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Application of combined model 
of stepwise regression analysis 
and artificial neural network in data 
calibration of miniature air quality 
detector
Bing Liu1*, Qingbo Zhao2, Yueqiang Jin1, Jiayu Shen1 & Chaoyang Li3

In this paper, six types of air pollutant concentrations are taken as the research object, and the data 
monitored by the micro air quality detector are calibrated by the national control point measurement 
data. We use correlation analysis to find out the main factors affecting air quality, and then build 
a stepwise regression model for six types of pollutants based on 8 months of data. Taking the 
stepwise regression fitting value and the data monitored by the miniature air quality detector as 
input variables, combined with the multilayer perceptron neural network, the SRA-MLP model was 
obtained to correct the pollutant data. We compared the stepwise regression model, the standard 
multilayer perceptron neural network and the SRA-MLP model by three indicators. Whether it is root 
mean square error, average absolute error or average relative error, SRA-MLP model is the best model. 
Using the SRA-MLP model to correct the data can increase the accuracy of the self-built point data by 
42.5% to 86.5%. The SRA-MLP model has excellent prediction effects on both the training set and the 
test set, indicating that it has good generalization ability. This model plays a positive role in scientific 
arrangement and promotion of miniature air quality detectors. It can be applied not only to air quality 
monitoring, but also to the monitoring of other environmental indicators.

Air quality is becoming more and more important. It affects both the natural environment and human health. 
The relationship between cardiovascular disease, lung cancer, respiratory system disease and air pollution has 
been confirmed by some documents1–3. Real-time monitoring of the concentration of major pollutants (’’two 
dusts and four gases" includes PM2.5, PM10, CO, NO2, SO2, O3) in the atmosphere is becoming more and more 
necessary for relevant national departments. The national monitoring and control station (national control point) 
can measure the concentration of pollutants, and the "two dust and four gases" monitoring data of the national 
control point (ncp) is considered accurate. However, due to cost issues, the number of national control points 
is small, and it is difficult to meet the requirements for real-time monitoring of air quality. Some miniature air 
quality detectors (self-built points) are gridded and deployed in some areas. They can realize real-time monitor-
ing of air quality, and can also monitor other meteorological parameters (temperature, humidity, wind speed, 
pressure and precipitation) in the area. Since the electrochemical sensor used in the self-built point (sbp) will be 
interfered by external factors, it will cause measurement errors4. We need to use the national control point data 
to calibrate the self-built point data.

Mechanism models based on atmospheric chemical analysis and statistical models based on machine learn-
ing are often used to predict the concentration of pollutants. The former uses meteorological principles and 
mathematical methods to simulate the chemical and physical processes of pollutants to realize the prediction 
of pollutant concentration5,6. The latter uses statistical methods to analyze the collected pollutant data and uses 
mathematical algorithms to model the relationship between variables. For the research based on machine learn-
ing models, the main algorithms are artificial neural networks7–9, multiple linear regression10–12, hidden Markov 
models13,14, random forest models15–17, and support Vector machine18–20 and so on.
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Artificial neural network (ANN) is an information processing system that simulates human brain thinking 
and reasoning. It has been a research hotspot in the field of artificial intelligence since the 1980s, and has made 
certain progress in various research fields. Its advantage is that it has strong nonlinear fitting ability, can map 
arbitrarily complex nonlinear relationships. Artificial neural networks have strong associative storage capabili-
ties, robustness, non-linear mapping capabilities, and autonomous learning capabilities. However, it turns all the 
characteristics of the problem into numbers and turns all reasoning into numerical calculations21–23, so it has no 
ability to explain its reasoning process and reasoning process. As a mature method for solving linear problems, 
multiple linear regression (MLR) has been widely used in various fields. Its advantage is that it is more conveni-
ent and simple when analyzing a multi-factor model. If the data used is the same as the model, the calculation 
result is unique, and each regression coefficient in the model is better explained11,24,25. However, multiple linear 
regression models have strict requirements on independent variable selection and error terms, and multiple 
linear regression methods are also greatly restricted in solving nonlinear problems.

