skin microbiome species C. avidum R-CH3 and S. hominis R9 prevent SA colo-
nization, effectively inhibiting the overlapping bioactivity between TSLP, IL-25, and IL-33.
Therefore, inhibiting SA colonization and dominance by using components of the func-
tional microbiome, such as C. avidum R-CH3 and S. hominis R9, can prevent type 2 immune
deviation by reducing the production of TSLP, IL-25, and IL-33, and reversing skin barrier
dysfunction [10,64]. Additionally, S. hominis R9 and C. avidum R-CH3 demonstrated a
common mechanism that could be targeted to inhibit eosinophil stimulation and mast cell
activation by SA bioproducts and prevent basophil degranulation [10].
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Finally, we observed that C. avidum R-CH3 and S. hominis R9 reduced IL-17 and IL-22
expression in response to the overexpression of IL-4 and IL-13 following SA colonization.
As a result, functional microbiomes can inhibit STAT3 activation by reducing the production
of IL-4/IL-13 resulting from SA colonization, thus inhibiting the activation of NF-κB and
MAPK mechanisms via inhibiting IL-17A expression [25,65]. This suggests that the reduced
abundance of C. avidum in the skin may have led to an increase in ROS production, which
resulted in a spike in TNF-α signaling and apoptosis through MAPK signaling. By these
mechanisms, chronic colonization by SA may result in increased IL-17/IL-22 signaling,
resulting in the activation of Th17/Th22 cells due to excessive IL13/IL-4 signaling [35]. This
is because IL-17A can activate STAT3 without directly activating the JAK-STAT pathway,
and IL-22 can activate JAK1/TYK2 and STAT3 to activate NF-κB and MAPK signaling
transduction [65]. Our data also indicated that IL-22, caused by SA colonization, has higher
mRNA expression levels than IL-17A. Various reports suggest that IL-22, as opposed to
IL-17A, contributes more to the development of chronic lesions and excess type 2 deviations
in inflammatory skin diseases derived from SA [10,66,67]. Thus, based on the reduced
expression of the IL-17 family and IL-22 induced by the functional microbiome, it can be
speculated that reduced SA colonization reduced the activity of Th17 and Th22 cells. After
SA colonization, major Th1 markers, such as IFN-γ, are commonly expressed in chronic skin
lesions [68]. Through activation of the IL-17A/IL-22 axis and subsequent activation of the
IL-23/IL-17A axis, we may be able to explain the mechanism underlying the pathogenesis
of chronic AD and Pso. The inhibition of SA colonization using a functional microbiome
also significantly reduced the expression of IFN-γ, TNF-α, and IL-1β, inhibiting Th2 cell
differentiation and upregulating the expression of skin barrier factors.

In summary, in the present study, we reported that the IL-13/IL-4-STAT6/STAT3 axis
and AhR signaling could inhibit SA colonization, and investigated the regulatory mech-
anism and recovery of skin barrier-related proteins using a functional microbiome. The
results presented demonstrate that SA colonization leads to activation of the IL-13/IL-4-
JAK-STAT6/STAT3 axis, resulting in barrier dysfunction and associated immune responses.
In particular, SA can activate the AhR-ARNT system and enhance the terminal differentia-
tion of epidermal keratinocytes by stimulating AhR-Nrf2-mediated antioxidant activity.
Furthermore, this mechanism was explored for its potential to reduce inflammation induced
by excessive IL-13/IL-4 signaling. Using functional microbiomes, it was also shown that the
regulation of the signaling mechanisms of the AhR/ARNT system was also directly related
to immune regulation in SA-derived Th17/22 and T regulatory cell maturation, which may
be crucial for treating chronic AD and Pso in the future. Unfortunately, the metabolites that
served as AhR ligands in our study were not identified, indicating that studies identifying
the additional molecules targeting the AhR system are needed. It would also be beneficial
to understand the relationships between AD and other pathological mechanisms of Pso, as
well as other metabolites and species from the functional microbiome.

4. Materials and Methods
4.1. Transcriptomic Data Analysis

Gene Expression Omnibus (GEO) data used in this study were obtained from acces-
sion number GSE121212 in the GEO repository [35]. FASTP was used to quality filter the
raw data, adapter trim, and adapter trim with the default parameters [69]. In addition,
the filtered data were mapped by HISAT2 to the human database (GRCh38) with default
settings [70]. After HISAT2 files were generated, they were separated into mapped and
unmapped files with SAMtools’ ’view’ and ‘sort’ commands. After that, the unmapped
BAM files were converted into unmapped FASTQ files using SAMtools with the ‘bam2fq’
command [71]. To extract taxonomic profiles from the unmapped FASTQ files, we used
Kraken2 with the Minikraken database. In the course of this process, we used the com-
mands ‘–use-names’, ‘–gzip-compressed’, ‘–use-map-style’, and ‘–report-zero-counts’ [72].
For contamination removal, packages ‘decontam’ and ‘phyloseq’ in R version 4.1.2 were
used [73,74]. The ‘DESeq2’ package was then used to normalize the data and determine
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differential abundance [75]. Transcriptomic data were processed with featureCounts using
default settings to extract gene expression information [76]. As with Kraken2 outputs, de-
contamination and normalization were carried out using the R studio packages ‘decontam’,
‘phyloseq’, and ‘DESeq2’. GSEA was performed using the GSEA platform version 4.1.0
(Massachusetts Institute of Technology, MA, USA) with the hallmark gene set in MSigDB
after normalization. Digital cytometry was conducted using the CIBERSORTx platform
(https://cibersortx.stanford.edu, (accessed on 14 May 2022)) [36].

