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a b s t r a c t 

Ischemia/reperfusion (I/R) injury is marked by the restriction and subsequent restoration of 

blood supply to an organ. This process can exacerbate the initial tissue damage, leading to 

further disorders, disability, and even death. Extracellular vesicles (EVs) are crucial in cell 

communication by releasing cargo that regulates the physiological state of recipient cells. 

The development of EVs presents a novel avenue for delivering therapeutic agents in I/R 

therapy. The therapeutic potential of EVs derived from stem cells, endothelial cells, and 

plasma in I/R injury has been actively investigated. Therefore, this review aims to provide 

an overview of the pathological process of I/R injury and the biophysical properties of EVs. 

We noted that EVs serve as nontoxic, flexible, and multifunctional carriers for delivering 

therapeutic agents capable of intervening in I/R injury progression. The therapeutic efficacy 

of EVs can be enhanced through various engineering strategies. Improving the tropism of 

EVs via surface modification and modulating their contents via preconditioning are widely 

investigated in preclinical studies. Finally, we summarize the challenges in the production 

and delivery of EV-based therapy in I/R injury and discuss how it can advance. This review 

will encourage further exploration in developing efficient EV-based delivery systems for I/R 

treatment. 

© 2024 Shenyang Pharmaceutical University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

1. Introduction 

Ischemia can affect diverse organs, leading to conditions
including ischemic stroke (IS) and myocardial infarction (MI).
To prevent irreversible tissue damage in an ischemic organ,
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restoring blood supply to it is essential. Paradoxically, rapid
reperfusion of the infarcted organ can induce cell death
while exacerbating the extent of injury—a phenomenon
known as ischemia/reperfusion (I/R) injury [ 1 ]. Since its initial
recognition in the 1960s, I/R injury has been observed in
various conditions, including acute myocardial infarction,
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troke, and organ transplantation. I/R exacerbates tissue 
amage and contributes to numerous pathologies [ 2 ].
urrently, it is one of the leading causes of disability and 

eath, accounting for approximately 30% of deaths in 

atients with ischemia [ 3 ]. Several therapeutic approaches 
ave been suggested to enhance organ resilience against 

/R injury. In the clinical treatment of myocardial I/R 

njury, primary percutaneous coronary intervention and 

hrombolytic agents are pivotal steps in addressing ischemic 
amage [ 3 ]. Certain ischemic preconditioning strategies 
ave been suggested to mitigate tissue injury. Nonetheless,

heir feasibility for clinical application remains limited 

 4 ]. In ischemic stroke, small molecule drugs such as 
europrotective agents and antioxidants are currently 
ndergoing preclinical investigation [ 5–8 ]. However, owing to 
he complexity of the pathological processes and underlying 

echanisms involved in I/R injury, the therapeutic benefits 
f these approaches remain limited [ 5 ]. Additionally, the 

ack of distribution specificity and potential side effects 
urther restrict the clinical applications of these treatments.
urrently, neither pharmacological nor non-pharmacological 

nterventions have proven entirely effective in shielding 
rgans from I/R injury. Consequently, preserving organ 

unction remains a challenge for physicians, necessitating 
he need for a synergistic, highly specific, and nontoxic 
herapy. 

The emergence of extracellular vesicles (EVs) represents 
 promising avenue for I/R therapy. EVs are nanoscale 
eterogeneous particles characterized by a lipid bilayer- 
nclosed structure and membrane proteins comparable to 
ell membranes [ 9 ]. Moreover, EVs contain various bioactive 
olecules in their lumen, including nucleic acids and 

roteins [ 10 ]. After secretion, EVs can circulate in body fluids 
nd it can subsequently be internalized by recipient cells.
ubstantial evidence indicates that EVs are implicated in 

arious physiological processes, such as immune regulation 

nd angiogenesis, as well as pathological processes, including 
eurological disorders [ 11–13 ]. The unique capacity of EVs 

o transfer bioactive cargo and regulate cell conditions 
nspires further research into their potential for delivering 
herapeutic agents in disease treatment. The diverse cargo 
arried by EVs can regulate multiple signaling pathways 
n recipient cells, effectively modulating cell states and 

ntervening in disease progression. Additionally, EVs present 
everal advantages as drug delivery vehicles. First, EVs can 

cquire a similar repertoire of surface receptors as their 
arent cells and inherit similar homing patterns [ 14 ]. For 
xample, endothelial colony-forming cell-derived exosomes 
an target the ischemic kidney via exosomal CXC chemokine 
eceptor type 4 (CXCR4) [ 15 ]. Specially, EVs can penetrate 
he blood-brain barrier (BBB), enabling them to effectively 
ransport therapeutic agents to cerebral injury sites [ 16 ,17 ].
he stable structure of EVs shields encapsulated cargo from 

egradation, while their presence in body fluid exhibits 
ontoxicity and low immunogenicity. Thus, EVs have emerged 

s a promising therapeutic option for various diseases, such 

s rheumatoid arthritis [ 18 ], neurodegenerative diseases [ 19 ],
ardiovascular disorders [ 10 ], and cancer [ 20 ]. In recent years,
umerous studies have highlighted the potential of EVs in I/R 

reatment. They can bolster the functional recovery of injured 
issue by stimulating angiogenesis, influencing immune cell 
olarization, and preventing cell apoptosis [ 21 ,22 ]. 

While native EVs have demonstrated the capacity to 
licit functional responses in target cells, they encounter 
hallenges in areas including active targeting and bioactivity.
o address these challenges and boost EV therapeutic efficacy,
everal engineering strategies have been devised. Besides 
heir inherent properties, EVs can be engineered to target 
pecific tissues or carry exogenous substances. Therefore,
his review aims to provide an overview of the pathological 
rocess involved in I/R injury and the biophysical properties 
f EVs. Subsequently, the potential of EVs derived from 

iverse cell origins for delivering therapeutic agents and the 
hallenges associated with native EVs are discussed in this 
eview. The findings could help elucidate the pivotal roles of 

odification strategies in improving EV targeting ability and 

odulating their contents. We also examine and compare 
arious modification strategies in bioengineered EVs. Finally,
he challenges of EV-based therapy in I/R injury and avenues 
or advancing it are discussed. 

. Overview of I/R injury 

nderstanding the pathophysiology of I/R is crucial for 
ptimizing the efficacy of EV-based therapy. I/R injury occurs 
hen blood flow to an organ is restricted and subsequently 

eestablished. For example, IS arises from sudden blood flow 

nterruption in the middle cerebral artery, while myocardial 
/R injury is triggered by coronary vessel obstruction [ 23 ].
he prompt restoration of blood supply to the ischemic 
rea through thrombolytic approaches represents the most 
ffective clinical intervention. However, reperfusion itself 
an exacerbate cellular damage—a phenomenon known as 
/R injury. Despite variations in the underlying causes of 
hese diseases, accumulating evidence suggests a common 

athophysiology underlying I/R disease progression. The 
undamental pathophysiology of I/R includes oxidative stress,
nflammation, and microvascular dysfunction [ 2 ]. Recent 
tudies indicate several signaling pathways, such as RNA 

nd protein profile alterations, are associated with I/R injury 
rogress and recovery. These proteins and RNA are involved 

n cell survival, immune regulation, and angiogenesis,
uggesting potential therapeutic targets for I/R. 