Artificial neural networks and multiple linear regression models are widely used in air quality prediction 
models. The two-step calibration method of multiple linear regression and machine learning was used by Elan-
gasinghe et al. to correct the NO2 concentration measured by the sensor. They compared different machine 
learning methods through 5 evaluation indicators and gave the best model7. Artificial neural networks are used 
by Reich, S. L. et al. to identify pollution sources in the air. They chose to use a three-layer feedforward ANN 
trained by the backpropagation algorithm and successfully repaired some of the data in the model9.Spinelle, L. 
et al. compared linear/multilinear regression and supervised learning techniques, and carried out on-site cali-
bration of NO, CO and CO2 pollutant sensors10. However, both linear regression and artificial neural network 
have shortcomings in air quality prediction models26. In this paper, by combining the prediction effects of the 
two methods in the air quality forecast model data, a calibration model of the main pollutants in the air is given 
to improve the interpretability and accuracy of the air quality calibration model.

Material and methods
Data source and preprocessing.  This article selects 2019 Chinese college students’ mathematical mod-
eling D problem data. It provides hourly data of a national control point from November 14, 2018 to June 11, 
2019. It also provides a self-built point data corresponding to the national control point (corresponds to the 
national control point time and the interval is within 5 min). Before conducting exploratory analysis on the data 
of national control points and self-built points, the data is pre-processed. First, delete the data that the self-built 
point and the national control point cannot correspond to and the data that is obviously abnormal. Second, the 
various data within each hour of the self-built point are classified and aggregated and averaged to correspond to 
the hourly data of the national control point. After data preprocessing, a total of 4135 sets of data were obtained 
as research objects27. Table 1 shows the range, mean, and standard deviation of each variable.

Data exploratory analysis.  The establishment of statistical models usually starts with exploratory analysis 
of the data11,28,29. Based on the national control point data, the “two dusts and four gases” concentration data 
measured at the self-built points are corrected in this paper. In order to more intuitively reflect the difference 
between the national control point and the self-built point data, we calculated the daily average value of the 
preprocessed 4135 sets of data and compared these pollutant concentration data.

In Fig. 1, the blue curve indicates the national control point measurement value, and the red curve indicates 
the self-built point measurement value. It can be seen that the measurement data of the “two dusts and four gases” 
concentration national control point and the self-built point are generally consistent, but there is a certain devia-
tion between the two. The deviation between the two in the previous period is significantly larger, which may be 
caused by the season or the zero drift of the measuring instrument. As the PM2.5, PM10, and O3 concentrations 
change significantly over time, we draw a box-line diagram10 of the monthly changes in the concentration of the 
“two dusts and four gases” national control points as shown in Fig. 2.

Table 1.   Descriptive statistics of air quality variables from data from national control points and self-built 
points.

Input variable Ranges Mean Standard deviation

PM2.5/(μg/m3) 1–216.883 64.127 37.328

PM10/(μg/m3) 2–443.25 102.391 65.267

CO/(μg/m3) 0.05–3.895 0.863 0.452

NO2/(μg/m3) 0.947–157.136 45.209 28.403

SO2/(μg/m3) 1–651.3 19.397 18.723

O3/(μg/m3) 0.579–259 61.586 40.941

Wind speed/(m/s) 0.133–2.387 0.7 0.346

Pressure/(Pa) 996.871–1039.8 1018.8 8.889

Precipitation/(mm/m2) 0–312.1 132.084 87.004

Temperature/(℃) − 3.882 to 37.944 11.882 8.603

Humidity/(rh%) 10.667–100 68.903 21.931
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It can be seen from Fig. 2: The average PM2.5, PM10, CO, and SO2 concentrations are highest in November, 
the average NO2 concentration is highest in January, and the average O3 concentration is highest in June. The 
average PM2.5, CO, and SO2 concentrations are lowest in May, the average PM10 concentration is lowest in June, 
the average NO2 concentration is lowest in November, and the average O3 concentration is lowest in December. 
The concentration of "two dusts and four gases" varies significantly in different months, so time is an important 
factor affecting the concentration of "two dusts and four gases".