4.2. Human Skin Sample Collection

The Korea Institute for Bioethical Policy (KONIBP) Institutional Review Board (IRB;
P01-201605-31-003) approved the collection of skin samples and isolated bacteria from
human skin, and all protocols complied with relevant ethical guidelines. Further, all
participants gave written informed consent prior to registration, and the study followed
applicable ethical guidelines. All skin samples were collected from healthy donors without
a history of skin disease. Skin samples were collected from participants after they had
not washed their faces for more than 12 h. To collect skin bacteria, a sterile cotton swab
was moistened with distilled water and rubbed on the face skin vigorously for 1 min or
20 times, then incubated in 10 mL of tryptic soy broth (TSB) solution or Robertson’s cooked
meat (RCM) solution.

4.3. Microbial Sample Isolation and 16S rRNA PCR Amplification

Skin samples from 20 donors were diluted 10−1–10−3 fold using phosphate-buffered
saline (PBS). Then, 100 µL of each diluted solution was spread onto TSB, RCM, MRS (De
Man, Rogosa, and Sharpe), and blood (Columbia agar with 5% sheep blood) agar plates (Bio-
Rad, Hercules, CA, USA). The inoculated plates were incubated at 37 ◦C for up to 72 h, after
which colonies were retrieved, and their 16S rRNA genes were amplified using colony PCR.
The PCR cycling conditions were as follows: initial denaturation at 95 ◦C for 15 min, fol-
lowed by 32 cycles of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s, extension at
72 ◦C for 1 min 45 s, and a final extension step at 72 ◦C for 5 min. The primers for PCR were
27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-GGTTACCTTGTTACGACTT-
3′). Purification of the amplified DNA was carried out using the Ez-pure PCR purifi-
cation kit (Ver 2, Enzynomics Co. Ltd., Daejeon, Korea), and the nucleotide sequences
of the genes were determined using the ABI 3730xl system (Macrogen Inc., Seoul, Ko-
rea). For phylogenetic analysis, the 16S rRNA gene sequences were analyzed using the
nucleotide BLAST program available at the NCBI website (https://blast.ncbi.nlm.nih.
gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome, (ac-
cessed on 1 December 2021)).

4.4. Measurement of S. aureus KCTC 1621 Biofilm Formation Inhibition

Staphylococcus aureus KCTC 1621 used in this study was distributed from Korean Col-
lection for Type Cultures (KCTC, Jeongeup, Korea). The culture of S. aureus was performed
in a liquid medium (TSB + 0.2% glucose) for 16 to 24 h. Once TSB containing 0.2% glucose
was placed in a 6-well plate, each bacterial supernatant group was added to each well at a
volume of about 10%. In each well, 2× 106 CFU were inoculated so that a final concentra-
tion of 2× 106 CFU/well was achieved. Cells were then cultured at 37 ◦C in an incubator
for 24 h. Following incubation, the medium was removed, and each well was washed twice
with 1–2 mL of sterile PBS. Biofilms of S. aureus were scraped off with a scraper, and the
absorbance was measured at 600 nm after being well suspended. A BioPhotometer D30
(Eppendorf Inc., Hamburg, Germany) was used to measure the absorbance. To determine
the ability to inhibit biofilm formation, we used untreated controls as negative controls,
and wells inoculated with baicalein (25 µg/mL) as positive controls.

https://cibersortx.stanford.edu
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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4.5. Growth Inhibition (Overlay Clear Zone) Test for S. aureus KCTC 1621

The overlay clear zone assay was performed to analyze the effects of various bacteria
isolated from normal skin samples on growth inhibition of S. aureus. C. avidum R-CH3
medium was plated onto a thin RCM agar plate and cultured for 72 h at 37 ◦C. Once
C. avidum R-CH3 was confluent, S. aureus KCTC 1621, adjusted to 104 CFU/mL, was
inoculated into 10 mL of RCM agar that had not yet solidified at 45 ◦C and was sufficiently
suspended before the medium was hardened. A hardened agar plate was anaerobically
cultured at 37 ◦C for 40 h for S. aureus KCTC 1621 and 72 h for C. avidum R-CH3 to determine
the size of the clear zone surrounding C. avidum R-CH3. PBS served as a negative control,
while triclosan served as a positive control.

4.6. Cell Culture and Treatment of Several Bacterial Supernatant Solutions

The human skin keratinocyte cell line, HaCaT, was purchased from PromoCell (Heidel-
berg, Germany). HaCaT cells were maintained at 37 ◦C in an incubator with a humidified
atmosphere of 5% CO2. HaCaT cells were cultured in DMEM supplemented with 10%
heat-inactivated fetal bovine serum and an antibiotic-antimycotic solution (100 units/mL
penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL amphotericin B) (Gibco, Waltham,
MA, USA). For S. aureus treatment, 2 × 105 HaCaT cells were seeded in 6-well plates,
incubated in an atmosphere of 5% CO2 at 37 ◦C, and cultured until they achieved 80%
confluence. After 12 h, the cells were washed once with PBS. An S. aureus dilution (adjusted
to 107 CFU/mL) was inoculated by replacing the culture medium with a fresh medium
without antibiotics. Then, the 10% conditioned bacterial supernatant was added to the cells
with a supplement-free medium at the same time as the S. aureus treatment.

4.7. Total RNA Isolation and qRT-PCR Analysis

Total RNA was isolated from HaCaT cells using TRIzol reagent (TaKaRa, Shiga, Japan)
according to the manufacturer’s instructions. In addition, cDNA was synthesized from 1 µg
total RNA using Transcription Premix (Elpis-Biotech, Daejeon, Korea) under the following
reaction conditions: 45 ◦C for 45 min and 95 ◦C for 5 min. Gene expression was quanti-
fied using qRT-PCR, and data were analyzed using StepOne PlusTM software (Applied
Biosystems, Foster City, CA, USA). qRT-PCR amplification reactions were performed using
SYBR Green PCR Master Mix with premixed ROX (Applied Biosystems). The primer pairs
(Bioneer, Daejeon, Korea) were used in the ABI 7300 Cycler (Thermo Fisher, Waltham, MA,
USA) internal reaction according to the manufacturer’s protocol. The reaction conditions
were as follows: 40 cycles for 2 min at 50 ◦C, 10 min at 95 ◦C, 10 s at 95 ◦C, and 1 min at
60 ◦C. 18S rRNA was used as an internal control.

