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Intranasal delivery of nanomicelle 
curcumin promotes corneal 
epithelial wound healing in 
streptozotocin-induced diabetic 
mice
Chuanlong Guo1,*, Mengshuang Li1,2,*, Xia Qi1, Guiming Lin1,2, Fenghua Cui1, Fengjie Li1 & 
Xianggen Wu1,2,3

Corneal nerves are mainly derived from the ophthalmic branch of the trigeminal ganglion (TG). Corneal 
neuropathy contributes to epithelial degenerative changes in diabetic keratopathy. Efficient drug 
delivery to TG may be beneficial for the treatment of diabetic keratopathy. This article described 
intranasal delivery of nanomicelle curcumin to correct pathophysiological conditions in TG to promote 
corneal epithelial/nerve wound healing in streptozotocin-induced diabetic mice. A diabetic mice 
model with corneal epithelium abrasion was established. Ocular topical and/or intranasal nanomicelle 
curcumin treatments were performed, and treatment efficacy and mechanisms of action were explored. 
Results showed that intranasal nanomicelle curcumin treatment promoted corneal epithelial wound 
healing and recovery of corneal sensation. Enhanced accumulation of reactive oxygen species, reduced 
free radical scavengers, increased mRNA expressions of inflammatory cytokines, and decreased 
mRNA expressions of neurotrophic factors in the cornea and TG neuron were observed in diabetic mice 
with corneal epithelium abrasions. Intranasal nanomicelle curcumin treatment effectively recovered 
these pathophysiological conditions, especially that of the TG neuron, and a strengthened recovery 
was observed with ocular topical combined with intranasal treatment. These findings indicated that 
intranasal curcumin treatment effectively helped promote diabetic corneal epithelial/nerve wound 
healing. This novel treatment might be a promising strengthened therapy for diabetic keratopathy.

Though diabetic retinopathy is the major diabetic complication in the eye, other parts of the eye are also affected1. 
Diabetes increases the risk of corneal abnormalities including recurrent erosions, delayed and incomplete wound 
healing, ulcers and edema, complications after vitrectomy, laser photocoagulation, and corneal surgery, as well 
as limbal epithelial stem cell alterations. For example, Schultz et al. reported that 47–64% of diabetic patients suf-
fered from keratopathies2. Report showed that as high as 73.6% of the patients with diabetes had corneal compli-
cations, including punctate keratopathy, pannus, endothelial dystrophy, and corneal ulcer3. Corneal neuropathy, 
manifested by loss of corneal sensation and progressively reduced density of corneal stromal and subbasal nerves 
is also widespread in diabetic patients. Diabetic neuropathy contributes to epithelial degenerative changes seen in 
diabetic keratopathy. In animal models, diminished sensation and corneal nerve changes appear within the first 1 
to 2 months of diabetes, which supports the role of neuropathy in causing keratopathy4.

Diabetic keratopathy is currently treated with lubricants and antibiotics, bandage contact lens, and tarsorrha-
phy, all of which try to create a more favorable environment for wound healing5. However, even in combination, 
these measures may be ineffective and inadequate at accelerating re-epithelialization in diabetes5. The failure of 
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conventional methods in corneal epithelial wound repair are not just related to pain and inconvenience, but also 
provide a window for infection that can lead to devastating and irreparable vision problems. Moreover, none of 
the present therapies address the fundamental pathobiology of delayed corneal healing secondary to diabetes. 
Therefore, novel methods are desired for the treatment of this tough complication of diabetes6.

Corneal nerves are mainly derived from the ophthalmic branch of the trigeminal nerve7. The cornea is the 
most innervated tissue in the entire human body (400 times more than the skin)8. Corneal innervation plays 
a critical role in protecting the cornea from mechanical, chemical, and thermal stimuli, as well as in produc-
ing trophic factors that are necessary for the maintenance of a healthy ocular surface. Decreased corneal inner-
vation and sensitivity in diabetic patients leads to impaired epithelial wound healing, predisposing patients to 
sight-threatening complications such as stromal opacification, surface irregularity, and microbial infection. 
Decreased corneal sensation with a loss of innervation is one of the main causes of corneal complications in 
diabetic patients9. However, the exact mechanisms and interactions between trigeminal nerves and corneal cells 
remain unclear. It is known that nerve-secreted neuropeptides influence corneal cell proliferation in vitro and that 
corneal epithelial cell mitosis is altered in denervated rats8. And, a diabetes-associated depletion of neuropeptides 
in the trigeminal ganglion (TG) has already been confirmed. Diabetic corneal abnormalities may reflect a loss of 
trophic influences from the trigeminal nerve10. So, target delivery to the trigeminal nerve may be beneficial for 
the treatment of the diabetic keratopathy. However, there are no reports on how to target the applied drugs to the 
trigeminal nerve.