Correlation analysis.  The quality of air is judged based on the concentration of pollutants in the air1. There 
are many factors that affect air quality, and they affect each other. In order to determine the correlation between 
the "two dusts and four gases" concentration and the five climate factors30, we use Eq. (1) to find the Pearson 
correlation coefficient between them, as shown in Table 2. It can be seen that, except for NO2 concentration and 
temperature, all other variables have significant correlations with each other, indicating that the factors affecting 
the concentration of each pollutant are very complex. The correlation coefficient between PM2.5 concentration 
and PM10 concentration is as high as 0.89, indicating a high positive correlation between the two, and the corre-
lation coefficient between temperature and air pressure is -0.85, which indicates that the higher the temperature, 
the lower the pressure. Figure 3 is a matrix color block diagram between the concentration of "two dusts and four 
gases" and five climatic factors, which visually shows the correlation coefficients between the variables. The size 
of the matrix color block represents the absolute value of the correlation coefficient. As the color becomes lighter, 
the value of the correlation coefficient gradually increases.

Establishment of sensor calibration model
Introduction to basic principles.  Artificial neural network is one of the most commonly used methods 
to predict the concentration of atmospheric pollutants. It has the ability to approximate any non-linear map-
ping through learning. It has a wide application prospect in the prediction of non-linear systems. The working 
principle of artificial neural network prediction is mainly divided into two steps: first, use the training samples to 
design and train the network to obtain prediction rules; then predict the test samples according to the obtained 

(1)r =
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Figure 1.   Comparison of daily average data of six types of pollutants at national control points and self-built 
points.
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rules to verify its reliability with the accuracy of the test results. The main advantage of artificial neural network 
algorithms is their strong adaptability to training samples. It has a strong ability to process uncertain informa-
tion. It can still work normally for the presence of noisy or non-linear data. Artificial neural network has strong 
robustness, memory ability, non-linear mapping ability and strong self-learning ability in training. It can quickly 
get prediction results for complex prediction problems. After consulting relevant literature, the most commonly 
used model in the research and application of neural networks are multilayer perceptron neural network31–33.

Multilayer Perceptron (MLP) neural network is a unidirectional propagation multilayer feedforward network 
structure based on error back propagation algorithm. As shown in Fig. 4: its structure can be divided into three 
layers, namely the input layer, the hidden layer and the output layer. Each layer of it consists of multiple nodes, 
and each layer can be passed to the next layer until the output layer. Except for the input nodes, each node is 

Figure 2.   Comparison of monthly average data of six types of pollutants at national control points and self-built 
points. Figures are generated using Matlab (Version R2016a, https​://www.mat-hwork​s.com/) (software).

Table 2.   Pearson linear correlation coefficients between six types of air pollutant concentrations and climate 
(band * indicates significant correlation at a significant level of 0.05).