4.8. Measurement of Pro-Inflammatory Cytokines

The pro-inflammatory cytokines IFN-γ, TNF-α, and IL-1β were measured using an
ELISA assay. HaCaT cells (6× 105) seeded in 6-well plates were pretreated with S. aureus
(1 × 107 CFU/mL) for 12 h and then treated with bacterial supernatants for 12 h. Then,
aliquots of samples (100 µL/well) were harvested from the experimental medium, and the
production of cytokines was measured using a Human ILs Quantikine ELISA kit (R&D
systems, Minneapolis, MN, USA) according to the manufacturer’s instructions.

4.9. AHR and CYP1A1 Gene Knockdown

siRNA against human AHR and CYP1A1 mRNA were synthesized commercially at
Bioneer: si-AHR (forward, 5′-CACUCAGACUACCACACAU-3′, reverse, 5′-AUGUGUGG
UAGUCUGAGUG-3′); si-CYP1A1 (forward, 5′-GCUAGGGUUAGGAGGUCCU-3′, re-
verse, 5′-AGGACCUCCUAACCCUAGC-3′). LipofectamineTM RNAiMAX (Invitrogen,
Carlsbad, CA, USA) was used to transfect siRNA oligos according to the manufacturer’s
instructions. A total of 3 × 105 HaCaT cells were seeded into 6-well plates containing
2.5 mL of antibiotic-free growth medium 24 h prior to transfection to reach a maximum of
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60% confluence at the time of transfection. Each siRNA was incubated with HaCaT cells
for 24 h, and the efficiency of gene silencing was evaluated using qRT-PCR.

4.10. Statistical Analysis

All data were tested for normality, and datasets were analyzed using one-way or two-
way analysis of variance. Post-hoc analysis was then carried out using the Bonferroni test or
Tukey’s test for comparison between pairs. Data are presented as the mean± standard error
of the mean. All statistical analyses were performed using GraphPad Prism 9 (GraphPad
Software Inc., La Jolla, CA, USA) and R-4.2.0 for Windows. For comparisons of DEGs, the
fold change value was set at greater than 2, and the p value at less than 0.05. To compare
the two groups, we used the Mann-Whitney–Wilcoxon test. Statistical significance was set
at p < 0.05.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms23179551/s1.

Author Contributions: Conceptualization, H.P.; methodology, H.P.; formal analysis, K.M., H.A. and
H.K.; investigation, E.L., H.A., H.K., C.Y., H.J. and J.-s.Y.; writing—original draft preparation, E.L.;
writing—review and editing, K.M.; visualization, E.L., B.-n.J. and S.P.; supervision, H.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by GIST, GIST Research Institute (GRI) IIBR grant, grant number
GK14740.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of the Korea Institute for Bioethical
Policy (P01-201605-31-003, 12 January 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: This study used data processed from Gene Expression Omnibus,
accession number GSE121212, to analyze gene expression. This data is freely available at https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121212, (accessed on 20 August 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cogen, A.; Nizet, V.; Gallo, R. Skin microbiota: A source of disease or defence? Br. J. Dermatol. 2008, 158, 442–455. [CrossRef]

[PubMed]
2. Zeeuwen, P.L.; Kleerebezem, M.; Timmerman, H.M.; Schalkwijk, J. Microbiome and skin diseases. Curr. Opin. Allergy Clin.

Immunol. 2013, 13, 514–520. [CrossRef] [PubMed]
3. Higaki, S.; Kitagawa, T.; Kagoura, M.; Morohashi, M.; Yamagishi, T. Predominant Staphylococcus aureus isolated from various

skin diseases. J. Int. Med. Res. 2000, 28, 187–190. [CrossRef] [PubMed]
4. Totté, J.; Van Der Feltz, W.; Hennekam, M.; van Belkum, A.; Van Zuuren, E.; Pasmans, S. Prevalence and odds of Staphylococcus

aureus carriage in atopic dermatitis: A systematic review and meta-analysis. Br. J. Dermatol. 2016, 175, 687–695. [CrossRef]
5. Byrd, A.L.; Deming, C.; Cassidy, S.K.; Harrison, O.J.; Ng, W.-I.; Conlan, S.; Program, N.C.S.; Belkaid, Y.; Segre, J.A.; Kong, H.H.

Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl. Med.
2017, 9, eaal4651. [CrossRef]

6. Marples, R.R.; Heaton, C.L.; Kligman, A.M. Staphylococcus aureus in psoriasis. Arch. Dermatol. 1973, 107, 568–570. [CrossRef]
7. Alekseyenko, A.; Perez-Perez, G.; De Souza, A.; Strober, B.; Gao, Z.; Bihan, M.; Li, K.; Methé, B.; Blaser, M. Community

differentiation of the cutaneous microbiota in psoriasis. Microbiome 2013, 1, 31. [CrossRef]
8. Ng, C.; Huang, Y.; Chu, C.; Wu, T.; Liu, S. Risks for Staphylococcus aureus colonization in patients with psoriasis: A systematic

review and meta-analysis. Br. J. Dermatol. 2017, 177, 967–977. [CrossRef]
9. Clausen, M.L.; Edslev, S.; Andersen, P.S.; Clemmensen, K.; Krogfelt, K.; Agner, T. Staphylococcus aureus colonization in atopic