Studies in the past few years have shown intranasal drug delivery along the trigeminal nerve pathway. Throne 
et al. found about 10 folds higher radioactivity in the trigeminal nerve branches than in the olfactory bulb after 
intranasal administration of 125I-IGF-I11. Evidence suggests that an intranasally administered drug can reach the 
trigeminal nerve and perineural space from the absorbent respiratory and olfactory pseudoepithelium, because 
they are innervated by the trigeminal nerve. In addition, the trigeminal nerve covers and travels through the max-
illary sinus, which is connected to the nasal cavity and is also lined by a thin pseudoepithelium. As the trigeminal 
nerve can transport a drug to the forebrain and hindbrain and other connected structures, trigeminally inner-
vated structures such as the eye may also receive drug from the trigeminal nerve. Despite the possibility of a drug 
being transported to the brain, treatment of the trigeminal nerve without affecting the brain may be possible, 
because the trigeminal nerve showed a 20-fold higher drug concentration than the brain12.

Curcumin is a yellow-colored bioactive constituent of the perennial plant, Curcuma longa L., which possesses 
a wide range of physiological and pharmacological properties such as antioxidant, anti-inflammatory, anticancer, 
neuroprotective13. Scientific literature also shows that curcumin possesses anti-diabetic effects and mitigates dia-
betes complications owing to its potent ability to suppress oxidative stress and inflammation13. However, a major 
limitation with curcumin use is its low bioavailability14. Curcumin has also been proven effective for ophthalmic 
use in various ocular pathologies. However, its main drawbacks such as low solubility, instability, poor bioavail-
ability limit the clinical application of curcumin in ophthalmology15. Current trends in curcumin research have 
concentrated on the development of potential delivery systems (such as nanocarrier delivery system) to increase 
its aqueous solubility, stability, and bioavailability as well as delivery at or around target tissues.

Recent studies show that polymeric micelle is one of the most attractive nanocarriers for hydrophobic drugs 
and its use improves drug’s bioavailability16,17. Amphiphilic block copolymers can form nano-sized aggregates 
with core-shell structures, which can solubilize poorly water-soluble drugs. Polymeric nanomicelles based on 
a new amphiphilic polymer polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer 
(PVCL-PVA-PEG, Soluplus®) is an attractive strategy for improving the corneal bioavailability of therapeutic 
drugs while showing excellent ocular tolerance16; it may also be a promising strategy for drug delivery through 
intranasal administration without any modification to the drug molecule.

In this study, we intranasally administrated a nanomicelle curcumin formulation based on PVCL-PVA-PEG 
to evaluate the drug’s efficacy in experimental diabetic corneal epithelial/nerve wound healing. We also sought to 
demonstrate that the TG was involved in the mechanism of intranasal administration of nanomicelle curcumin 
against diabetic corneal epithelial/nerve wound healing.

