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Recent experimental results with humans involved in social dilemma games suggest that cooperation may be
a contagious phenomenon and that the selection pressure operating on evolutionary dynamics (i.e.,
mimicry) is relatively weak. I propose an evolutionary dynamics model that links these experimental
findings and evolution of cooperation. By assuming a small fraction of (imperfect) zealous cooperators, I
show that a large fraction of cooperation emerges in evolutionary dynamics of social dilemma games. Even if
defection is more lucrative than cooperation for most individuals, they often mimic cooperation of fellows
unless the selection pressure is very strong. Then, zealous cooperators can transform the population to be
even fully cooperative under standard evolutionary dynamics.

H
umans often behave cooperatively in social dilemma situations in which withholding cooperative behavior
is logically better. In fact, cooperation in social dilemma games has been explained by various mechanisms
including kin selection, assortative interactions, group competition, direct reciprocity (i.e., repeated

interactions), reputation-based indirect reciprocity, and spatial or network structure of populations1,2.
In contrast, recent evidence suggests that cooperation at a population level may occur as cascading in a social

network3. Such a contagious view of cooperation is distinct from the mechanisms governing cooperation
explained above, which assume that individuals at least try to maximize material payoffs, a central assumption
in game theory including evolutionary game theory. In contagion, individuals may imitate others’ behavior
without much caring the material payoff to the self and others.

The comtemporary results of the so-called upstream reciprocity (also called generalized exchange and pay-it-
forward reciprocity; it is a type of indirect reciprocity) are also consistent with contagious scenarios of coopera-
tion. Upstream reciprocity, in which an individual helped by somebody helps somebody else, is widely observed in
humans4–8. However, theory assuming payoff maximization does not support upstream reciprocity on its own9,10.
Cooperation on the basis of upstream reciprocity is stable only in combination with a different mechanism such as
direct reciprocity11, mobility of players across groups12, assortative interaction13, sufficiently frequent ingroup
interaction14, and network reciprocity11,15,16.

Contagion of suboptimal behavior or attitudes seems to be even more common outside social dilemma games.
Even if individuals do not like the behavior or social norm (e.g., binge drinking in colleges) and are not forced to
adopt it, they often obey others. In sociology, such a phenomenon is interpreted under the framework of herd
behavior, pluralistic ignorance, and false enforcement17,18.

Contagion implies that individuals change behavior under null or weak selection pressure. Consistent with this,
the selection pressure for humans playing the prisoner’s dilemma game was recently shown to be relatively weak;
subjects did not take the imitate-the-best behavior with a probability of < 30%19 (also see [20]).

Nevertheless, even under weak selection pressure, unconditional defection remains the unique Nash equilib-
rium of the social dilemma game. Then, how can we explain cascades of cooperation found in experiments?

In mimicry-guided opinion formation models in which the two competing opinions are equally strong, a small
number of zealot voters can attract nonzealous players to the preferred opinion of the zealot21–25. Motivated by
these studies, I show that a small fraction of zealous cooperators can reliably induce cooperation at a population
level. It should be noted that opinion formation models and (social dilemma) games are fundamentally different
in that only the latter involves strategic interactions and natural selection. Examples of situations in which zealous
cooperators in social dilemmas are witnessed include military services and team sports26, and perhaps charity
campaigns. In the proposed mechanism, weak selection promotes cooperation. However, the selection pressure
does not have to be as weak as assumed in other theories of cooperation (e.g., [27, 28]). The proposed mechanism
does not require additional model components such as the conformity bias29,30 or so-called cooperation facil-
itators that increment payoffs to cooperators, but not to defectors31.
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Results
I analyze the evolutionary dynamics given by Eqs. (8) and (9). I
mainly examine the prisoner’s dilemma game described by a stand-
ard payoff matrix given by R 5 1, T . 1, and S 5 P 5 0. When
zealous players are absent (i.e., y 5 0), D is the only Nash equilibrium
(i.e., xC 5 0). I explore the possibility that cooperation is stabilized
among ordinary players (i.e., nonzealous players) in the presence of
zealous players.