eczema and its association with filaggrin gene mutations. Br. J. Dermatol. 2017, 177, 1394–1400. [CrossRef]
10. Park, H.-Y.; Kim, C.-R.; Huh, I.-S.; Jung, M.-Y.; Seo, E.-Y.; Park, J.-H.; Lee, D.-Y.; Yang, J.-M. Staphylococcus aureus colonization in

acute and chronic skin lesions of patients with atopic dermatitis. Ann. Dermatol. 2013, 25, 4104–4116. [CrossRef]
11. Bekeredjian-Ding, I.; Inamura, S.; Giese, T.; Moll, H.; Endres, S.; Sing, A.; Zähringer, U.; Hartmann, G. Staphylococcus aureus

protein A triggers T cell-independent B cell proliferation by sensitizing B cells for TLR2 ligands. J. Immunol. 2007, 178, 2803–2812.
[CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijms23179551/s1
https://www.mdpi.com/article/10.3390/ijms23179551/s1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121212
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121212
http://doi.org/10.1111/j.1365-2133.2008.08437.x
http://www.ncbi.nlm.nih.gov/pubmed/18275522
http://doi.org/10.1097/ACI.0b013e328364ebeb
http://www.ncbi.nlm.nih.gov/pubmed/23974680
http://doi.org/10.1177/147323000002800404
http://www.ncbi.nlm.nih.gov/pubmed/11014326
http://doi.org/10.1111/bjd.14566
http://doi.org/10.1126/scitranslmed.aal4651
http://doi.org/10.1001/archderm.1973.01620190044010
http://doi.org/10.1186/2049-2618-1-31
http://doi.org/10.1111/bjd.15366
http://doi.org/10.1111/bjd.15470
http://doi.org/10.5021/ad.2013.25.4.410
http://doi.org/10.4049/jimmunol.178.5.2803
http://www.ncbi.nlm.nih.gov/pubmed/17312124


Int. J. Mol. Sci. 2022, 23, 9551 19 of 21

12. Howell, M.D.; Gallo, R.L.; Boguniewicz, M.; Jones, J.F.; Wong, C.; Streib, J.E.; Leung, D.Y. Cytokine milieu of atopic dermatitis
skin subverts the innate immune response to vaccinia virus. Immunity 2006, 24, 341–348. [CrossRef] [PubMed]

13. Mallbris, L.; Carlen, L.; Wei, T.; Heilborn, J.; Nilsson, M.F.; Granath, F.; Ståhle, M. Injury downregulates the expression of the
human cathelicidin protein hCAP18/LL-37 in atopic dermatitis. Exp. Dermatol. 2010, 19, 442–449. [CrossRef] [PubMed]

14. Miedzobrodzki, J.; Kaszycki, P.; Bialecka, A.; Kasprowicz, A. Proteolytic activity of Staphylococcus aureus strains isolated from
the colonized skin of patients with acute-phase atopic dermatitis. Eur. J. Clin. Microbiol. Infect. Dis. 2002, 21, 269–276. [CrossRef]

15. Nakatsuji, T.; Hata, T.R.; Tong, Y.; Cheng, J.Y.; Shafiq, F.; Butcher, A.M.; Salem, S.S.; Brinton, S.L.; Rudman Spergel, A.K.;
Johnson, K. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1
randomized clinical trial. Nat. Med. 2021, 27, 700–709. [CrossRef] [PubMed]

16. Ong, P.Y.; Ohtake, T.; Brandt, C.; Strickland, I.; Boguniewicz, M.; Ganz, T.; Gallo, R.L.; Leung, D.Y. Endogenous antimicrobial
peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 2002, 347, 1151–1160. [CrossRef]

17. Hata, T.; Kotol, P.; Boguniewicz, M.; Taylor, P.; Paik, A.; Jackson, M.; Nguyen, M.; Kabigting, F.; Miller, J.; Gerber, M. History of
eczema herpeticum is associated with the inability to induce human β-defensin (HBD)-2, HBD-3 and cathelicidin in the skin of
patients with atopic dermatitis. Br. J. Dermatol. 2010, 163, 659. [CrossRef]

18. Brandt, E.B.; Sivaprasad, U. Th2 cytokines and atopic dermatitis. J. Clin. Cell. Immunol. 2011, 2, 110. [CrossRef]
19. Han, N.-R.; Oh, H.-A.; Nam, S.-Y.; Moon, P.-D.; Kim, D.-W.; Kim, H.-M.; Jeong, H.-J. TSLP induces mast cell development and

aggravates allergic reactions through the activation of MDM2 and STAT6. J. Investig. Dermatol. 2014, 134, 2521–2530. [CrossRef]
20. Hong, H.; Liao, S.; Chen, F.; Yang, Q.; Wang, D.Y. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type

2 inflammation. Allergy 2020, 75, 2794–2804. [CrossRef] [PubMed]
21. Kim, B.S.; Siracusa, M.C.; Saenz, S.A.; Noti, M.; Monticelli, L.A.; Sonnenberg, G.F.; Hepworth, M.R.; Van Voorhees, A.S.; Comeau,

M.R.; Artis, D. TSLP elicits IL-33–independent innate lymphoid cell responses to promote skin inflammation. Sci. Transl. Med.
2013, 5, 170ra16. [CrossRef]

22. Nakagawa, S.; Matsumoto, M.; Katayama, Y.; Oguma, R.; Wakabayashi, S.; Nygaard, T.; Saijo, S.; Inohara, N.; Otto, M.; Matsue,
H. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin
inflammation. Cell Host Microbe 2017, 22, 667–677. [CrossRef] [PubMed]

23. Sugaya, M. The role of Th17-related cytokines in atopic dermatitis. Int. J. Mol. Sci. 2020, 21, 1314. [CrossRef] [PubMed]
24. Noda, S.; Suárez-Fariñas, M.; Ungar, B.; Kim, S.J.; de Guzman Strong, C.; Xu, H.; Peng, X.; Estrada, Y.D.; Nakajima, S.; Honda, T.