Results
Nanomicelle curcumin promotes corneal epithelial wound healing and sensitivity recovery in 
diabetic mice. The effect of topical nanomicelle curcumin solution in promoting diabetic corneal epithelial 
wound healing after the abrasion of corneal epithelium was examined. As shown in Fig. 1A,B, the corneal epithe-
lial healing rate was significantly different from 24 h after corneal epithelium abrasion. The corneal epithelium 
defect in the ocular topical treatment group (OT group) mice (24 h: 72.11 ±  4.24%; 48 h: 21.07 ±  6.36%; 72 h: 
2.92 ±  1.35%) significantly decreased when compared with the defect size in the diabetic control group (DC 
group) mice (24 h: 81.50 ±  0.71%; 48 h: 49.50 ±  2.12%; 72 h: 19.09 ±  3.13%). Moreover and interestingly, a signif-
icantly different and better corneal epithelial healing was observed in the intranasal treatment group (IN group) 
mice (24 h: 63.00 ±  1.41%; 48 h: 6.50 ±  2.12%). A strengthened effect was observed in the ocular topical com-
bined with intranasal treatment group (OT +  IN group) mice (24 h: 67.00 ±  2.82%; 48 h: 5.02 ±  1.44%), and the 
epithelial healing rate in the IN and OT +  IN groups was similar to that in the normal control group (NC group) 
mice (24 h: 62.5 ±  3.54%; 48 h: 4.25 ±  2.47%), as all the corneas were completely healed in these two nanomicelle 
curcumin-treated groups at 72 h. Figure 1C shows the corneal sensitivity before epithelium abrasion and at 7 
days after nanomicelle curcumin treatment. The corneal sensitivity was significantly attenuated in diabetic mice 
when compared with normal mice (P <  0.01), and was further attenuated after the corneal epithelium abrasions 
(P <  0.01), although the cornea recovered 7 days after nanomicelle curcumin treatment. The attenuated corneal 
sensitivity in the OT group showed non-significant improvement when compared with that in the DC group 
(P ≥  0.05). In contrast, better corneal sensitivity recovery was noted in the IN group when compared with the DC 
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Figure 1. Nanomicelle curcumin promotes corneal epithelial wound healing and sensitivity recovery in 
diabetic mice. The effect of 7-day treatment with topical and/or intranasal nanomicelle curcumin in promoting 
diabetic corneal epithelial wound healing after corneal epithelium abrasion was investigated. (A) The corneal 
epithelial healing rate was significantly different from 24 h after corneal epithelium abrasion. (B) The corneal 
epithelial defect significantly decreased in diabetic mice treated with nanomicelle curcumin when compared 
with the DC group mice, and the decrease was similar to that in the NC group mice (* * P <  0.01 when compared 
with the DC group; #P <  0.05, with the OT group; ##P <  0.01, with the OT group; $P <  0.05, with the IN group; 
n =  6). (C) The attenuated corneal sensitivity in diabetic mice recovered in the nanomicelle curcumin treatment 
groups (* P <  0.05 when compared with the DC group; * * P <  0.01, with the DC group; #P <  0.05, with the OT 
group; ##P <  0.01 with the OT group; &&P <  0.01, with normal mice before corneal epithelium abrasion; n =  6).
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group (P <  0.01). However, there was not a strengthened effect for corneal sensitivity observed in the OT +  IN 
group (P ≥  0.05 when compared with the IN group).

The effects of nanomicelle curcumin on corneal epithelial nerve regeneration were further characterized. One 
week after debridement, corneal nerve densities in the DC group were found to be significantly different from 
that in the NC group (Fig. 2A). Compared with the DC group, the OT group showed no significant improvement 
in both peripheral and central corneal nerve densities (P ≥  0.05); however, the IN group and OT +  IN group 
mice showed significant improvement, and a strengthened effect was observed in the OT +  IN group (P <  0.05 
when compared with the OT group; Fig. 2B). These results suggest that in diabetic mice, intranasal nanomicelle 
curcumin solution promotes corneal epithelial wound healing accompanied with recovery of corneal sensitivity 
and corneal nerve density.

Nanomicelle curcumin decreases proinflammatory cytokine expression in cornea and TG neuron  
in diabetic mice. After observation of corneal epithelial wound/nerve healing with nanomicelle curcumin 
treatment in the diabetic mice model with corneal epithelium abrasion, whether this effect was associated with 
altered expression of proinflammatory cytokines was further explored (Fig. 3). For exploring the changes in the 
expression profiles of proinflammatory cytokines, the cornea and TG neuron from age-matched normal and 
diabetic mice without corneal epithelium abrasions were also analyzed. Compared with normal mice without 
corneal epithelium abrasion, diabetic mice without corneal epithelium abrasion showed significantly decreased 
expressions of proinflammatory cytokines in the cornea (CXCL10/11/12, IL-1β , IL-6, and TNFα : P <  0.05 or 0.01)  
or showed no significant changes (NF-κ B, P ≥  0.05). In contrast, after corneal epithelium abrasion, the expres-
sions of proinflammatory cytokines in the cornea were increased in both the normal control and diabetic mice 
when compared with mice without abrasion, although the corneal epithelium abrasion had completely healed, as 
observed through slit lamp observation at 7 days after abrasion. Among groups with corneal epithelium abrasion, 
proinflammatory cytokines such as IL-1β , IL-6, NF-κ B, and TNFα  were significantly increased in the DC group 