The overall injury caused by I/R comprises two 
omponents: ischemic and reperfusion injuries. Ischemia 
estricts oxygen availability and nutrient supply to the organ,
esulting in a hypoxic microenvironment. Hypoxia can impair 
he electron transport chain in mitochondria and induce 
naerobic metabolism [ 24 ]. Anaerobic metabolism leads 
o reduced production of cellular antioxidative agents and 

denosine triphosphate (ATP), resulting in an accumulation of 
eactive oxygen species (ROS) [ 25 ]. Xanthine oxidoreductases 
lay a central role in the ROS production. The decrease 

n ATP levels leads to the dysfunction of calcium pumps,
onsequently activating calcium-dependent protease.
hese proteases can convert xanthine dehydrogenase 

nto xanthine oxidoreductase. Upon restoring blood flow 

o ischemic tissue, xanthine oxidoreductase catalyzes 
ypoxanthine conversion to uric acid in the presence of 
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elevated oxygen levels [ 26 ], accompanied by massive ROS
production. ROS accumulation is toxic to cell metabolism
and can activate cell death programs. Hypoxia in vascular
tissue also impairs the endothelial barrier and increases
vascular permeability. Additionally, I/R injury induces
sterile inflammation. This inflammation is marked by
the accumulation and infiltration of inflammatory cells
alongside the production of pro-inflammatory cytokines
[ 27 ]. In myocardial I/R injury, monocytes are recruited
from a splenic reservoir to the injured tissue, where they
differentiate into macrophages [ 28 ,29 ]. Macrophages can
polarize into M1/M2 phenotypes based on the inflammatory
state. The M1 macrophage phenotype is associated with
pro-inflammatory traits, while the M2 phenotype is linked to
tissue healing and can downregulate M1 activation-related
cytokines [ 30 ]. Moreover, vascular endothelial cells (ECs)
and microvascular dysfunction contribute to I/R injury.
Cardiac microvascular endothelial cells (CMECs) swell,
promoting leukocyte-endothelial cell adhesion and platelet-
leukocyte aggregation. This impedes blood and nutrients
diffusion, further exacerbating microvascular dysfunction
[ 31 ]. Additionally, the gap junction structure between CMECs
becomes leaky, resulting in microvascular leakage [ 32 ] and,
consequently, dysfunction of endothelial cell barriers. 

Regarding cerebral I/R injury, significant alterations are
observed in microRNA (miRNA) expression profiles. A study
revealed an increase and decrease in 15 miRNAs and 44
miRNA expression in cerebral I/R injury, respectively [ 33 ].
Several miRNA groups have been implicated in regulating
cell survival, inflammation, and angiogenesis [ 34 ,35 ]. For
example, miR-188-5p expression increases in cerebral I/R
injury. It regulates the pathological network by interacting
with the RNA-binding protein Lin28. Silencing miR-188-5p
mitigates neuronal cell death and inflammation in cerebral I/R
injury [ 34 ]. Other miRNAs, such as miR-143, miR-125b, miR-
181b, miR-210, and miR-4732-3p contribute to angiogenesis
following I/R injury [ 36–38 ]. Furthermore, miR-1-3p, miR-22-
3p, miR-31, miR-137, and miR-206 are crucial in suppressing
cell apoptosis [ 39–42 ]. miR-124-3p, miR-126, and miR-223-
3p contribute to alleviating inflammatory response [ 43–45 ].
Although proteins have been studied less extensively than
microRNAs, they are also associated with I/R progression. For
instance, heat shock protein 90 can be activated by hypoxia,
which is associated with the suppression of the complement
system, thereby regulating the inflammatory response in I/R
[ 46 ,47 ]. Collectively, these miRNAs and proteins involved in
I/R injury pathology have crucial clinical implications, serving
as potential therapeutic targets. Additionally, accumulating
evidence indicates that these essential miRNAs and proteins
are selectively transported in exosomes [ 48 ,49 ]. Hence, EVs
intrinsically possess the potential to regulate I/R pathological
development. 

3. Properties of EVs 

EVs are heterogeneous, lipid-bilayer-enclosed vesicles that
play crucial roles as transfer factors in various biological
processes. Various cell types secrete EVs under normal
or pathological conditions. Owing to their distinctive
composition and biological functions, EVs are utilized as
carriers for delivering therapeutic agents. 

The term “Extracellular Vesicles” comprises a
heterogeneous population [ 50 ]. Based on their size and
biogenesis, EVs can be categorized into four major subtypes:
exosomes (30–150 nm), microvesicles (50–1,000 nm), apoptotic
bodies (800–5,000 nm), and oncosomes (1–10 mm) [ 51 ].
However, this classification remains contentious. The
International Society for Extracellular Vesicles suggests
categorizing EVs into two main groups: small EVs (sEVs,
< 200 nm in diameter) and large EVs (lEVs, > 200 nm in
diameter) [ 50 ]. Regardless of the classification method, the
size of EVs is a vital parameter in their characterization.
The in vivo fate of EVs is also shaped by their size, lEVs ( >
200 nm) tend to accumulate in the liver and spleen, while
sEVs can traverse leaky endothelial barriers and accumulate
in ischemic tissue [ 52 ,53 ]. 

Proteomic evidence indicates that tetraspanins,
particularly CD63, CD81 and CD9, are highly expressed in
EVs derived from various donor cells [ 54 ]. These tetraspanins
typically serve as molecular markers of EVs. Moreover,
EVs carry parent cell-specific signatures, enabling specific
interactions with target cells. EV cavities encapsulate various
proteins and RNAs, including miRNA, long noncoding RNAs
(lncRNA), transfer RNA and ribosomal RNA [ 55 ]. These cargos
are fundamental for intercellular communication, reflecting
the physiological properties of the parent cells. EVs originating
from different cell sources exhibit significant variations in
the miRNA types and quantities. However, the mechanism
underlying EV cargo sorting remains incompletely understood
[ 56 ]. 

Once EVs reach their recipient cells, they can
be internalized via various mechanisms, including
micropinocytosis, phagocytosis, clathrin-mediated endo-
cytosis (CME), and possibly direct fusion [ 57 ,58 ]. Several
factors, including the size of EVs, can influence the
routes of internalization. Studies suggest that sEVs (up
to 200 nm) are primarily internalized via CME, while lEVs
tend to be taken up by cells through macropinocytosis
and phagocytosis [ 59 ]. The surface components of EVs also
influence their internalization. Proteins on EV membranes,
such as tetraspanins, lectins, and integrins, participate in EV
uptake by interacting with membrane receptors on target
cells [ 57 ,60 ]. Therefore, preserving the intact membrane EV
structure is essential. Other factors, including surface charge
and the proteins and glycoproteins on target cells, are likely to
affect the uptake routes of EVs [ 61 ]. However, further research
is warranted to understand the mechanisms underlying EV
cellular uptake. After endocytosis, EVs reach multivesicular
endosomes, releasing their contents by fusing with the
endosome membrane. However, in most cases, multivesicular
endosomes are targeted to lysosomes. Alternatively, EVs
that enter receptor cells via membrane fusion can release
their contents directly into the cytoplasm. This direct fusion
route is more efficient for cargo delivery. Once the cargo
enters the cell, it can regulate the physiological state of
the target cells. EVs have been found to contribute to cell
survival, inflammation, neurogenesis, angiogenesis, and
fibrosis regarding I/R injury, depending on their origin and
composition ( Fig. 1 ) [ 36 ,48 ,62 ]. 
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Fig. 1 – The structure of extracellular vesicles (EVs) and proposed mechanisms of EV uptake by target cells. 
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. Native EVs for delivering therapeutic 
gents in I/R injury 

V biophysical properties have inspired further investigation 

nto their therapeutic applications. Acting as natural carriers 
f genetic material, EVs have a highly stable structure that 
an protect therapeutic agents from endogenous enzymatic 
egradation. As heterogeneous vesicles, EVs are characterized 

y low immunogenicity and high biocompatibility. Compared 

o cell-based therapy, such as stem cell implantation, EVs 
ircumvent the risks associated with tumorigenicity and 

bnormal tissue growth [ 63 ]. EV therapeutic potential is 
rimarily attributed to their ability to transport proteins and 

NAs. Furthermore, EVs can be derived from varying parent 
ells depending on the treatment intent. EVs derived from 

ifferent cell origins carry diverse cargo that reflects the 
hysiological state of the parent cells. Here, we describe the 
herapeutic effects of native EVs from different parent cells 
nd the distinct cargo they carry ( Table 1 ). 