The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization.
J. Allergy Clin. Immun. 2015, 136, 1254–1264. [CrossRef] [PubMed]

25. Cho, J.S.; Pietras, E.M.; Garcia, N.C.; Ramos, R.I.; Farzam, D.M.; Monroe, H.R.; Magorien, J.E.; Blauvelt, A.; Kolls, J.K.; Cheung,
A.L. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Investig. 2010, 120,
1762–1773. [CrossRef]

26. Mulcahy, M.; Leech, J.; Renauld, J.-C.; Mills, K.H.; McLoughlin, R. Interleukin-22 regulates antimicrobial peptide expression
and keratinocyte differentiation to control Staphylococcus aureus colonization of the nasal mucosa. Mucosal Immunol. 2016, 9,
1429–1441. [CrossRef]

27. Furue, M. Regulation of filaggrin, loricrin, and involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic implications
in atopic dermatitis. Int. J. Mol. Sci. 2020, 21, 5382. [CrossRef]

28. Nakahara, T.; Mitoma, C.; Hashimoto-Hachiya, A.; Takahara, M.; Tsuji, G.; Uchi, H.; Yan, X.; Hachisuka, J.; Chiba, T.; Esaki, H.
Antioxidant Opuntia ficus-indica extract activates AHR-NRF2 signaling and upregulates filaggrin and loricrin expression in
human keratinocytes. J. Med. Food 2015, 18, 1143–1149. [CrossRef]

29. Carballo, M.; Conde, M.; El Bekay, R.; Martın-Nieto, J.; Camacho, M.a.J.s.; Monteseirín, J.; Conde, J.; Bedoya, F.J.; Sobrino, F.
Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J. Biol. Chem. 1999,
274, 17580–17586. [CrossRef]

30. van den Bogaard, E.H.; Bergboer, J.G.; Vonk-Bergers, M.; van Vlijmen-Willems, I.M.; Hato, S.V.; van der Valk, P.G.; Schröder, J.M.;
Joosten, I.; Zeeuwen, P.L.; Schalkwijk, J. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis. J. Clin. Investig.
2013, 123, 917–927. [CrossRef]

31. Smits, J.P.H.; Ederveen, T.H.A.; Rikken, G.; van den Brink, N.J.M.; van Vlijmen-Willems, I.M.J.J.; Boekhorst, J.; Kamsteeg, M.;
Schalkwijk, J.; van Hijum, S.A.F.T.; Zeeuwen, P.L.J.M.; et al. Targeting the Cutaneous Microbiota in Atopic Dermatitis by Coal Tar
via AHR-Dependent Induction of Antimicrobial Peptides. J. Investig. Dermatol. 2020, 140, 415–424. [CrossRef] [PubMed]

32. Hirano, A.; Goto, M.; Mitsui, T.; Hashimoto-Hachiya, A.; Tsuji, G.; Furue, M. Antioxidant Artemisia princeps extract enhances the
expression of filaggrin and loricrin via the AHR/OVOL1 pathway. Int. J. Mol. Sci. 2017, 18, 1948. [CrossRef] [PubMed]

33. Tsuji, G.; Hashimoto-Hachiya, A.; Kiyomatsu-Oda, M.; Takemura, M.; Ohno, F.; Ito, T.; Morino-Koga, S.; Mitoma, C.; Nakahara, T.;
Uchi, H. Aryl hydrocarbon receptor activation restores filaggrin expression via OVOL1 in atopic dermatitis. Cell Death Dis. 2017,
8, e2931. [CrossRef] [PubMed]

34. Hashimoto-Hachiya, A.; Tsuji, G.; Murai, M.; Yan, X.; Furue, M. Upregulation of FLG, LOR, and IVL expression by Rhodiola
crenulata root extract via aryl hydrocarbon receptor: Differential involvement of OVOL1. Int. J. Mol. Sci. 2018, 19, 1654. [CrossRef]

35. Tsoi, L.C.; Rodriguez, E.; Degenhardt, F.; Baurecht, H.; Wehkamp, U.; Volks, N.; Szymczak, S.; Swindell, W.R.; Sarkar, M.K.;
Raja, K. Atopic dermatitis is an IL-13–dominant disease with greater molecular heterogeneity compared to psoriasis. J. Investig.
Dermatol. 2019, 139, 1480–1489. [CrossRef]

http://doi.org/10.1016/j.immuni.2006.02.006
http://www.ncbi.nlm.nih.gov/pubmed/16546102
http://doi.org/10.1111/j.1600-0625.2009.00918.x
http://www.ncbi.nlm.nih.gov/pubmed/19645825
http://doi.org/10.1007/s10096-002-0706-4
http://doi.org/10.1038/s41591-021-01256-2
http://www.ncbi.nlm.nih.gov/pubmed/33619370
http://doi.org/10.1056/NEJMoa021481
http://doi.org/10.1111/j.1365-2133.2010.09892.x
http://doi.org/10.4172/2155-9899.1000110
http://doi.org/10.1038/jid.2014.198
http://doi.org/10.1111/all.14526
http://www.ncbi.nlm.nih.gov/pubmed/32737888
http://doi.org/10.1126/scitranslmed.3005374
http://doi.org/10.1016/j.chom.2017.10.008
http://www.ncbi.nlm.nih.gov/pubmed/29120744
http://doi.org/10.3390/ijms21041314
http://www.ncbi.nlm.nih.gov/pubmed/32075269
http://doi.org/10.1016/j.jaci.2015.08.015
http://www.ncbi.nlm.nih.gov/pubmed/26428954
http://doi.org/10.1172/JCI40891
http://doi.org/10.1038/mi.2016.24
http://doi.org/10.3390/ijms21155382
http://doi.org/10.1089/jmf.2014.3396
http://doi.org/10.1074/jbc.274.25.17580
http://doi.org/10.1172/JCI65642
http://doi.org/10.1016/j.jid.2019.06.142
http://www.ncbi.nlm.nih.gov/pubmed/31344386
http://doi.org/10.3390/ijms18091948
http://www.ncbi.nlm.nih.gov/pubmed/28892018
http://doi.org/10.1038/cddis.2017.322
http://www.ncbi.nlm.nih.gov/pubmed/28703805
http://doi.org/10.3390/ijms19061654
http://doi.org/10.1016/j.jid.2018.12.018