Figure 2. Nanomicelle curcumin accelerates corneal nerve regeneration in diabetic mice. The effect of 
7-day treatment with topical and/or intranasal nanomicelle curcumin in promoting diabetic corneal nerve 
regeneration after corneal epithelium abrasion was investigated. Corneas were harvested, flat-mounted, and 
immunostained with β -III tubulin antibody. (A) Images of central and peripheral corneal nerve were taken 
and combined as a whole flat-mounted corneal nerve. (B) Central and peripheral corneal nerve densities were 
calculated and are expressed as a percentage of that in the NC group (* P <  0.05 when compared with the DC 
group; * * P <  0.01, with the DC group; #P <  0.05, with the OT group; n =  3).
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Figure 3. Proinflammatory cytokine mRNA expression in the cornea and TG neuron in age-matched 
normal and diabetic mice, and in normal and diabetic mice after corneal epithelium abrasion and 7-day 
nanomicelle curcumin solution treatment. Data are expressed as mean ±  SD (* P <  0.05 when compared with 
the DC group; * * P <  0.01, with the DC group; #P <  0.05, with the OT group; ##P <  0.01, with the OT group; 
$P <  0.05, with the IN group; $$P <  0.01, with the IN group; &&P <  0.01, with the age-matched normal mice 
without corneal epithelium abrasion; n =  4).
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than in the NC group (P <  0.05 or 0.01). CXCL10, CXCL11, and CXCL12 were not observed with significantly 
increased (P ≥  0.05). All cytokines other than CXCL11 were decreased following nanomicelle curcumin treat-
ment. Regarding different treatment groups, interesting findings were the significant decrease of NF-κ B in the IN 
group when compared with the OT group (P <  0.01), and the strengthened effect in the OT +  IN group for the 
decrease of CXCL10, IL-1β , and NF-κ B.

Regarding changes in the TG neuron in normal and diabetic mice without corneal epithelium abrasion, the 
findings were similar to those for the cornea. After nanomicelle curcumin treatment, a significant decrease of 
CXCL10, IL-6, and TNFα ; no significant regulation of CXCL11, CXCL12, and IL-1β ; but increase of NF-κ B were 
observed in the OT group when compared with the DC group. However, all of these tested proinflammatory 
cytokines except for CXCL12 and NF-κ B showed a significant decrease in the IN group when compared with the 
DC group (P <  0.05 or 0.01). Moreover, all eight proinflammatory cytokines were significantly decreased in the 
OT +  IN group (P <  0.05 or 0.01), indicating a strengthened effect of the ocular topical and intranasal nanomi-
celle curcumin solution treatment.

As to the regulation profiles of the inflammatory brain biomarkers, diabetic mice without abrasion showed 
IL-1β  expression increased or IL-6 and TNFα  expression with non-significantly changed when compared with 
normal mice without corneal epithelium abrasion. In the DC group, similar to the cornea and TG neuron tissues, 
corneal epithelium abrasions induced a strong increase of these proinflammatory cytokines in the brain when 
compared with the NC group (P <  0.01). Nanomicelle curcumin administered in all three protocols produced a 
significant decrease of proinflammatory cytokines, and a strengthened effect was observed for IL-1β  and TNFα  
in the OT +  IN group (Fig. 4).

Nanomicelle curcumin increases neurotrophic factor expression in cornea and TG neuron in dia-
betic mice. Similar to proinflammatory cytokines, changes in the expression profiles of neurotrophic factors 
in the cornea and TG neuron in age-matched normal and diabetic mice without corneal epithelium abrasions 
were also analyzed. Compared with normal mice without corneal epithelium abrasion, age-matched diabetic 
mice without corneal epithelium abrasion showed significantly decreased expression of all neurotrophic factors 
in cornea. However, after corneal epithelium abrasion, the expression of all these neurotrophic factors except 
for TAC1 (the gene encoding substance P, SP) in the cornea showed no significant regulation in both NC group 
and DC group when compared with their counterparts with no abrasion. When comparing the groups with cor-
neal epithelium abrasion, abrasions induced a strong decrease of neurotrophic factors in the cornea in the DC 
group when compared with the NC group. In particular, neurotrophic factors such as ciliary neurotrophic factor 
(CNTF) and TAC1 were significantly decreased (P <  0.05 or 0.01), whereas brain-derived neurotrophic factor 
(BDNF) and calcitonin gene-related peptide (CGRP) α  isoform (CGRPα ) showed a non-significant decrease 
(P ≥  0.05). These cytokines were increased in the OT +  IN group, though none of the five neurotrophic factors 
showed significant regulation in the OT group and IN group (P ≥  0.05; Fig. 5).