PM2.5 PM10 CO NO2 SO2 O3 Wind speed Pressure Precipitation Temperature Humidity

PM2.5 1.00 0.89* 0.66* 0.26* 0.29* − 0.26* − 0.23* 0.89* − 0.70* − 0.16* 0.18*

PM10 1.00 0.63* 0.34* 0.35* − 0.19* − 0.18* 0.38* − 0.10* − 0.03* − 0.09*

CO 1.00 0.30* 0.31* − 0.27* − 0.31* − 0.07* 0.08* − 0.05* 0.22*

NO2 1.00 − 0.34* − 0.26* − 0.36* − 0.10* − 0.14* − 0.02 − 0.11*

SO2 1.00 − 0.28* − 0.19* 0.19* 0.27* − 0.10* 0.11*

O3 1.00 0.39* − 0.45* − 0.12* 0.68* − 0.62*

Wind speed 1.00 0.09* 0.06* 0.07* − 0.32*

Pressure 1.00 0.23* − 0.85* 0.15*

Precipitation 1.00 − 0.14* 0.86*

Temperature 1.00 − 0.49*

Humidity 1.00

https://www.mat-hworks.com/
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a neuron with a non-linear activation function. Equation (2) is its output, ωnj is the node weight, and bjk is the 
deviation.

(2)ok =
∑

j

ωnjxn + bjk

(3)J(ω, b; x, y) =
1

2
�oω,b(x) − y�2

Figure 3.   Correlation coefficient matrix color block diagram between six types of air pollutant concentrations 
and climate.

Figure 4.   Multilayer perceptron neural network structure.
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MLP is a typical supervised learning algorithm, and its loss function is defined as Eq. (3). oω,b(x) is the out-
put value of MLP, and y is the actual value. In this paper, the parameters are adjusted by the conjugate gradient 
method to minimize the loss function. The conjugate gradient method calculation formulas are Eqs. (4) and (5). 
The hidden layer in the MLP neural network model can be single or several. However, as long as the number of 
neuron nodes in the hidden layer is appropriately adjusted, a single hidden layer neural network can approximate 
any nonlinear function34,35. Therefore, a single hidden layer can meet most engineering needs. In the process of 
using SPSS software for auxiliary calculation, the number of hidden layer neurons can be automatically calculated 
by SPSS, and the relatively optimal number of neurons that is most suitable for this model is given.

The concentration of "two dusts and four gases" is affected by various factors such as various climatic factors 
and other pollutant concentrations, as well as the sensor’s own range drift. The simple regression model can only 
describe the linear effect of each variable on the concentration of pollutants. The appropriate weighted average 
of the model by the neural network, and introducing other non-linear effects into the model, can effectively 
improve the prediction accuracy of the model and improve the correction effect of the self-built point pollutant 
concentration.

In this paper, we will build a combination model of stepwise regression analysis (SRA) and artificial neural 
network, called SRA-MLR model. Firstly, a stepwise regression model is established through the influence of 
various factors on the concentration of pollutants, and the stepwise regression model is used to give the fitted 
value of each pollutant at the corresponding moment. Then the SRA-MLP neural network model is established by 
taking the fitted value and other data and time measured by the self-built point as input values and the national 
control point data as output values. The process of building the model is shown in Fig. 5.

Stepwise regression model construction.  We want to establish a multiple regression model with the 
pollutant concentration at the national control point as the dependent variable and the observation data from 
the self-built point as the independent variable. The key to establishing a multiple regression model is the choice 
of independent variables. If too few independent variables are selected, it is easy to miss key variables and the 
regression effect is not ideal. Too many independent variables are introduced into the model, which is prone 
to multicollinearity problems, which makes the model very unstable, and even problems such as inversion of 
sign. Commonly used independent variable selection methods are forward, backward, stepwise method. We use 
stepwise regression to build the model. The variables introduced in the model and their regression coefficients 
are given in Table 3.

The F-test p-values in the six types of pollutant regression models are all less than 0.01, indicating that at 
a significant level of 0.01, the variables introduced into the model as a whole have a significant effect on the 
concentration of pollutants. The t-test p-value of each independent variable introduced into the model is less 
than 0.05, indicating that at a significant level of 0.05, each independent variable introduced into the model has 
a significant effect on the concentration of pollutants. The coefficient of determination in the PM2.5 concentra-
tion model is 0.908, indicating that the fitting effect is very good; the coefficients of determination in the PM10 
and O3 concentration models are all greater than 0.8, indicating that the fitting effect is good; the coefficients of 
determination in the CO, NO2, and SO2 concentration models are all greater than 0.5, indicating that the fitting 
effect is acceptable.