.1. EVs from stem cells 

tem cell-based therapy is a vital component of regenerative 
edicine for ischemic heart disease and ischemic stroke,

xhibiting marked potential in tissue repair. Our previous 
esearch revealed the therapeutic potential of stem cell- 
ased therapy in IS [ 64 ]. Stem cells were initially assumed 

o exert their therapeutic effects by engrafting at the injured 

ite and subsequently differentiating into mature functional 
ells. However, recent studies have highlighted the paracrine 
apability of stem cells [ 65 ,66 ]. As paracrine factors of stem 

ells, EVs exert similar biological functions in restoring 
issue microenvironment homeostasis [ 20 ,67 ]. Additionally,
ompared to whole cell-based therapy, EVs offer superior 
dvantages, such as lower immunogenicity and the inability 
o form tumors directly [ 65 ]. Therefore, stem cell-derived 

Vs serve as potential cell-free alternatives to whole-cell 
herapy. Their therapeutic effects are extensively investigated 

n ischemic heart disease and ischemic stroke. 
Currently, mesenchymal stem cell-derived EVs (MSC- 

Vs) are the most extensively researched stem cell-derived 

Vs. MSC-EVs demonstrate therapeutic potential in anti- 
nflammation, angiogenesis, neuroprotection, and functional 
ecovery by delivering bioactive cargo ( Fig. 2 A). For example,
SC-EVs are enriched with therapeutic microRNAs, such 

s miR-125a-5p and miR-200a-3p, which alleviate I/R injury 
 68 ,69 ]. For example, miR-125a-5p, one of the most highly 
xpressed miRNAs in MSC-EVs, protects the heart against 
/R injury by modulating macrophage polarization ( Fig. 2 B–
 D). Additionally, miR-125a-5p regulates the proliferation and 

igration of vascular ECs, indicating an angiogenic effect 
 Fig. 2 E) [ 70 ]. Proteins are another crucial component of
Vs in injury recovery. MSC-EVs encapsulate growth factors 
ecreted by MSCs, such as hepatocyte growth factor and 

ascular endothelial growth factor (VEGF), to regulate vascular 
emodeling and EC proliferation [ 22 ,71 ]. Proteomic analysis 
evealed significant clustering of glycolytic enzymes such 

s GAPDH, PGK, PGM, ENO, PKm2 and PFKFB3 in MSC- 
Vs, potentially compensating for glycolytic deficits and 

acilitating ATP production in I/R injury [ 72 ]. However, protein 

argos in MSC-EVs are less studied than miRNA, warranting 
urther investigation into their therapeutic effects. 

.2. EVs from endothelial cells 

Cs are crucial for vascular homeostasis, acting as barriers 
ithin the vasculature [ 73 ]. ECs release EVs that transmit 
essages to recipient cells. In ischemic injury, endothelial 

ell-derived extracellular vesicles (EEVs) mitigate tissue 
amage and modulate inflammatory cells in peripheral 
lood [ 74 ]. For example, EEVs alleviate cardiomyocyte cell 
eath through the activation of the ERK1/2 pathway in a 
yocardial I/R injury model [ 75 ]. Further research revealed 

hat EEVs exert their protective effect by directly delivering 
NA and protein cargo. A study demonstrated that EVs derived 
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Table 1 – Native EVs for treatment of I/R injury. 

EV source Type Cargo Disease Model Function Ref. 

ADSC sEV miR-221,miR-222, miR-31 MI/R Mouse Inhibit cardiomyocyte apoptosis, 
promote angiogenesis and tube 
formulation 

[ 155 ] 

ADSC sEV miR-22-3p, miR-25, miR-31, 
miR-760-3p, 

MCAO/R Mouse Inhibit neural cell apoptosis, neuron 
ferroptosis and autophagic flux 

[ 41 ,156 ] 

BMSC sEV miR-132, miR-486-5p, 
miR-25-3p, lncR-Mir9-3hg 

MI/R Mouse Inhibit cardiomyocyte apoptosis, 
suppress cardiomyocyte ferroptosis, 
suppress cytokine expression 

[ 157 ,158 ] 

BMSC Exosome miR-150-5p, miR-193b-5p, 
miR-455-3p, lncR-ZFAS1, 
lncR-KLF3 

MCAO/R Rat Reduce neural cell pyroptosis, 
oxidative stress and inflammation, 
promote M2 macrophage 
polarization 

[ 159 ] 

ESC sEV TGF- β, Smad2, Smad4, MCAO/R Mouse Modulate neuroinflammation, [ 160 ] 
EC EV miR-129, MMP-2, MMP-9 MI/R Mouse Relieve inflammatory injury, inhibit 

cardiomyocyte apoptosis, improve 
migration and tubulogenesis 

[ 77 ] 

EC sEV miR-206, miR-1-3p, miR-126 MCAO/R Mouse Inhibit neural cell apoptosis, 
promote M2 macrophage 
polarization, induce capillary tube 
formation 

[ 42 ,44 ] 

Serum Exosome miR-124-3p, HSP70 MCAO/R Mouse Attenuat BBB deterioration BBB, 
prevent mitochondria damage 

[ 43 ] 

Serum EV miR-21-5p, miR-23a, 
miR-130a-3p, miR-142, 
miR-223-3p, miR-765, EGF, IGF-1 

MI/R Mouse Stimulate angiogenesis, inhibit 
cardiomyocyte apoptosis, reduce 
immoderate autophagy 

[ 161 ] 

MI/R, myocardial ischemia/reperfusion injury; MCAO/R, middle cerebral artery occlusion reperfusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from human umbilical vein endothelial cells carry miR-129,
which mitigates inflammatory injury in mice myocardial
I/R models [ 76 ]. EEVs contain a profile of proteins that are
related to antioxidants, glycolysis, cellular redox homeostasis,
and calcium homeostasis. Additionally, the cardioprotective
proteins in EEVs can repair the cellular proteome of I/R-
injured human cardiac myocytes toward their uninjured state
[ 77 ]. 

4.3. EVs from plasma 

Circulating exosomes are crucial in the cardioprotective
effect of remote ischemic preconditioning. Exosomes
collected from plasma during the late phase of remote
ischemic preconditioning demonstrate protective effects
in myocardial I/R injury [ 78 ]. Studies show the therapeutic
potential of plasma-derived EVs in myocardial and cerebral
I/R injury. This protective effect is not attained through
internalization by primary cardiomyocytes. Moreover, the
heat shock protein 70 (HSP70) on the EV surface stimulates
endothelial toll-like receptor 4 (TLR4) signaling through
receptor-ligand interaction [ 79 ]. This TLR4 pathway activation
in cardiomyocytes triggers downstream signaling involving
ERK1/2 and p38MAPK, phosphorylating cardioprotective
effector proteins [ 79 ]. The interaction between HSP70 and
TLR4 improves lateral migration across the BBB in cerebral
I/R injury [ 80 ]. Additionally, exosomal HSP70 effectively
inhibits ROS-mediated mitochondrial apoptosis [ 80 ,81 ]. These
findings suggest the crucial therapeutic role of exosomal
HSP70 in I/R injury. Several miRNAs in plasma-derived EVs
associated with therapeutic functions, such as miR-130a-3p
and miR-126a-3p, have been identified [ 82 ,83 ]. miR-130a-3p
carried by plasma-derived EVs reduces excessive autophagy
in cardiomyoblasts by inhibiting ATG16L1 [ 83 ]. 