Regarding the TG neuron, the expressions of all neurotrophic factors in diabetic mice without corneal epithe-
lium abrasion were similar to those in age-matched normal mice without corneal epithelium abrasion. However, 
after corneal epithelium abrasion, the expressions of all neurotrophic factors in the cornea were significantly 
decreased in the TG neuron in both the NC group and DC group when compared with their counterparts with-
out abrasion (P <  0.01). When comparing the groups with corneal epithelium abrasion, the DC group showed 
significant decrease of all four neurotrophic factors when compared with the NC group (P <  0.05 or 0.01). No sig-
nificant regulations were observed in the OT group (P ≥  0.05), while significant regulation of BDNF was observed 
in the IN group (P <  0.05). Interestingly, a strengthened effect was also observed in the OT +  IN group, where all 
neurotrophic factors were significantly increased, when compared with the DC group (P <  0.01; Fig. 5).

SP (Fig. 6A) and CGRP (Fig. 6B) were also tested with immunofluorescence in mice with corneal epithelium 
abrasion, and the results thus obtained were in agreement with the PCR results. SP and CGRP were found to be 
predominant in the basal cell layer of the corneal epithelium, and their expressions were decreased in the DC 
group when compared with the NC group. The fluorescence intensity improved in the nanomicelle curcumin 
treatment groups, especially in the OT +  IN group, where the SP expression recovered and the fluorescence inten-
sity was higher than that in the DC group. Regarding the TG neuron findings, SP (Fig. 6C) and CGRP (Fig. 6D) 
were found in the whole tissue, and the changes in their expression profiles were similar to those in the cornea.

Discussion
Corneal innervation and the resulting pathologies associated with denervation have been the topic of research for 
a long time. Investigators have examined the effects of neuropathy and shown that diabetes-induced denervation 
of the cornea reduces the viability of the corneal epithelium and its ability to repair damage18. However, the fate 
of TG neuron in diabetic pathological condition remains unrevealed. But there exist some indirect evidences for 
its pathological condition10. In this study, we found that the mRNA expressions of some inflammatory cytokines 
in the cornea and TG neuron of diabetic mice with corneal epithelium abrasion were significantly lower than 
their normal counterparts (Fig. 3), and a similar observation was also made for the mRNA expression of some 
neurotrophic factors (Fig. 5). However, normal and diabetic mice with corneal epithelium abrasion produced 
different results. We observed an imbalance in the redox state and disorders in inflammatory cytokines and neu-
rotrophic factor mRNA expression in the TG neuron and in the cornea in diabetic mice 7 days after corneal 
epithelium abrasion (Fig. S1, Figs 3 and 5). Enhanced accumulation of ROS and reduced free radical scavengers 
were observed in both the corneal epithelium and the TG neuron in diabetic mice when compared with normal 
mice, and findings of the cornea were consistent with previous reports19. Increased mRNA expression of proin-
flammatory cytokines and decreased mRNA expression of neurotrophic factors were observed both in the cornea 
and TG neuron, and findings of the cornea were also consistent with previous reports20. These findings suggest 
that corneal epithelium abrasion triggered the responses of inflammatory cytokines and neurotrophic factors in 
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Figure 4. Proinflammatory cytokine mRNA expression in the brain in normal and diabetic mice before 
and after corneal epithelium abrasion and 7-day nanomicelle curcumin treatment. Data are expressed as 
mean ±  SD (* P <  0.05 when compared with the DC group; * * P <  0.01, with the DC group; #P <  0.05, with the 
OT group; ##P <  0.01, with the OT group; $P <  0.05, with the IN group; $$P <  0.01, with the IN group; &&P <  0.01, 
with the normal mice without corneal epithelium abrasion; n =  4).
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Figure 5. Neurotrophic cytokine mRNA expression in the cornea and TG neuron in age-matched normal 
and diabetic mice with no corneal epithelium abrasion, and normal and diabetic mice with corneal 
epithelium abrasion and 7-day nanomicelle curcumin solution treatment. Data are expressed as mean ±  SD 
(* P <  0.05 when compared with the DC group; * * P <  0.01, with the DC group; #P <  0.05, with the OT group; 
##P <  0.01, with the OT group; $P <  0.05, with the IN group; $$P <  0.01, with the IN group; &&P <  0.01 with the 
age-matched normal mice without corneal epithelium abrasion; n =  4).
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Figure 6. Nanomicelle curcumin treatment increases expressions of two main neurotrophic cytokines in 
the cornea and TG neuron in diabetic mice. Immunoflurorescent staining shows that nanomicelle curcumin 
treatment restored the protein levels of SP and CGRP in the cornea and TG neuron. (A) Images of SP in the cornea 
(n =  3). (B) Images of CGRP in the cornea (n =  3). (C) Images of SP in the TG neuron (n =  3). (D) Images of 
CGRP in the TG neuron (n =  3). The bar on corneal images is 10 μ m, and that on TG images is 25 μ m.
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the cornea and TG neuron, and that the TG neuron, as well as the innervation of the cornea, was impaired in 
diabetic mice.