Int. J. Mol. Sci. 2022, 23, 9551 20 of 21

36. Newman, A.M.; Steen, C.B.; Liu, C.L.; Gentles, A.J.; Chaudhuri, A.A.; Scherer, F.; Khodadoust, M.S.; Esfahani, M.S.; Luca, B.A.;
Steiner, D. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 2019, 37,
773–782. [CrossRef]

37. Bunikowski, R.; Mielke, M.; Skarabis, H.; Herz, U.; Bergmann, R.L.; Wahn, U.; Renz, H. Prevalence and role of serum IgE
antibodies to the Staphylococcus aureus–derived super-antigens SEA and SEB in children with atopic dermatitis. J. Allergy Clin.
Immun. 1999, 103, 119–124. [CrossRef]

38. Bhattacharjee, A.; Shukla, M.; Yakubenko, V.P.; Mulya, A.; Kundu, S.; Cathcart, M.K. IL-4 and IL-13 employ discrete signaling
pathways for target gene expression in alternatively activated monocytes/macrophages. Free. Radic. Biol. Med. 2013, 54, 1–16.
[CrossRef]

39. Furue, K.; Ito, T.; Tsuji, G.; Ulzii, D.; Vu, Y.H.; Kido-Nakahara, M.; Nakahara, T.; Furue, M. The IL-13–OVOL 1–FLG axis in atopic
dermatitis. Immunology 2019, 158, 281–286. [CrossRef]

40. Hsieh, C.-S.; Heimberger, A.B.; Gold, J.S.; O’Garra, A.; Murphy, K.M. Differential regulation of T helper phenotype development
by interleukins 4 and 10 in an alpha beta T-cell-receptor transgenic system. Proc. Natl. Acad. Sci. USA 1992, 89, 6065–6069.

41. Seder, R.A.; Paul, W.E.; Davis, M.M.; Fazekas de St Groth, B. The presence of interleukin 4 during in vitro priming determines
the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 1992, 176, 1091–1098.
[CrossRef] [PubMed]

42. Furue, M. Regulation of skin barrier function via competition between AHR axis versus IL-13/IL-4—JAK—STAT6/STAT3 axis:
Pathogenic and therapeutic implications in atopic dermatitis. J. Clin. Med. 2020, 9, 3741. [CrossRef] [PubMed]

43. Vogel, C.; Schuhmacher, U.S.; Degen, G.H.; Bolt, H.M.; Pineau, T.; Abel, J. Modulation of prostaglandin H synthase-2 mRNA
expression by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in mice. Arch. Biochem. Biophys. 1998, 351, 265–271. [CrossRef] [PubMed]

44. Lee, C.-W.; Lin, Z.-C.; Hu, S.C.-S.; Chiang, Y.-C.; Hsu, L.-F.; Lin, Y.-C.; Lee, I.-T.; Tsai, M.-H.; Fang, J.-Y. Urban particulate matter
down-regulates filaggrin via COX2 expression/PGE2 production leading to skin barrier dysfunction. Sci. Rep. 2016, 6, 27995.
[CrossRef]

45. Fritsche, E.; Schäfer, C.; Calles, C.; Bernsmann, T.; Bernshausen, T.; Wurm, M.; Hübenthal, U.; Cline, J.E.; Hajimiragha, H.;
Schroeder, P. Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for
ultraviolet B radiation. Proc. Natl. Acad. Sci. USA 2007, 104, 8851–8856. [CrossRef]

46. Furue, M.; Tsuji, G.; Mitoma, C.; Nakahara, T.; Chiba, T.; Morino-Koga, S.; Uchi, H. Gene regulation of filaggrin and other skin
barrier proteins via aryl hydrocarbon receptor. J. Dermatol. Sci. 2015, 80, 83–88. [CrossRef]

47. Furue, M.; Hashimoto-Hachiya, A.; Tsuji, G. Antioxidative Phytochemicals Accelerate Epidermal Terminal Differentiation via the
AHR-OVOL1 Pathway: Implications for Atopic Dermatitis. Acta Derm.-Venereol. 2018, 98, 918–923. [CrossRef]

48. Fyhrquist, N.; Muirhead, G.; Prast-Nielsen, S.; Jeanmougin, M.; Olah, P.; Skoog, T.; Jules-Clement, G.; Feld, M.; Barrientos-
Somarribas, M.; Sinkko, H. Microbe-host interplay in atopic dermatitis and psoriasis. Nat. Commun. 2019, 10, 1–15. [CrossRef]

49. Paternoster, L.; Savenije, O.E.; Heron, J.; Evans, D.M.; Vonk, J.M.; Brunekreef, B.; Wijga, A.H.; Henderson, A.J.; Koppelman, G.H.;
Brown, S.J. Identification of atopic dermatitis subgroups in children from 2 longitudinal birth cohorts. J. Allergy Clin. Immun.
2018, 141, 964–971. [CrossRef]