These studies highlight the potential of native EVs in
treating ischemic disease. EV function and content are
determined by the parent cells. Nevertheless, the specific EV
type optimal for I/R treatment remains undetermined. EVs,
as key carriers of bioactive cargo, can modulate pathological
processes of I/R injury. However, their potential benefits
in clinical settings remain incompletely achieved. Hence,
certain limitations must be addressed before EVs can be
translated into practical applications. For example, the extent
of functional improvement is limited following the systemic
injection of unmodified EVs [ 84 ]. EVs tend to accumulate in
the organs of the reticuloendothelial system (RES), with the
highest concentrations found in the liver, lungs, kidneys, and
spleen [ 10 ]. Consequently, only a few exosomes concentrate
in the injured areas during cerebral and myocardial ischemia
following systemic administration. Moreover, the cargo profile
of natural EVs is influenced by parent cell conditions, leading
to uncontrollable therapeutic outcomes [ 85 ]. These challenges
could be addressed through the application of engineering
technologies aimed at enhancing the properties of native EVs.

5. Engineering strategies of EVs in I/R therapy 

The components and structure of EVs allow extensive
modification. Optimizing their tissue targeting and bioactive
cargo loading can significantly enhance the therapeutic
benefit of EVs ( Fig. 3 ). Several established modification
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Fig. 2 – Native MSC-EVs in I/R injury: (A) Schematic diagram of the mechanisms involved in native MSC-EVs treating I/R 

injury. Reprinted with permission from [ 154 ]. Copyright 2023, PMC. (B) The microRNA expression patterns of MSC-Exos are 
characterized by enrichment of miR-125a-5p compared to exosomes derived from mouse cardiac fibroblasts (FB-Exos). (C) 
MSC-Exo reversed the I/R-induced adverse myocardial remodeling. (D) miR-125a-5p regulated the polarization of 
macrophages by declining M1 macrophage phenotype and increasing M2 phenotype. (E) The tube formation of endothelial 
cells is facilitated by miR-125a-5p. Reprinted with permission from [ 68 ]. Copyright 2023, The author(s). 
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trategies used for liposomes and nanoparticles, such as cell 
embrane coating and homing peptide conjugation, can also 

e applied to EVs ( Table 2 ). Modulating bioactive cargo can 

e achieved by preconditioning the source cells or loading 
xogenous substances. 

.1. Cell membrane fusion 

ell membrane-coating is a commonly utilized technique 
n nanoparticle modification [ 86 ]. Unlike traditional ligand 

onjugation, cell membrane modification is superior in 

eplicating highly complex cellular functionalities. Thus,
ell membrane fusion proves suitable for multifunctional 
odification and is applicable in complex biological systems 
 87 ]. Membrane fusion involves mixing EVs with isolated 

ell membranes via mechanical forces [ 86 ]. Co-extrusion is a 
ommonly used method for creating membrane-hybrid EVs,
hich is achieved by co-incubating EVs with isolated cell 
embranes and extruding them several times through a 

olycarbonate membrane. A minimal amount of cargo loss 
ay occur during membrane fusion, potentially owing to 

eformation during extrusion. Some membrane fractions may 
emain on the filter, leading to potential functional protein 

oss. Limiting the number of extrusion rounds can reduce 
his loss of functional components. Selecting appropriate 
Vs and cell membrane proportion ensures the integrity and 
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Fig. 3 – Major engineering strategies of EV modification. 

Table 2 – Modification to improve the tropism of EVs. 

Modification EV source Method Disease Model Outcome Ref. 

Platelet membrane MSC Membrane fusion MI/R Mouse Enhance cellular uptake and 
targeting; shift macrophage 
polarization at the injury site 

[ 90 ,91 ,92 ] 

Macrophage membrane MSC Membrane fusion MI/R Mouse Enhance targeting by responding to 
inflammatory signal 

[ 162 ] 

Monocyte membrane MSC Membrane fusion MI/R Mouse Enhance targeting and retention [ 88 ] 
Monocyte membrane cMac Membrane fusion MI/R Mouse Enhance targeting and immune 

evasion 
[ 94 ] 

RGD-ACDCRGDCFC HEK293T Lentiviral delivery MCAO/R Mouse Enhance targeting [ 99 ] 
CSTSMLKAC MSC Lentiviral delivery MI/R Mouse Enhance targeting and accumulation [ 100 ] 
LAMP2B- 
WLSEAGPVVTVRALRGTGSW 

CDC Lentiviral delivery MI/R Mouse Enhance targeting and retention [ 163 ] 

LAMP2B–APWHLSSQYSRT HEK293T Vector transfection MI/R Mouse Enhance targeting [ 164 ] 
c(RGDK) MSC Click chemistry MCAO/R Mouse Enhance targeting [ 101 ] 
CSTSMLKAC CDC DOPE-NHS linker MI/R Rat Enhance targeting [ 104 ] 
CSTSMLKAC CDC DMPE-PEG-STVDN 

linker 
MI/R Rat Enhance targeting [ 102 ] 

cMac, cardiac-resident macrophage; RGD, arginine -glycine-aspartic acid; CDC, cardiosphere-derived stem cell; LAMP2B, lysosome-associated 
membrane glycoprotein 2B. 

 

 

 

 

 

 

 

 

stability of membrane-hybrid EVs [ 88 ]. After fusion, these
EVs take on features of parent cells, exhibiting enhanced
targeting abilities ( Fig. 4 A) The fused membrane-EVs displayed
a slight size increase and a lower zeta potential compared to

unmodified EVs.  
Platelet membranes are extensively used for modification
in treating I/R injury [ 89 ]. Platelets are activated in myocardial
I/R injury and can adhere to the injured vessel through
platelet surface glycoproteins such as integrin α2/ β1 (GPIa/IIa)
[ 90 ]. Therefore, coating MSC-EVs with platelet membrane
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Fig. 4 – Modification of EVs by cell membrane: (A) Schematic diagram of cell membrane fusion on EVs. (B) Schematic 
diagram of P-EVs in ischemic myocardium for immune regulation. (C) Pharmacokinetics curve of P-EVs. (D) The infarcted 

hearts at 3 h post injection with PBS, DiD-labeled EVs or P-EVs after 72 h reperfusion. (E) Cardiac repair of EVs and P-EVs in 

I/R injured heart. Reprinted with permission from [ 91 ]. Copyright 2022, Elsevier. 
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onfers targeting abilities to the hybrid EVs while maintaining 
he regenerative function of MSC-EVs [ 90 ,91 ]. Additionally,

odifying platelet membranes enhances cellular uptake by 
ndothelial cells and reduces macrophage clearance through 

he signaling protein CD47 [ 92 ]. Another study on platelet 
embrane-fused EVs demonstrates therapeutic benefits 

hrough immunomodulation. Platelet membrane-fused MSC- 
Vs (P-EVs) bind to pro-inflammatory Ly-6Chigh monocytes 
ia P-selection ( Fig. 4 B). At the myocardial I/R site, P-EVs can 

ndergo in-situ endocytosis by M1 macrophages differentiated 

rom monocytes and reprogram them into anti-inflammatory 
2 macrophages [ 91 ]. These findings suggest that platelet 
embrane fusion modification enhances the tissue-homing 

bility and therapeutic efficacy of EVs ( Fig. 4 C–4 E). However, a 
otential concern with using platelet membranes is the risk 
f thrombosis, necessitating further attention to such adverse 
ffects of platelet membrane modification. 

Modifying with monocyte membranes provides another 
otential strategy for disease-specific targeting in I/R injury 
 93 ]. Leukocytes infiltrate the injured area following I/R injury 
s part of the inflammatory response. MSC-EVs modified 

y monocyte membranes can simulate the recruitment of 
irculating monocytes after myocardial I/R injury, thereby 
emonstrating enhanced targeting efficiency. This improved 

dhesion and migration of the modified EVs are partly 
ue to the adhesive molecules LAF1/Mac1/VLA4 on the 
onocyte membrane [ 88 ]. Furthermore, the expression of 

D47 on the monocyte membrane helps evade phagocytosis 
y the mononuclear phagocyte system, thereby avoiding 
mmune clearance and enabling extended circulation in the 
loodstream [ 94 ]. 