The corneal-TG axis is represented anatomically by the trigeminal/corneal nerves and functionally by specific 
neurotransmitters such as SP21. Neuropeptides secreted from the TG neuron regulate the proliferation of corneal 
cells, and contribute to establishing and maintaining the corneal structure and function22. Surgical axotomy of the 
ciliary nerve of the trigeminal nerve in adult BALB/c mice at the posterior sclera caused neurotrophic keratopathy21.  
The expression of TAC1 and TAC1R (coding for the SP receptor, NK-1R) could be altered in the TG neuron 
following chemical burn of the cornea21, as most of corneal neurons locate in the ophthalmic division of the TG 
neuron23. Oxidative stress and inflammation play a pivotal role in diabetes and its complications24,25. As the TG, 
as well as the innervation of the cornea, was impaired in diabetic mice, we hypothesized that correcting the imbal-
ance in the redox state and restoring disorders of inflammatory cytokine and neurotrophic factor expression in 
the TG neuron would help corneal re-innervation and re-epithelialization in diabetes.

The question that arises is how to target therapy such as curcumin to the pathological TG? Though local TG 
injection treatment has been reported previously26,27, delivering enough medical agents to the TG remains a chal-
lenge. However, intranasal drug delivery targets the TG by using the trigeminal nerve pathway, as well as other 
associated structures, as a conduit to transport a drug. More importantly, such a targeted delivery may be possible 
even without affecting the connected structures, because a higher drug concentration has been reported in the 
trigeminal nerve than in the connected structures such as the brain (20-fold)12.

To further test the hypothesis mentioned above, an intranasal delivery of nanomicelle curcumin solution 
was performed to study its effectiveness in healing corneal/nerve lesions in diabetic mice, and the results thus 
obtained were indeed inspiring(Figs 1 and 2). Oxidative stress and inflammation are involved in the develop-
ment and progression of diabetes and its complications28. Some neurotrophins, neurotrophic factors and nerve 
guidance factors, such as BDNF, CGRP, CNTF, and SP, are important to corneal nerve regeneration10,29,30. SP and 
CGRP constitute the main sensory peptides in the TG neuron, and these neuropeptides are also the major sensory 
neurotransmitter and neuropeptide released from corneal nerve fibers10,31. Diabetic abnormalities may reflect a 
loss of trophic influences from the trigeminal nerve and cornea, as both SP and CGRP exert trophic influences 
on various peripheral tissues and cell types. While curcumin is a well known antioxidant and anti-inflammatory 
agent, and it also has neurotrophic activity32. So, the effect on ROS, proinflammatory cytokine and neurotrophic 
factor expression changes in cornea and TG neuron in diabetic mice after nanomicelle curcumin treatment with 
different administration route were investigated.

The effect of nanomicelle curcumin on the regulation of diabetes-induced oxidative stress in the corneal epi-
thelium and TG neuron was evaluated by the detection of intracellular ROS. It was interestedly found that the 
imbalance in the redox state in the cornea and TG neuron was significantly corrected in the IN group, as well 
as in the OT group. While the intranasal treatment, compared with the ocular topical administration treatment, 
showed greater regulation of mRNA expression of inflammatory cytokines and neurotrophic factors in the TG 
neuron. We could safely conclude that the curcumin concentration in the cornea in the OT group was much 
higher than that in the IN group, while exciting results of the corneal epithelial wound healing and sensitivity 
recovery in the IN group were observed, and some observations were even much better than those in the OT 
group. The events underlying corneal re-epithelialization and sensitivity recovery were complex, but could be 
partly attributed to the regulation profiles of ROS and free radical scavengers, and the mRNA expressions of 
inflammatory cytokines and neurotrophic factors in the TG neuron, as well as the cornea.