SRA‑MLP model construction.  The miniature air quality detector can not only implement grid-based 
monitoring of the air quality in the area, but also monitor meteorological parameters such as temperature, 
humidity, wind speed, air pressure, and precipitation. The fitting values of the air pollutant concentrations of 
the stepwise regression model and the data from the self-built points were used as covariate factors in the MLP 
model, and the air pollutant concentrations at the national control point were used as the dependent variables. 
We use SPSS 20.0 to fit the non-linear relationship between the covariate factors and the dependent variables.

In the MLP neural network, it is particularly important to choose the number of hidden layers and the 
number of neurons in each layer. In a small data set, too many hidden layers will not only make the model more 
complicated, but also lead to overfitting of the model and poor model generalization ability. Therefore, in small 
data sets, one or two hidden layers MLP neural network is generally used for modeling. We establish one hidden 
layer and two hidden layers MLP models for six types of pollutants, and choose the model with less error as the 

(4)S(n+ 1) = −g(n+ 1)+ β(n+ 1)× S(n)

(5)β(n) =
(−g(n+ 1))T × (g(n)− g(n+ 1))

g(n)T × g(n)

Figure 5.   The flux diagram of the regression process.
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final prediction model of the pollutants. In the modeling process, 4135 samples are randomly assigned as train-
ing samples, test samples, and holdout samples, and the allocation ratio is 7:2:1, and the activation functions of 
the input layer and output layer adopt hyperbolic tangent function and identity function respectively. The batch 
is selected as the type of training, and scaled conjugate gradient is selected as the optimization algorithm. The 
software automatically calculates the number of units in the hidden layer and finally obtains SRA-MLP model36.

This article uses root mean square error(Eq. 6), mean absolute error(Eq. 7), and mean absolute percent 
error(Eq. 8) to determine the final hidden layer number. The specific results are shown in Table 4. It can be seen 
that in NO2 and O3 prediction models, the two hidden layers MLP model performs better, so NO2 and O3 finally 
choose the two hidden layers SRA-MLP model. The numbers of neurons in the first and second layers of the 
NO2 prediction model are 8 and 6, and the numbers of neurons in the first and second layers of the O3 predic-
tion model are 8 and 6. PM2.5, PM10, CO and SO2 finally choose one hidden layer SRA-MLP model, and the 
number of their hidden layer neurons are 7, 6, 5, and 8. The effect of our randomly selected PM10 prediction 
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Table 3.   Stepwise regression model and model test of six types of air pollutant concentrations. In the 
model, the dependent variable is the concentration of the six pollutants at the national control point, and the 
independent variable is the variable and time monitored by the self-built point (– represents the variables 
eliminated in the model).

Independent variable PM2.5 PM10 CO NO2 SO2 O3

Constant 451.574 1401.748 23.215 792.815 32.027 − 1216.497

PM2.5/(μg/m3) 0.792 0.781 0.007 0.330 0.040 0.770

PM10/(μg/m3) 0.026 0.101 – − 0.131 – − 0.455

CO/(μg/m3) 9.3 28.346 0.473 7.372 17.857 –

NO2/(μg/m3) 0.079 0.353 0.002 0.441 0.030 − 0.572

SO2/(μg/m3) — 0.088 – – − 0.033 0.043

O3/(μg/m3) – – 0.001 – – 0.624

Wind speed/(m/s) – – − 0.113 − 13.396 − 10.228 19.374

Pressure /(Pa) − 0.428 − 1.297 − 0.022 − 0.730 – 1.186

Precipitation /( mm/m2) − 0.031 − 0.077 3.28E−4 − 0.044 0.030 –

Temperature /(℃) − 0.195 − 1.105 − 0.023 − 2.233 0.915 2.018

Humidity /( rh%) − 0.342 − 1.146 − 0.003 − 0.520 − 0.092 − 0.113

Time/ (hour) – − 0.002 4.96E−5 0.011 − 0.013 0.011

F value 5100.060 1765.767 428.024 627.432 577.016 1863.809

R2 0.908 0.811 0.509 0.603 0.557 0.819

Table 4.   Comparison of neural network errors between one hidden layer and two hidden layers. The first 
three columns are the model errors of one hidden layer of six types of pollutants, and the last three columns 
are the model errors of two hidden layers of six types of pollutants.