Surface modification with cell membranes confers EVs 
ith multifunctionality, thereby enhancing the specificity and 

fficacy of EV-based therapy in I/R injury. Understanding the 
ell membrane components will facilitate the development of 
ell membrane-fused EVs. For example, immunosuppressive 
ells, such as regulatory T cells (Tregs), express functional 
igands on their surface. Several membrane proteins,
ncluding Neuropilin-1 and CTLA-4, contribute to Treg- 

ediated immunosuppression. Therefore, a strategic 
ombination of Treg cell membranes and EVs can be 
xpected to enhance the anti-inflammatory effects of I/R 

njury treatment [ 93 ,95 ,96 ]. Concurrently, advancements in 

ell membrane isolation and fusion precision are necessary 
or enhancing the controllability of cell membrane fusion. 

.2. Homing peptide conjugation 

oming peptides are small molecules that can specifically 
nteract with target proteins [ 97 ]. Injured tissue shows high 

xpression of certain proteins, such as integrin αv β3 and 

rowth-associated protein-43 (GAP43), after I/R [ 98 ,99 ]. Specific 
pitope-targeting homing peptides can be obtained through 

hage display. Table 2 summarizes various methods of 
oming peptide conjugation. In bioengineering, parent cells 
ndergo genetic modification to express particular peptides,
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Fig. 5 – Homing peptide conjugation on EVs: (A) Schematic diagram of conjugating ischemic myocardium-targeting peptide 
CSTSMLKAC on EVs through lentiviral delivery. (B) Accumulation of signal in the myocardial ischemic region after treatment 
with IMTP-Exos and blank-Exos. Reprinted with permission from [ 100 ]. Copyright 2018, Wiley. (C) Schematic diagram of 
conjugating c(RGDyK) and Cy5.5 fluorophor to exosomal amine groups within a two-step reaction. (D) Schematic diagram of 
RGD-EVReN binding to the integrin αv β3 on activated endothelial cells of I/R injured brain following intravenous 
administration. Reprinted with permission from [ 101 ]. Copyright 2018, Elsevier. (E) Representative NIRF images of MCAO/R 

mice brains after administration of PBS, Cy5.5-labeled exosomes, Scr-Exo or cRGD-Exo. (F) Schematic diagram of ischemic 
peptide membrane cloaks. Reprinted with permission from [ 102 ]. Copyright 2018, The Author(s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which are subsequently displayed on secreted EVs. For
example, Wang et al. used lentiviral delivery to fuse the
ischemic myocardium-targeting peptide CSTSMLKAC (IMTP)
onto MSCs, resulting in IMTP-exosome production. This
significantly enhanced the specificity of EVs targeting the
ischemic myocardium [ 100 ] ( Fig. 5 A and 5 B). This approach
allows for the reproducible production of EVs with desired
properties. However, creating modified cell lines is time-
consuming and costly. Additionally, controlling the peptide
density remains challenging. 

Homing peptide conjugation can be achieved through
chemical methods. This approach is less time-consuming
than genetic editing and more suitable for clinical
applications. Functional peptides can be incorporated
into membranes via a lipid anchor. Tian et al. used click
chemistry (azide-alkyne cycloaddition reaction) to conjugate
the cyclo(Arg-Gly-Asp-d-Tyr-Lys) peptide [c(RGDyK)] to
the surface of MSC-derived exosomes ( Fig. 5 C). c(RGDyK)-
conjugated exosomes can selectively bind to integrin αv β3,
which is predominantly expressed on cerebral vascular ECs
following ischemia ( Fig. 5 D and 5 E) [ 101 ]. Furthermore, Tian
et al. generated a recombinant fusion protein (RGD-C1C2) that
self-associates with phosphatidylserine on the EV membrane.
This modification was more efficient, with RGD-C1C2 peptide
decoration achieved through a 15-min incubation [ 99 ].
In another study, researchers developed a modular EV
membrane anchoring platform by conjugating streptavidin
(STVDN) with glycerol-phospholipid-PEG (DMPE-PEG). DMPE-
PEG is inserted into vesicle membranes as an anchor, allowing
any biotinylated molecule ( e.g., homing peptide CSTSMLKAC)
to be displayed on the membrane ( Fig. 5 F) [ 102 ]. Another
common conjugation method for EVs is lipid insertion. This
conjugation method has been applied on modifying EV for
osteoarthritis and cancer therapy[103]. Owing to the high
fluidity of the vesicle membrane, homing peptides coupled
with a lipid linker can penetrate the EV membrane and anchor
on the surface. Distearoyl phosphoethanolamine (DSPE) and
dioleoylphosphatidylethanolamine N-hydroxysuccinimide
(DOPE-NHS) are commonly used linkers for modification
[ 103 ,104 ]. This conjugation method is simple and
applicable to virtually all EV types, making it a potential
approach for homing peptide conjugation in I/R injury
treatment. 

Various conjugation methods have been used to decorate
EVs with functional ligands, each with its advantages and
disadvantages. Future research will focus on enhancing the
controllability of the modification, including the location and
density of the conjugated peptide. 

5.3. Parent cell preconditioning 

The cargo in EVs is significantly influenced by the condition of
the parent cells. Different treatment conditions and cultural
environments can modulate the characteristics of these cells.
Preconditioning with bioactive substances has been shown
to improve the therapeutic efficacy of MSC-based therapy.
Therefore, preconditioning parent cells is a potential method
to enhance EV functions by modulating encapsulated cargo
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Table 3 – Precondition on parent cells to modulate EV cargos. 

Precondition 
method 

EV source Cargo change Disease Model Outcome Ref. 

Hypoxia NSC Upregulate miR-148a-3p, 
miR-30e-3p, miR-146a-5p, 
miR-25-3p, miR-26b-5p, 
miR-320-3p, miR-103-3p and 
miR-99a-5p 

MCAO/R Mouse Regulate inflammatory 
microenvironment and promote 
nerve regeneration 

[ 109 ] 

Hypoxia ADSC Upregulate miR-224-5p MI/R Mouse Ameliorate cardiomyocyte apoptosis 
and pyroptosis 

[ 165 ] 

Hypoxia MSC Upregulate miR-126-3p, 
miR-140-5p, let-7c-5p and 
downregulate miR-186-5p, 
miR-370-3p, miR-409-3p 

MCAO/R Mouse Enhance endothelial growth, 
migration and tube formation 

[ 110 ] 

Cyclic HR C2C12 Upregulate miR-182-5p MCAO/R Mouse Enhance accumulation in the 
ischemic hemisphere and 
angiogenesis 

[ 166 ] 

KLF2- 
transduction 

HUVEC Upregulate miR-24-3p MI/R Mouse Alleviate inflammation [ 167 ] 

TNF- α MSC Upregulate miR-21-5p RI/R Mouse Modulate inflammatory microglia 
and alleviate apoptosis 

[ 168 ] 

Atorvastatin MSC Upregulating long non-coding 
RNA H19 

MI/R Rat Improved cardiac function and 
promote blood vessel formation 

[ 111 ] 

Hydrogen 
sulfide 

MSC Upregulate miR-7b-5p MI/R Mouse Enhance neuroprotective and 
anti-inflammatory effects 

[ 169 ] 

TSA MSC Upregulate miR-223-5p MI/R Rat Reduce monocyte infiltration and 
enhance angiogenesis 

[ 113 ] 

HR, hypoxia-reoxygenation; KLF2, krüppel-Like Factor 2; TSA, Tanshinone IIA. 