Similarly to intranasal delivery, ocular delivery is also as a possible approach to deliver a drug to the TG and 
brain, and it is possible that both ocular and intranasal delivery routes may involve the trigeminal pathway33.  
However, the delivery efficiency may differ. In our previous experiments, the concentration of model agent 
coumarin-6 in the TG neuron was determined after intranasal or ocular topical delivery of coumarin-6 nano-
micelle solution (0.5 mg/ml) with similar method as reported12,34; the concentrations of coumarin-6 in the TG 
neuron after intranasal delivery were 138.3%, 96.9%, and 40.7% higher than those after ocular topical delivery 
at 15, 60, and 120 min after the administration, respectively (unpublished data). These results imply that the 
intranasal route may be more efficient than the ocular topical approach in delivering the drug to the TG neuron. 
Coumarin-6 was also detected in the cornea after intranasal delivery, but the concentration was only 0.7%, 2.2%, 
and 92.9% of the corneal concentration after ocular topical delivery at 15, 60, and 120 min after the administra-
tion, respectively. Our recent experiment results confirmed the high overlap of coumarin-6 in the TG neurons 
after ocular topical or intranasal administration using the the Fluoro-Gold™  nerve tracing tests, this results fur-
ther confirmed the trigeminal ganglion - corneal nerve transporting pathway. Although, in this study, we did not 
obtain direct concentration of the curcumin nanomicelle solution, but the confocal laser scanning microscopy 
observation results were similar to those of the coumarin-6 nanomicelle solution. Therefore, we could speculate 
that it was the treatment of the TG that helped the recovery of corneal epithelium and re-innervation of corneal 
nerve. Our results are in agreement with previous reports33,35,36. Further more, weaker dynamics of the retrograde 
transport of horseradish peroxidase (HRP) in the trigeminal nerve during burn keratitis was associated with the 
damaging effect of high temperature and inflammation on HRP uptake and transportation37. In our study, the 
corneal epithelium was scraped and nerve fibers were partially hampered; this might have also contributed to the 
attenuated treatment efficacy at the TG neuron after ocular administration, while this corneal epithelium/nerve 
fibers hamper did not exert influence to intranasal administration.

Medical agents could be delivered to the brain via the intranasal route, though the concentration was much 
lower than that in the TG neuron. Special attention should be paid to brain toxicity effects of a drug after intrana-
sal delivery. In the intranasal drug delivery system, brain toxicity was usually assessed based on apoptosis assay 
and tumor necrosis factor for inflammation38,39. The regulation profiles of the inflammatory brain biomarkers—
IL-1β , IL-6, and TNFα —were analyzed to explore how nanomicelle curcumin solution treatment affected the 
brain tissues38. We found disorders of inflammatory cytokines in diabetic mice brain, and these results are similar 
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to those reported previously40. However, not only brain toxicity was absent but the disorders of inflammatory 
cytokines in brain were also better corrected in animals that received intranasal drug as compared with ocular 
topical delivery. The TUNEL staining results also suggested that nanomicelle curcumin did not have negative 
effects in normal and diabetic brain (Fig. S2). The results suggest that intranasal nanomicelle curcumin solution 
does not have any negative affect; rather it produces positive effects in the diabetic brain.

We however need to pay special attention to nasal ciliotoxicity when considering intranasal administration 
of the curcumin nanomicelle solution. From the in situ toad palate model and in vivo mice nasal mucosa model, 
it can be safely concluded that nanomicelle curcumin solution showed no toxicity on nasal mucosa and is there-
fore safe for nasal administration (Fig. S3). PVCL-PVA-PEG is safe as an ocular drug delivery system16, and our 
previous experiment has shown that the nanomicelle curcumin solution was safe for topical ocular application 
(unpublished data). To our knowledge, this study is the first to explore the use of PVCL-PVA-PEG as a nasal drug 
delivery system, and the safety of PVCL-PVA-PEG as a nasal drug delivery system would expand this polymer 
and its drug delivery system’s administration route.

Although the study afforded promising results, there are not enough studies yet and further investigation 
is warranted. One limitation is that the untreated and treated control groups for both diabetic and normal 
mice with corneal epithelium abrasions are not yet adequately designed. In our preliminary test, we realized 
that well-designed, consistent corneal epithelium abrasions are crucial to analyze the results; therefore, in this 
study, all the corneal epithelium abrasions were created by one investigator (M.L.). However, if fully designed 
of untreated control groups and treated control groups (for example, untreated normal control group, normal 
control group with PBS ocular topical treatment, normal control group with PBS intranasal treatment, untreated 
diabetic control group, diabetic control group with PBS ocular topical treatment, diabetic control group with 
PBS intranasal treatment), the so long whole operation procedure duration lasted could result skewed results. 
Therefore, after confirming that the results are not skewed among the untreated and treated control group in dia-
betic/normal mice with small samples of corneal healing in a preliminary test, we performed experiments with 
the NC group and DC group. Another limitation is that because of limited samples (the shortage one also con-
tributed to this), western blotting or ELISA detection could not be performed to further examine antioxidants/
free radical scavengers, proinflammatory cytokines, and neurotrophic factors. Further study is needed to fully 
address these potential changing profiles during and after intranasal and/or ocular topical nanomicelle curcumin 
treatment.