Prisoners’ dilemma with perfect zealous cooperators. In this
section, I consider the case in which the zealous players always
cooperate (i.e., p 5 1, yC 5 y). In this case, Eq. (8) is reduced to

dxC

dt
~

1{xC

ph i 1{wð Þyzw
xCzyð Þ xCzy{TxCð Þ

1zy

� �
: ð1Þ

Because the coefficient of x2
C in f(xC) ; (1 2 w)y 1 w(xC 1 y)(xC 1 y

2 TxC)/(1 1 y) is negative and f(0) 5 (1 2 w)y 1 wy2/(1 1 y) . 0,
the dynamics has at most one internal equilibrium, which is stable if
it exists. When f(1) . 0, i.e.,

Tƒ1z
y
w

, ð2Þ

dxC/dt . 0 (0 # xC , 1) holds true such that the only equilibrium is
located at x�C~1. Then, all the players eventually cooperate. Equation
(2) indicates that weak selection and the presence of many zealous
players facilitate such full cooperation. If T . 1 1 y/w, the stable
equilibrium x�C is given by

x�C~
{wy T{2ð Þz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2y2 T{2ð Þ2z4w T{1ð Þy yz1{wð Þ

q
2w T{1ð Þ : ð3Þ

It should be noted that 0vx�Cv1.
The equilibrium fraction of cooperators among the ordinary

players is shown as a function of y and T in the case of relatively
weak (w 5 0.1) and strong (w 5 1) selection in Figs. 1(a) and 1(b),
respectively. The lines represent T 5 1 1 y/w and separate the full
cooperation phase and the partial cooperation phase. Figure 1 indi-
cates that the fraction of cooperators is mainly determined by y/w
and is larger with the weak selection than the strong selection.

Prisoner’s dilemma with imperfect zealous cooperators. In fact,
zealous players may not perfectly cooperate. Therefore, I investigate
evolutionary dynamics given by Eqs. (8) and (9) with p , 1 by nume-
rically integrating them. I use the Euler-Maruyama integration
scheme with dt 5 0.01. For a fixed set of parameter values, I started
the evolutionary dynamics from various initial conditions, i.e., (xC, yC)
5 (0.05i, 0.05j), where i and j are integers and 1 # i, j # 19, and
confirmed that the equilibrium is independent of the initial condition.

The equilibrium fraction of cooperators among the ordinary
players is shown for (w, T ) 5 (0.1, 1.5), (0.1, 2.5), (1, 1.5), and

(1, 2.5) in Figs. 2(a) 2(b), 2(c), 2(d), respectively. When w 5 0.1,
nearly perfect cooperation is obtained unless the fraction of zealous
players (i.e., y) and the probability that zealous players uncondition-
ally cooperate (i.e., p) are both small. This is also the case when the
temptation payoff T is rather large (Fig. 2(b); T 5 2.5). Even when w
5 1, a considerable fraction of cooperation (e.g., 0.4) is observed for a
wide parameter range when T 5 1.5 (Fig. 2(c)).

To confirm that the results are not specific to the Moran type of the
reproduction process, I also implemented the so-called pairwise
comparison rule (Methods)27,32–34. In short, in the pairwise compar-
ison rule, the probability of the strategy replacement is a sigmoid
function of the difference between the fitness of two randomly
selected players. This update rule is implicated in recent laboratory
experiments19. Numerical results for the prisoner’s dilemma game
with T 5 1.5 and T 5 2.5 under the pairwise comparison rule with
�b~0:5 are shown in Figs. 3(a) and 3(b), respectively. The results are
qualitatively the same as those under the Moran process (Fig. 2). In
the rest of the present paper, I use the Moran process.

The fraction of cooperators among the ordinary players for vari-
ous values of T is shown in Fig. 4. I used two large values of p (p 5 0.9
and p 5 1) and two small values of y (y 5 0.05 and y 5 0.1). Under
both weak selection (Fig. 4(a); w 5 0.1) and strong selection
(Fig. 4(b); w 5 1), the results do not depend much on the value of
p for large p. This behavior is also evident in Fig. 2. Therefore, the
theoretical results obtained in the previous section for the case of
perfectly cooperating zealous players (i.e., p 5 1) are translated to the
case of imperfect zealots (i.e., p , 1) without much change. In con-
trast, the fraction of cooperation is sensitive to the density of zealots
(i.e., y).

Snowdrift game. The emergence of cooperation owing to the
combination of ordinary players and zealots is not restricted to the
case of the prisoner’s dilemma. In this section, I briefly examine the
snowdrift game, also known as the chicken game and the hawk-dove
game35–37. The payoff matrix of a standard snowdrift game is given by
R 5 b 2 0.5, T 5 b, S 5 b 2 1, and P 5 0, where b . 137. I set b 5 1.5
such that the stable fraction of C in the absence of zealots is given by
(2b 2 2)/(2b 2 1) 5 0.5.
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Figure 1 | Fraction of cooperators among the ordinary players in the
presence of perfectly zealous cooperators (i.e., p 5 1). The lines represent