[  

c
e

p
d
f
r
t
h  

t  

A
n
E
m
b
n
o
c
M
i  

m
u
t
f
p
m
a
c
p
h

i
p
(
c
f
e
r
i
i  

t
f  

T
s
d
s
s
a
[

d
i
t
i
s
c

5

T
t

 105 ]. Various preconditioning strategies, including hypoxia,
ytokines, and pharmacological substances, have been widely 
mployed ( Table 3 ). 

Hypoxia is the most extensively investigated 

reconditioning strategy. Research has shown that EVs 
erived from hypoxia-stimulated cells exhibit enhanced 

unctions in angiogenesis, neuroprotection, and tissue 
egeneration [ 106 ,107 ]. Previous research substantiated 

hat hypoxia preconditioning of MSCs can upregulate the 
ypoxia-inducible factor 1-alpha (HIF-1 α) in exosomes,
hereby stimulating angiogenesis in vascular ECs [ 108 ].
dditionally, hypoxic preconditioning was employed on 

eural stem cells (NSCs) to generate hypoxic exosomes (H- 
XOs) ( Fig. 6 A). In the middle cerebral artery occlusion (MCAO) 
ouse model, H-EXOs repaired the damaged BBB induced 

y I/R injury, creating a more conducive environment for 
eurological recovery ( Fig. 6 B) [ 109 ]. The enhanced function 

f hypoxic EVs can be attributed to the alteration of their 
argo. Previous studies have demonstrated that hypoxic 
SC-derived EVs exhibit higher levels of miR-126, which 

s associated with angiogenesis. MicroRNAs (miR-148a-3p,
iR-146a-5p, and miR-103–3p) in exosomes are selectively 

pregulated by hypoxia ( Fig. 6 C). Proteome analysis revealed 

hat EVs derived from hypoxic MSCs are rich in growth 

actor pathway–associated proteins and extracellular matrix 
roteins/proteases, while showing a decrease in oxidative 
etabolism-associated proteins [ 110 ]. Additionally, pro- 

ngiogenesis factors, such as VEGF, EGF, FGF, monocyte 
hemoattractant protein 2, and monocyte chemoattractant 
rotein 4, are significantly upregulated in EVs derived from 

ypoxia-preconditioned cells [ 107 ]. 
Cytokines or pharmacological substances can be used 

n donor cell preconditioning, enhancing the expression of 
rotective miRNA in EVs. Ning et al. utilized atorvastatin 

ATV)—a commonly prescribed lipid-lowering drug for 
oronary heart disease—to pretreat MSCs. Exosomes derived 

rom ATV-preconditioned MSCs (MSCATV -Exo) exhibited 

nhanced angiogenesis and cardioprotective effects in a 
at acute MI model ( Fig. 6 D). This functional enhancement 
s mediated by lncRNA H19 and miR-139-3p upregulation 

n MSCATV -Exo ( Fig. 6 E) [ 111 ,112 ]. Similarly, Li et al. used
anshinone IIA (TSA)—a potential pharmacological agent 
or treating myocardial I/R injury—in MSC preconditioning.
he expression of cardioprotective miR-223-5p increased 

ignificantly in TSA-MSCexo, thereby attenuating myocardial 
amage following I/R injury effectively [ 113 ]. In another 
tudy, oridonin-preconditioned bone marrow mesenchymal 
tem cells (BMSCs) were utilized. The derived EVs increased 

utophagy activation and showed enhanced protective effects 
 114 ]. 

In summary, donor cell preconditioning strategies have 
emonstrated several favorable outcomes in experimental 

nvestigations. Various methods have been explored 

o enhance therapeutic outcomes. However, before 
mplementing these in clinical settings, developing 
tandardized methods and identifying optimal culture 
onditions for parent cell preconditioning is crucial. 

.4. Substance loading 

able 4 summarizes the various methods used to package 
herapeutic agents into EVs. These methods fall into two 
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Fig. 6 – Modification by precondition on parent cells. (A) Schematic diagram of exosomes generated from hypoxic 
preconditioned NSCs (H-EXO) for specifically delivering therapeutic miRNA to the ischemic region in brain. (B) The infarct 
volume after EXO and H-EXO treatment. (C) Volcanic spot of miRNA expression with distinct alteration. Reprinted with 

permission from [ 109 ]. Copyright 2022, Springer. (D) Schematic diagram of atorvastatin precondition to enhance the 
therapeutic effect of MSC-EVs in acute MI through increasing the expression of miRNA-139-3p. (E) Masson trichrome 
staining of 4 weeks following MSCATV -EVs treatment in MI. Reprinted with permission from [ 112 ]. Copyright 2023, BMC. 

Table 4 – Substance loading to modulate EV cargos. 

Method Substance EV source Disease Model Outcome Ref. 

Electroporation miR-126 CPC MI/R Rat Reduce infarct size and improve myocardial 
function 

[ 85 ] 

Sonication Heptapeptide macrophage MCAO/R Rat Reduce mitochondrial damage [ 170 ] 
Co-incubation BDNF NSC MCAO/R Rat Inhibit the activation of microglia and 

promote the differentiation of endogenous 
NSCs into neurons 

[ 171 ] 

Parent-cell 
transfection 

miR-126 ADSC MI/R Rat Enhance microvasicular generation and 
migration; reduce cardiac fibrosis 

[ 119 ] 

Parent-cell 
transfection 

miR-21 HEK293T MI/R Mouse Enhance anti-apoptotic effect [ 172 ] 

Parent-cell 
transfection 

BDNF MSC MCAO/R Mouse Increase neurogenesis, angiogenesis and 
synaptic plasticity 

[ 173 ] 

Parent-cell 
transfection 

AAV9-SERCA2a HEK293T MI/R Mouse Improve cardiac remodeling and function [ 174 ] 

BDNF, brain-derived neurotrophic factor; AAV9-SERCA2a, adeno-associated virus9- sarcoplasmic reticulum calcium ATPase 2a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

categories: non-cell-based and cell-based loading ( Fig. 7 A).
Non-cell-based loading involves introducing exogenous
substances into EVs by enhancing the permeability of the
EV membrane through methods such as electroporation,
sonication, or heat shock [ 115 ,116 ]. This approach is highly
flexible, allowing for the customization of cargo within EVs
[ 85 ]. For example, Sruti et al. employed electroporation to
encapsulate endothelial-specific miR-126 cargo into cardiac
c-kit + cell-derived EVs (CPC-sEVs) ( Fig. 7 B). The modified EVs
retain their membrane structure for cellular uptake while
carrying customized cargo, enhancing reparative effects in
myocardial I/R injury [ 85 ] ( Fig. 7 C). In another study, miR-126
was loaded into CPC-sEVs using thin-film hydration (TFH)—a
well-established and high-efficient method in synthetic
nanoparticle [ 117 ]. However, loading genetic material often
requires disrupting the EV membrane with mechanical
force. This process may compromise the integrity of the
EV membrane and denature membrane proteins [ 118 ].
Since the membrane structure and stability are crucial for
protecting the lumen cargos, improper loading processes
can damage exosomes [ 115 ]. For non-cell-based substance
loading, EVs can also be fused with liposomes. Drugs can
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Fig. 7 – Modification by substance loading. (A) Schematic diagram of substance loading of EVs. (B) The process of 
synthesizing ELV, using sonication to remove cargo and electroporation to load miR-126. (C) After 28 d of treatment, 
miR-126 + ELVs enhance the formation and size of blood vessels. Reprinted with permission from [ 85 ]. Copyright 2023, ACS. 
(D) Schematic illustration of CsA/miRi@ExosCD47-HuR preparation. Reprinted with permission from [ 123 ]. Copyright 2024, 
PMC. 
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e loaded into EVs through co-extrusion with liposomes.
owever, its loading efficiency remains a significant 
hallenge. 