Conclusions
The findings of the present study indicate that intranasal delivery of nanomicelle curcumin solution promotes 
corneal epithelial/nerve healing in diabetic mice. Regarding the mechanism of action, intranasal treatment was 
effective in delivering the pharmaceutically active ingredient to the TG neuron, resulting in well treatment of TG, 
and this help diabetic corneal epithelial/nerve wound heal. To the best of our knowledge, this study is the first 
to explore the use of polymer PVCL-PVA-PEG-based nanomicelle as an ocular/nasal drug delivery system, and 
to explore the intranasal mode of administration to help improve the recovery of corneal epithelium lesion and 
corneal neuropathy in diabetes.

Materials and Methods
Animals. Details of the animal use and diabetic model information are described in the supporting informa-
tion (SI) Materials and Methods. The animal care and procedures were conducted according to the Principles of 
Laboratory Animal Care. The use of animals in this study adhered to the ARVO Statement for the Use of Animals 
in Ophthalmic and Vision Research, and the animal study was approved by the Shandong Eye Institute Ethics 
Committee for Animal Experimentation (Approval document No 2012-6, Qingdao, Shandong, China).

Corneal epithelial wound healing. Details of corneal epithelial wound healing and treatments are 
described in the supporting information (SI) Materials and Methods, and the time course of the experiments is 
depicted in Fig. 7.

Figure 7. Experimental groups and protocols. Diabetic mice (12 weeks after induced as diabetic model), and 
the normal age-matched control mice were tested with corneal sensation, then received a central 2.5-mm  
diameter corneal epithelium abrasion. After epithelium abrasion, the eyes were intranasal and/or ocular 
topical treatment with PBS or nanomicelle curcumin for 7 consecutive days. The defects of corneal epithelium 
were visualized at 24, 48, and 72 h by instilling 0.25% fluorescein sodium and photographed under a slit lamp. 
Corneal sensation was re-tested 7 days after corneal abrasion. Then, the mice were sacrificed, corneas, TG 
neurons, and brains were carefully dissected, and further corneal nerve staining, immunofluorescent staining, 
real-time PCR, ROS generation and antioxidant molecule expression were further analyzed. Dia: diabetic mice; 
Nor: normal mice.
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Corneal sensitivity. Details of corneal sensitivity tests are described in the supporting information (SI) 
Materials and Methods.

Corneal nerve staining. Corneal nerve staining was performed, as described previously, with an 
anti-neuron-specific β -III tubulin antibody (NL1195R; R&D System Inc. Minneapolis, USA). Details of corneal 
nerve staining are described in the supporting information (SI) Materials and Methods.

Immunofluorescent staining. Corneas and TG neurons were snap-frozen in the Tissue-Tek optimum cut-
ting temperature compound (OCT, Sakura Finetechnical, Tokyo, Japan). Details of immunofluorescent staining 
are described in the supporting information (SI) Materials and Methods.

Reverse transcription quantitative-polymerase chain reaction (PCR). Details of PCR procedures 
are described in the supporting information (SI) Materials and Methods.

Measurement of ROS generation and antioxidant molecule expression. Details of ROS measure-
ment and antioxidant molecule expression procedures are described in the supporting information (SI) Materials 
and Methods.

Brain toxicity evaluation during the treatment. Details of brain toxicity evaluation procedures are 
described in the supporting information (SI) Materials and Methods.

Nasal ciliotoxicity. Details of nasal ciliotoxicity evaluation procedures are described in the supporting infor-
mation (SI) Materials and Methods.

Statistical analysis. Data in this study are representative of more than three different experiments and pre-
sented as mean ±  SD. The data were analyzed using SPSS software, version 11.5 (SPSS, Chicago, IL, USA). The 
significance of differences was evaluated using ANOVA with multiple comparisons. For all evaluations, a P-value 
less than 0.05 was considered statistically significant.
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