T 5 1 1 y/w. I used a typical payoff matrix of the prisoner’s dilemma game

given by R 5 1, T . 1, and S 5 P 5 0. I set (a) w 5 0.1 and (b) w 5 1.
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Figure 2 | Fraction of cooperators among the ordinary players as a
function of the additional density of zealous players (i.e., y) and the
probability of unconditional cooperation for zealous players (i.e., p). I set

R 5 1 and S 5 P 5 0. (a) w 5 0.1, T 5 1.5. (b) w 5 0.1, T 5 2.5. (c) w 5 1,

T 5 1.5. (d) w 5 1, T 5 2.5.
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The fraction of cooperation among the ordinary players is shown
for w 5 0.1 and w 5 1 in Figs. 5(a) and 5(b), respectively. Figure 5
indicates that the fraction of cooperators is much larger than 0.5 in a
wide parameter range, particularly when w 5 0.1.

Discussion
I showed that a small fraction of zealous cooperators can guide
cooperation of players that obey a standard evolutionary dynamics.
The numerical results indicate that the zealous players do not have to
be perfectly zealous cooperators. The proposed mechanism operates
better when the selection pressure is weak and the density of zealous
players is large. Although I used the Moran process and the replicator
dynamics, the results do not qualitatively change if a different strat-
egy update rule called the pairwise comparison rule is used.

All the present results are independent of the initial condition.
Therefore, if the dynamics is initiated from a small density of coop-
eration, perhaps only among zealots, cooperation can cascade to
prevail in the population. I emphasize that the cascade can occur
even if most players prefer defection to cooperation to some extent.
My results may provide theoretical underpinning of cascades of
cooperation3 and upstream reciprocity4–8 observed in human sub-
jects. In contrast, the emergence and maintenance of cooperation
based on conformity bias29 requires that a majority of players initially
cooperates.

Crucial assumptions underlying the proposed explanation of
cooperation are the stochasticity of the dynamics and weak selection
(i.e., small w). Weak selection is often employed in theoretical studies
because, among other things, Taylor expansion on w often leads to
analytical conditions for cooperation (e.g., [27, 28]). However,
experiments with human subjects present evidence against exces-
sively weak selection19. I referred to the intensity of selection equal
to w 5 0.1 as weak selection. This value of w may not be too small to
violate the reality. In general, the effective intensity of selection
depends on the payoff matrix and the strategy update rule as well

on the w value. Nevertheless, the following simple calculus may help:
the largest and smallest possible fitness values in the prisoner’s
dilemma used in this study are equal to 1 2 w 1 wT and 1 2 w,
respectively. Therefore, w 5 0.1 indicates that the ratio of the two
fitness values for T 5 2, for example, is equal to (1 2 w 1 wT)/(1 2

w) 5 11/9. If this ratio should exceed 2, w . 1/3 is required under T
5 2. Although I only examined the extreme two cases, i.e., w 5 0.1
and w 5 1, the results shown in the figures imply that much coop-
eration will be observed with w 5 1/3. In fact, some cooperation is
observed even with w 5 1 if proper conditions are met (Figs. 1(b) and
2(c)).

It should be noted that I assumed that players, either ordinary or
zealous, have the same strength of influence on others. Although the
heterogeneity in the influence of individuals, i.e., power, would shape
collective behavior of humans, the present contribution is not about
the power but about the relationship between zealots, weak selection,
contagion, and cooperation.

I did not ask the origin of zealous cooperators. Trivially, they will
not emerge as a result of evolution unless other games or dynamics
are simultaneously considered. One interpretation of this assump-
tion is that zealous players are not interested in maximizing the
material payoff. Zealous cooperators are found in some real situa-
tions26. Another interpretation is that zealots are payoff maximizers
but have different payoff functions. In theory of collective action,
heterogeneity in interests and resources of individuals are suggested
to elicit collective action to solve the free rider problem (see [38] for a
review). Although the present mechanism is independent of that of
collective action, zealots may perceive payoffs differently from ordin-
ary players such that cooperation may not incur social dilemma for
zealots.

Methods
Model. I consider evolutionary dynamics of an infinite well-mixed population in
which each pair of players is involved in the symmetric two-player two-strategy game
once per generation. The payoff matrix is defined by
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Figure 3 | Fraction of cooperators among the ordinary players in the
prisoner’s dilemma game when the pairwise comparison rule is used for
the updating. I set R 5 1, S 5 P 5 0, and �b~0:5. (a) T 5 1.5. (b) T 5 2.5.
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Figure 5 | Fraction of cooperators among the ordinary players as a
function of y and p in the snowdrift game. I set R 5 b 2 0.5, S 5 b 2 1,

T 5 b, P 5 0, and b 5 0.5. (a) w 5 0.1. (b) w 5 1.
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where the entries of Eq. (4) represent the payoffs that the row player gains. Each row
(column) corresponds to the action of the row (column) player, i.e., cooperation (C)
or defection (D).