50. Guttman-Yassky, E.; Bissonnette, R.; Ungar, B.; Suárez-Fariñas, M.; Ardeleanu, M.; Esaki, H.; Suprun, M.; Estrada, Y.; Xu, H.; Peng,
X. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J. Allergy Clin.
Immun. 2019, 143, 155–172. [CrossRef]

51. Takemura, M.; Nakahara, T.; Hashimoto-Hachiya, A.; Furue, M.; Tsuji, G. Glyteer, soybean tar, impairs IL-4/Stat6 signaling in
murine bone marrow-derived dendritic cells: The basis of its therapeutic effect on atopic dermatitis. Int. J. Mol. Sci. 2018, 19, 1169.
[CrossRef] [PubMed]

52. Tsuji, G.; Takahara, M.; Uchi, H.; Takeuchi, S.; Mitoma, C.; Moroi, Y.; Furue, M. An environmental contaminant, benzo (a) pyrene,
induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling
pathway. J. Dermatol. Sci. 2011, 62, 42–49. [CrossRef]

53. Tanaka, Y.; Uchi, H.; Hashimoto-Hachiya, A.; Furue, M. Tryptophan photoproduct FICZ upregulates IL1A, IL1B, and IL6
expression via oxidative stress in keratinocytes. Oxidative Med. Cell. Longev. 2018, 2018, 9298052. [CrossRef] [PubMed]

54. Han, L.-L.; Xie, L.-P.; Li, L.-H.; Zhang, X.-W.; Zhang, R.-Q.; Wang, H.-Z. Reactive oxygen species production and Bax/Bcl-2
regulation in honokiol-induced apoptosis in human hepatocellular carcinoma SMMC-7721 cells. Environ. Toxicol. Pharmacol. 2009,
28, 97–103. [CrossRef] [PubMed]

55. Perlman, H.; Zhang, X.; Chen, M.W.; Walsh, K.; Buttyan, R. An elevated bax/bcl-2 ratio corresponds with the onset of prostate
epithelial cell apoptosis. Cell Death Differ. 1999, 6, 48–54. [CrossRef]

56. Uberoi, A.; Bartow-McKenney, C.; Zheng, Q.; Flowers, L.; Campbell, A.; Knight, S.; Chan, N.; Wei, M.; Lovins, V.; Bugayev, J.; et al.
Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. J. Investig.
Dermatol. 2021, 141, S34. [CrossRef]

57. Rademacher, F.; Simanski, M.; Hesse, B.; Dombrowsky, G.; Vent, N.; Glaser, R.; Harder, J. Staphylococcus epidermidis Activates
Aryl Hydrocarbon Receptor Signaling in Human Keratinocytes: Implications for Cutaneous Defense. J. Innate Immun. 2019, 11,
125–135. [CrossRef] [PubMed]

58. Simon, H.-U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000, 5,
415–418. [CrossRef]

http://doi.org/10.1038/s41587-019-0114-2
http://doi.org/10.1016/S0091-6749(99)70535-X
http://doi.org/10.1016/j.freeradbiomed.2012.10.553
http://doi.org/10.1111/imm.13120
http://doi.org/10.1084/jem.176.4.1091
http://www.ncbi.nlm.nih.gov/pubmed/1328464
http://doi.org/10.3390/jcm9113741
http://www.ncbi.nlm.nih.gov/pubmed/33233866
http://doi.org/10.1006/abbi.1997.0555
http://www.ncbi.nlm.nih.gov/pubmed/9514655
http://doi.org/10.1038/srep27995
http://doi.org/10.1073/pnas.0701764104
http://doi.org/10.1016/j.jdermsci.2015.07.011
http://doi.org/10.2340/00015555-3003
http://doi.org/10.1038/s41467-019-12253-y
http://doi.org/10.1016/j.jaci.2017.09.044
http://doi.org/10.1016/j.jaci.2018.08.022
http://doi.org/10.3390/ijms19041169
http://www.ncbi.nlm.nih.gov/pubmed/29649105
http://doi.org/10.1016/j.jdermsci.2010.10.017
http://doi.org/10.1155/2018/9298052
http://www.ncbi.nlm.nih.gov/pubmed/30595799
http://doi.org/10.1016/j.etap.2009.03.005
http://www.ncbi.nlm.nih.gov/pubmed/21783988
http://doi.org/10.1038/sj.cdd.4400453
http://doi.org/10.1016/j.jid.2021.02.211
http://doi.org/10.1159/000492162
http://www.ncbi.nlm.nih.gov/pubmed/30176668
http://doi.org/10.1023/A:1009616228304


Int. J. Mol. Sci. 2022, 23, 9551 21 of 21

59. Mitamura, Y.; Nunomura, S.; Nanri, Y.; Ogawa, M.; Yoshihara, T.; Masuoka, M.; Tsuji, G.; Nakahara, T.; Hashimoto-Hachiya, A.;
Conway, S. The IL-13/periostin/IL-24 pathway causes epidermal barrier dysfunction in allergic skin inflammation. Allergy 2018,
73, 1881–1891. [CrossRef]

60. Mitamura, Y.; Nunomura, S.; Furue, M.; Izuhara, K. IL-24: A new player in the pathogenesis of pro-inflammatory and allergic
skin diseases. Allergol. Int. 2020, 69, 405–411. [CrossRef]

61. Hurrell, B.P.; Shafiei Jahani, P.; Akbari, O. Social networking of group two innate lymphoid cells in allergy and asthma. Front.
Immunol. 2018, 9, 2694. [CrossRef] [PubMed]