Genetic material can also be loaded into EVs through 

 cell-based approach by modifying donor cells to express 
pecific proteins or RNA, which are then encapsulated into 

he EVs. This method minimizes damage to the EVs, which 

as been extensively studied. For example, EVs obtained 

rom adipose-derived stem cells (ADSCs) overexpressing 
iR-126 demonstrated a reduction in myocardial damage 

y inhibiting myocardial cell apoptosis and promoting 
ngiogenesis following I/R injury [ 119 ]. In another study,
yun-Ji et al. used synthetic miRNA inhibitors to knockdown 

he expression of miR-192-5p and miR-432-5p in CPCs. This 
eduction in miRNA expression correlated with a decrease in 

iRNA content in CPC-sEV. The therapeutic efficacy of miR- 
92-5p/miR-432-5p-depleted sEVs is enhanced in a myocardial 
/R model [ 120 ]. To further enhance the controllability of 
ndirect loading, an extensive understanding of the precise 

echanisms by which genetic cargoes are sorted into EVs is 
ecessary. 

Both loading methods aim to optimize the cargo carried 

y EVs and explore their potential as nanocarriers. The 
hoice of loading method primarily depends on the types and 

roperties of the therapeutic agents involved. Transduction 

nd transfection of parental cells are suitable for loading large 
iomolecules, including therapeutic proteins and nuclear 
cids [ 121 ]. The agents loaded using the cell-based method 

hould have low toxicity to parent cells. Additionally, the cell- 
ased loading method avoids exposing therapeutic agents in 

olution, which can influence cargo stability and activity. Non- 
ell-based loading methods, including simple incubation, are 
ommonly used for loading small RNAs ( < 1 kDa) or lipophilic 
rugs that can easily permeate the EV membrane [ 118 ]. 

While various substance-loading methods are available,
hallenges associated with loading efficiency need to be 
ddressed. The ratio of the EV lumen to the overall EV volume 
s limited, resulting in a constrained loading capacity of 
Vs [ 118 ]. Therefore, strategies to increase the intravesicular 
olume of EVs would enhance their loading capacity.
ptimizing loading parameters, such as drug concentrations,
an also improve loading efficiency. Additionally, controlling 
he amount of drugs loaded into EVs is challenging. Loaded 

xogenous substances might interact with endogenous cargo,
otentially leading to a loss of functional cargo within EVs.
hus, precise quantification of loaded cargo is necessary for 
eveloping substance-loaded EVs [ 122 ]. 

In summary, various engineering strategies can be applied 

o EVs derived from different cell origins ( Table 5 ), as follows:
1) Cell membrane fusion enables EVs to specifically target 
njured areas or be taken up by specific recipient cells.
his modification strategy is ideal for multifunctional 
nhancements and can be applied within complex biological 
ystems; (2) Homing peptide conjugation enables EV 

o interact with specific targets in injured tissues. The 
onjugation can be achieved through genetic engineering or 
hemical reactions; (3) Preconditioning of parent cells can 

nfluence the cargo loaded into EVs. Common preconditioning 
ethods include hypoxia, cytokines, and pharmacological 

ubstances; (4) Loading substances into EVs is an efficient 
ethod for customizing their cargo. It is crucial to understand 

he nature and mechanism of the cargo to be loaded. This 
oading process can be achieved through non-cell-based and 

ell-based methods. 
Each engineering strategy has its own set of advantages 

nd disadvantages. When selecting the most suitable 
ngineering strategy, it is essential to thoroughly consider 
he treatment goals, cost factors, and potential risks involved.
ombining these modification methods can lead to increased 

ynergies and flexibility in EV-based therapy. For example,
iu et al. functionalized human liver cells (LO2) with a CD47- 
uR fusion protein to produce CD47-HuR-reprogrammed 
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Table 5 – Comparison of common EV engineering strategies and their benefits/disadvantages. 

Modification Method Benefits Disadvantages Outcome Ref. 

Cell membrane 
fusion 

Mix EVs with 
isolated cell 
membranes via 
mechanical forces 

Replicate complex 
cellular functionalities; 
suitable for 
multifunctional 
modification; 
easy to operate 

Potential functional 
cargo loss;r 
isk of thrombosis (using 
platelet membrane) 

Enhance targeting 
abilities;e 
nhance cellular 
uptaker 
educe immune 
clearance 

[ 90 ,87 ] 

Homing peptide 
conjugation 

Genetic editing of 
parent cells 

Allows for reproducible 
production of desired 
EVs; 
less interference to EV 

integrity 

Time-consuming; 
cost-consuming 

Enhance targeting 
abilities 

[ 163 ] 

Chemical 
modification 

Less time-consuming Potential interference to 
EV surface components 

[ 99 ,101 ] 

Parent cell 
preconditioning 

Precondition parent 
cells with bioactive 
substances 

Easy to operate; 
high efficiency; 
less interference to EV 

integrity 

Lack of standardized 
methods 

Enhance functions 
in angiogenesis, 
neuroprotection, 
and tissue 
regeneration 

[ 109 ,112 ] 

Substance loading Non-cell-based 
loading 

Well-established;c 
ustomization of loaded 
cargo 

Potential interference to 
EV integrity; 
limited loading 
efficiency; 
potential interference to 
endogenous cargo 

Enhance functions 
in angiogenesis, 
neuroprotection, 
and tissue 
regeneration 

[ 85 ] 

Cell-based loading Customization of loaded 
cargo;l 
ess interference to EV 

integrity 

Time-consuming; 
potential interference to 
endogenous cargo 

[ 175 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exosomes ( Fig. 7 D). The CD47 protein emits a “do not eat
me” signal to macrophages, allowing the exosomes to evade
immune surveillance. Additionally, through electroporation,
the Cyclosporin A (CsA) and mitochondrial transcription
factor A (TFAM) targeting microRNA inhibitor (miRi) were
encapsulated into CD47-HuR-reprogrammed exosomes.
Reprogramming of exosomes allowed for the specific delivery
of CsA and microRNA inhibitors to the ischemia/reperfusion
injured area, maintaining mitochondrial homeostasis and
reducing ROS production [ 123 ]. 

6. Challenges and prospects 

The potential of EVs to deliver therapeutic cargo for recovering
from I/R injury has been demonstrated in preclinical studies.
Currently, several clinical trials involving EV-based therapy
(generally MSC-EVs) are underway for IS treatment [ 124–
126 ]. However, despite these promising developments, several
crucial challenges exist that need to be addressed to facilitate
the widespread clinical translation of EVs. 

6.1. Challenges in production 

The low yield and poor reproducibility in EV production
inhibit its widespread application. A single cell typically
secretes 50 EVs per min [ 127 ]. Producing a clinical-grade
quantity of EVs requires long-term passaging, which may
influence the condition of the cells. Increasing EV secretion
through physical stimuli ( e.g., high-frequency ultrasound
and electric treatment) or environmental factors ( e.g.,
hypoxia and acidity) can help alleviate this challenge [ 128 ].
Furthermore, the production of EVs, particularly sEVs, faces
challenges related to separation and purification methods.
The most commonly used method for separating EVs is
ultracentrifugation, which isolates substances based on
density and size. This process requires extended periods
of centrifugation, limiting its widespread applications
[ 129 ]. Additionally, ultracentrifugation cannot separate
specific EV populations, and impurities such as co-purifying
protein aggregates often contaminate the samples [ 129 ].
The heterogeneity of EVs and the presence of co-isolates
make maintaining batch-to-batch consistency challenging.
Developing standardized, reproducible, and cost-effective
isolation methods is significant for ensuring quality control in
EV production. Alternative methods, including size exclusion
chromatography (SEC) and tangential flow filtration (TFF),
offer advantages over the conventional ultracentrifugation-
based isolation method in terms of reproducibility and purity
[ 130 ]. With the advancement of nanotechnology, microfluidics
has emerged as a promising technique for optimizing EV
isolation. Microfluidic devices manipulate fluid flow through
a network of microchannels and can separate EVs based on
their size, density, or surface antigens [ 131 ]. Microfluidics
offers unique advantages in terms of high efficiency, purity,
and yield. However, its widespread applications still require
more large-scale experimental data to support its efficacy
[ 132 ]. 