I assume two types of players. A player of the first type, called ordinary player,
obeys a standard evolutionary dynamics described below. A player of the second type,
called zealous player, may obey the evolutionary dynamics or unconditionally
cooperate.

The evolutionary dynamics is defined as follows. The summation of the payoff over
all the opponents defines the aggregated payoff to a player. The fitness, i.e., the
propensity to reproduce, of a player is a linear function of the payoff. The propor-
tionality constant controls the intensity of selection. At the end of each generation, a
single player whose strategy (i.e., C or D) is replaced is selected with the equal
probability from the population. If the selected player is ordinary player, a parent,
which is either ordinary or zealous player, is selected from the entire population with
the probability proportional to the fitness. Then, the strategy of the updated player is
replaced by that of the parent player. This update process is equivalent to the Moran
process, a standard model of the birth-death process (e.g., [2]). If the updated player is
zealous player, its strategy turns to C with probability p. With probability 1 2 p, the
updated player obeys the rule used by the ordinary player to adopt the strategy of a
parent selected with the probability proportional to the fitness.

I normalize the density of the ordinary players to unity and denote the added
density of zealous players by y($ 0). The densities of cooperators among the ordinary
and zealous players are denoted by xC (0 # xC # 1) and yC (0 # yC # y), respectively.
The mean fitness, with the divisive factor 1 1 y (i.e., the total population density)
intentionally neglected, is defined by

ph i: xCzyCð ÞpCz 1{xCzy{yCð ÞpD, ð5Þ

where

pC~1{wz
w xCzyCð ÞRz 1{xCzy{yCð ÞS½ �

1zy
ð6Þ

and

pD~1{wz
w xCzyCð ÞTz 1{xCzy{yCð ÞP½ �

1zy
ð7Þ

are the fitness to a C and D player, respectively, and w (0 # w # 1) indicates the
intensity of selection27,28. Equations (6) and (7) indicate that the payoff to a player per
opponent is translated to the fitness with proportionality constant w. I assume Æpæ . 0
such that the selection of the parent player with the probability proportional to the
fitness is well defined.

In the reproduction phase, a cooperator and defector are selected as parent with
probability (xC 1 yC)pC/Æpæ and (1 2 xC 1 y 2 yC)pD/Æpæ, respectively. Therefore, the
dynamics of the fraction of cooperators among the ordinary players is given by

dxC

dt
~

1
ph i xCzyCð ÞpC 1{xCð Þ{ 1{xCzy{yCð ÞpDxC½ �: ð8Þ

When y 5 0, Eq. (8) is equivalent to the meanfield equation of the Moran process. If
the divisive factor Æpæ, which just controls the time scale of the dynamics in this special
case, is neglected, Eq. (8) is reduced to the usual replicator dynamics.

The dynamics of the density of cooperators among the zealous players is given by

dyC

dt
~p y{yCð Þz 1{p

ph i xCzyCð ÞpC y{yCð Þ{ 1{xCzy{yCð ÞpDyC½ �: ð9Þ

When p 5 1, zealous players always cooperate (i.e., yC 5 y). In this case, Eq. (8), with
Æpæ in the denominator neglected, is equivalent to Example 2 given in [39].

Pairwise comparison rule. In the so-called pairwise comparison rule, the probability
that the replacement occurs depends on the difference between the payoffs to two
randomly selected players. At the end of each generation, I randomly select two
players from the population without bias. If the two players are both cooperators or
both defectors, nothing takes place. Otherwise, C replaces D with probability

1
.

1ze{�b pC{pDð Þ
h i

, and D replaces C with probability

1{1
.

1ze{�b pC{pDð Þ
h i

~1
.

1ze{�b pD{pCð Þ
h i

27,32–34. The intensity of selection is

controlled by �b §0ð Þ.
The evolutionary dynamics for the infinite population under the pairwise com-

parison rule is represented by

dxC

dt
~

2
1zy

1{xCð Þ xCzyCð Þ
1ze{�b pC{pDð Þ {

xC 1{xCzy{yCð Þ
1ze{�b pD{pCð Þ

� �
ð10Þ

and

dyC

dt
~p y{yCð Þz 2 1{pð Þ

1zy
y{yCð Þ xCzyCð Þ
1ze{�b pC{pDð Þ {

yC 1{xCzy{yCð Þ
1ze{�b pD{pCð Þ

� �
: ð11Þ
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