62. Salimi, M.; Barlow, J.L.; Saunders, S.P.; Xue, L.; Gutowska-Owsiak, D.; Wang, X.; Huang, L.-C.; Johnson, D.; Scanlon, S.T.;
McKenzie, A.N. A role for IL-25 and IL-33–driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 2013, 210,
2939–2950. [CrossRef] [PubMed]

63. Gilliet, M.; Soumelis, V.; Watanabe, N.; Hanabuchi, S.; Antonenko, S.; de Waal-Malefyt, R.; Liu, Y.-J. Human dendritic cells
activated by TSLP and CD40L induce proallergic cytotoxic T cells. J. Exp. Med. 2003, 197, 1059–1063. [CrossRef] [PubMed]

64. Lan, F.; Zhang, N.; Holtappels, G.; De Ruyck, N.; Krysko, O.; Van Crombruggen, K.; Braun, H.; Johnston, S.L.; Papadopoulos,
N.G.; Zhang, L. Staphylococcus aureus induces a mucosal type 2 immune response via epithelial cell–derived cytokines. Am. J.
Respir. Crit. Care Med. 2018, 198, 452–463. [CrossRef] [PubMed]

65. Furue, M.; Furue, K.; Tsuji, G.; Nakahara, T. Interleukin-17A and keratinocytes in psoriasis. Int. J. Mol. Sci. 2020, 21, 1275.
[CrossRef] [PubMed]

66. Guttman-Yassky, E.; Brunner, P.M.; Neumann, A.U.; Khattri, S.; Pavel, A.B.; Malik, K.; Singer, G.K.; Baum, D.; Gilleaudeau, P.;
Sullivan-Whalen, M. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic
dermatitis inadequately controlled by conventional treatments: A randomized, double-blind, phase 2a trial. J. Am. Acad. Dermatol.
2018, 78, 872–881. [CrossRef]

67. Boniface, K.; Bernard, F.-X.; Garcia, M.; Gurney, A.L.; Lecron, J.-C.; Morel, F. IL-22 inhibits epidermal differentiation and induces
pro-inflammatory gene expression and migration of human keratinocytes. J. Immunol. 2005, 174, 3695–3702. [CrossRef]

68. Kobayashi, J.; Inai, T.; Morita, K.; Moroi, Y.; Urabe, K.; Shibata, Y.; Furue, M. Reciprocal regulation of permeability through a
cultured keratinocyte sheet by IFN-γ and IL-4. Cytokine 2004, 28, 186–189. [CrossRef]

69. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [CrossRef]
70. Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and

HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [CrossRef]
71. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence align-

ment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef] [PubMed]
72. Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 1–13. [CrossRef]

[PubMed]
73. Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contaminant

sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 1–14. [CrossRef] [PubMed]
74. McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data.

PLoS ONE 2013, 8, e61217.
75. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome

Biol. 2014, 15, 1–21. [CrossRef]
76. Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic

features. Bioinformatics 2014, 30, 923–930. [CrossRef]

http://doi.org/10.1111/all.13437
http://doi.org/10.1016/j.alit.2019.12.003
http://doi.org/10.3389/fimmu.2018.02694
http://www.ncbi.nlm.nih.gov/pubmed/30524437
http://doi.org/10.1084/jem.20130351
http://www.ncbi.nlm.nih.gov/pubmed/24323357
http://doi.org/10.1084/jem.20030240
http://www.ncbi.nlm.nih.gov/pubmed/12707303
http://doi.org/10.1164/rccm.201710-2112OC
http://www.ncbi.nlm.nih.gov/pubmed/29768034
http://doi.org/10.3390/ijms21041275
http://www.ncbi.nlm.nih.gov/pubmed/32070069
http://doi.org/10.1016/j.jaad.2018.01.016
http://doi.org/10.4049/jimmunol.174.6.3695
http://doi.org/10.1016/j.cyto.2004.08.003
http://doi.org/10.1093/bioinformatics/bty560
http://doi.org/10.1038/s41587-019-0201-4
http://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://doi.org/10.1186/s13059-019-1891-0
http://www.ncbi.nlm.nih.gov/pubmed/31779668
http://doi.org/10.1186/s40168-018-0605-2
http://www.ncbi.nlm.nih.gov/pubmed/30558668
http://doi.org/10.1186/s13059-014-0550-8
http://doi.org/10.1093/bioinformatics/btt656

	Introduction 
	Results 
	Staphylococcus hominis and Cutibacterium avidum Significantly Inhibit the Growth of SA-Derived Biofilms 
	Characteristics of AD- and Pso-Induced Immune Alterations in Response to the Reduction in S. hominis Abundance 
	Immune Suppression Mediated by SA-Derived Mechanisms in C. avidum Is Similar to S. hominis 
	The C. avidum R-CH3 Strain Exerts Greater Effects on SA-Derived Th2-Biased Cytokines than the S. hominis R9 Strain 
	C. avidum R-CH3 Can Inhibit Intracellular ROS-Induced Apoptosis via AhR/Nrf2 Dual Signaling 
	C. avidum R-CH3 Induces Epidermal Terminal Differentiation via the AhR Signaling Pathway 

	Discussion 
	Materials and Methods 
	Transcriptomic Data Analysis 
	Human Skin Sample Collection 
	Microbial Sample Isolation and 16S rRNA PCR Amplification 
	Measurement of S. aureus KCTC 1621 Biofilm Formation Inhibition 
	Growth Inhibition (Overlay Clear Zone) Test for S. aureus KCTC 1621 
	Cell Culture and Treatment of Several Bacterial Supernatant Solutions 
	Total RNA Isolation and qRT-PCR Analysis 
	Measurement of Pro-Inflammatory Cytokines 
	AHR and CYP1A1 Gene Knockdown 
	Statistical Analysis 

	References