Quality control is a crucial concern in the production
of EVs. The endogenous cargo and bioactivity of EVs
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re significantly influenced by culture conditions such as 
ell passage number and cell density [ 133 ]. Consequently,
onsiderable uncertainties regarding the quality of EVs for 
linical use exist [ 129 ]. Moreover, owing to a lack of analytical 
ools, identifying critical quality attributes (CQAs) of EVs 
emains challenging. Consequently, developing advanced 

nalytical techniques capable of characterizing EVs at a single 
V-level, such as super-resolution microscopy, is warranted 

 134 ]. Besides technological limitations, adherence to Good 

anufacturing Practices (GMP) is essential for ensuring 
roduct quality and minimizing risks. It is crucial to establish 

uidelines for the manufacturing and in-process control of 
Vs. 

To reduce batch-to-batch variation and improve EV 

ield, researchers are increasingly exploring EV mimics and 

ynthetic EVs. EV-mimics are exosome-like nano-vesicles 
enerated through extrusion, ultra-sonication, or freeze- 
hawing [ 135 ]. They demonstrate structural and functional 
imilarities to natural EVs, and their generation efficacy is 
nhanced > 100 times [ 127 ,136 ,137 ]. For example, stem cell- 
erived bio-responsive EV-mimics for MCAO treatment were 
eveloped. These mimics retained high substance-loading 
apability and effectively delivered payloads to the injured 

erebrum [ 19 ,138 ]. Synthetic EVs involve assembling various 
mall molecules, including lipids and proteins, into intricate 
tructures to replicate the functionalities of natural EVs. The 
ipid, protein, and RNA composition of synthetic EVs can be 
recisely controlled, enhancing the quality of administration 

 139 ]. EV mimics or synthetic EVs can collectively overcome 
hallenges associated with low yield, scale-up production,
nd quality control in EV-based therapy. However, the 
mmunogenicity, bioactive cargo, and therapeutic effect of 
hese EV alternatives still require further assessment. 

Identifying suitable sources for EV manufacturing and 

linical use is another challenge that requires attention. EVs 
btained from exogenous sources could be advantageous 
or large-scale production. However, the potential 
mmunogenicity of exogenous EVs needs to be approached 

autiously. Exogenous EVs may express heterogeneous MHC 

lass I proteins on their surface, potentially triggering an 

mmune response in patients [ 140 ]. Additionally, protein 

ontaminants in EV samples can trigger inflammatory 
eactions. In contrast, EVs obtained from autologous sources 
ffer advantages in terms of immunocompatibility. However,
utologous sources, including biological fluids and autologous 
ells, are limited. While extensive research has focused on 

ammalian cell-derived EVs, recent research suggests that 
lant-derived exosome-like nanoparticles (PENs) could serve 
s potential nanocarriers [ 141 ]. Accumulating evidence 
ndicates that PENs can be produced in large quantities 
rom renewable plant resources, addressing the demand 

or large-scale manufacturing [ 142 ]. Moreover, plants do not 
arbor human pathogens, and PENs have demonstrated no 

oxicity in preliminary clinical studies. There is still no report 
n PENs inducing immune responses, demonstrating their 

mmunocompatibility [ 143 ]. PENs can transport bioactive 
argo into animal cells, and their therapeutic potential 
as been shown in recent studies. For example, a study 

ndicated that PENs derived from momordica charantia can 

nhibit ischemia-reperfusion-induced disruption to the BBB 
nd reduce infarct sizes in MCAO/R rats [ 144 ]. As emerging 
herapeutic modalities, further investigations are needed 

o understand the mechanisms, characterization, and side 
ffects of PENs [ 145 ]. 

Storage conditions significantly influence the bioactivities 
nd structure of EVs. Currently, the most widely used 

pproach involves preserving samples at −80 °C in 

hosphate-buffered saline (PBS). However, a systematic study 
nvestigating the influence of storage on EVs has revealed that 
toring them at −80 °C results in a time-dependent decrease 
n EV concentration and purity, along with an increase 
n EV size and size variability [ 146 ]. Optimizing storage 
onditions, including reducing freezing and thawing cycles 
r altering the storage buffer, can mitigate the influence on 

V properties [ 147 ]. Emerging methods, such as lyophilization 

ith cryoprotectant, also show significant promise for 
reserving EV integrity during storage. However, no consensus 
xists on the optimal condition for preserving EVs for clinical 
pplications. Further investigation is needed to improve 
reservation methods and enhance the stability of EV 

amples [ 148 ]. 

.2. Challenges in delivery 

he delivery of EVs in therapeutic applications faces several 
hallenges. Generally, EV-based therapy is administered 

hrough intravenous injection. However, the low retention 

ates and limited presence of EVs in the injured area restrict 
heir long-term protective influence [ 149 ]. A significant 
ortion of injected EVs are cleared by mononuclear 
hagocytes, leading to a short half-life [ 123 ]. Some studies 
ave proposed novel methods of EV delivery, including 
atheter-based intracoronary and open-chest intramyocardial 
eliveries, particularly for myocardial I/R injury [ 150 ]. These 
pproaches have shown improved therapeutic outcomes.
owever, systemic administration remains a less invasive,

afer, and more suitable approach for clinical treatment.
o address the challenge of EV retention, biomaterial- 
ased approaches have been developed. For example,
V-releasing hydrogels incorporate EVs into the hydrogel 
atrix, enabling sustained release of EVs at injury sites 

 149 ,151 ,152 ]. Additionally, certain EV-releasing hydrogels can 

espond to pathological changes, such as variations in ROS 
oncentration, thereby offering stimuli-responsive EV-based 

herapy. Furthermore, Hu et al. developed an exosome-eluting 
tent (EES) for vascular recovery following ischemic injury.
SC-EVs are coated onto drug-eluting stents and released 

t the injured site after stent implantation. This process 
romotes angiogenesis and M2 macrophage polarization 

t the ischemic site, suggesting improved vascular healing 
nd tissue repair. [ 153 ]. However, the safety, stability, and 

herapeutic effects of these novel delivery methods still 
equire further examination in large-animal studies and 

linical trials. 
Despite these challenges, the biocompatibility, low- 

mmunogenicity, and flexibility of EVs highlight their strong 
otential for delivering therapeutic agents. Innovations 

n therapeutic strategies and technologies are actively 
vercoming these challenges in the clinical translation of EVs.
herefore, continued exploration and further investigation 
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into stable and efficient EV-based delivery systems are
encouraged. 

7. Conclusion 

Owing to their unique biophysical properties, non-toxicity,
and flexibility, EVs play crucial roles in transmitting
therapeutic agents for the treatment of ischemia/reperfusion
injury. EVs can encapsulate and deliver multiple therapeutic
molecules to recipient cells, thereby regulating the
pathological process. While native EVs offer advantages
as carriers for delivering therapeutic agents, inherent
limitations such as limited tropism and low efficacy hinder
their applications. Researchers have recently concentrated on
modifying natural EVs to improve their targeting ability and
manipulate their loaded cargo. These engineered EVs exhibit
improved functions and demonstrate better therapeutic
outcomes. Despite the robust therapeutic potential shown by
native and engineered EVs in preclinical studies, challenges
still exist in translating them into clinical applications.
To address these constraints, advanced technologies,
such as synthetic EVs and EV-releasing hydrogels, have
been developed. Ultimately, native and engineered EVs
offer promising approaches for modulating the intricate
pathophysiology of I/R injury, potentially improving the
therapeutic outcomes of patients affected by it. 
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