Input variable RMSE1 MAE1 MAPE1 RMSE2 MAE2 MAPE2

PM2.5 9.311 6.591 0.163 9.367 6.576 0.152

PM10 16.980 11.907 0.205 18.362 12.943 0.205

CO 0.222 0.165 0.183 0.235 0.173 0.204

NO2 10.627 7.720 0.320 10.331 7.215 0.287

SO2 7.811 5.270 0.394 8.089 5.087 0.351

O3 16.469 12.529 0.908 15.629 11.513 0.635
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model is shown in Fig. 6. It can be seen that the prediction effect of the SRA-MLP model is very good whether 
it is the training set, validation set or test set.

Discussion
In the air quality prediction problem, stepwise regression models, MLP and SRA-MLP models can fit the data 
of self-built points. We can verify each model by the error between the model prediction value and the national 
control point data. Obviously, which model has a smaller error between the predicted value and the national 
control point value, which model is better. This article uses root mean square error, mean absolute error, and 
mean absolute percent error to evaluate the model30. The specific results are shown in Tables 5, 6 and 7.

It can be seen that whether it is a stepwise regression model, or the MLP and SRA-MLP models, the prediction 
accuracy is better than the measurement accuracy of self-built points. This shows that using the three established 
mathematical models to calibrate the measurement data of self-built points can achieve better results. Since the 
error evaluation index of the SRA-MLP model is the smallest among the three models, the SRA-MLP model 
is selected to calibrate the measurement data of self-built points. Among the six types of pollutant prediction 
models, the accuracy of the PM10 prediction model’s RMSE has the largest increase, with an accuracy increase 
of 74.4%. The PM10 prediction model’s MAE has the largest increase in accuracy, with an accuracy increase 
of 76.3%. The NO2 prediction model’s MAPE has the largest increase in accuracy, with an accuracy increase of 
86.5%.

The concentration of pollutants in the atmosphere has an obvious correlation with the periodic activities of 
human beings. The weekly averages of the six pollutant concentrations are plotted in Fig. 7. It can be seen that 

Figure 6.   The prediction effect of PM10’s SRA-MLP model on the training set, validation set and test set.
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there is a significant deviation between the red self-built point data curve and the blue national control point 
data curve, but the black model fitting value (smp) curve deviates very little from the national control point data 
curve. The results show that the accuracy of the SRA-MLP model for predicting the concentration of pollutants 
is better than the accuracy of the self-built point measurement data.

Conclusions
The air quality index (AQI) is a dimensionless index that quantitatively describes the condition of air quality. It 
is often used to measure the quality of air quality. The main pollutants participating in the air quality assessment 
are PM2.5, PM10, CO, NO2, SO2, O3, etc. Therefore, to realize the monitoring of air quality, it is very important 
to monitor the concentration of ’’two dusts and four gases" in real time.

Many countries have established national monitoring and control stations to monitor air pollutant concen-
trations. Although the national control point is more accurate in monitoring pollutants, the cost of deployment 
is high, the number of deployments is small, and the maintenance costs are high. Therefore, it is difficult for the 
national control point to achieve full control. The miniature air quality detector developed by some companies 
has successfully improved these shortcomings, but the accuracy of monitoring needs to be improved.

The pollutant correction model based on the stepwise regression model has some corrections to the self-
built point data, and the results obtained are easier to interpret, but the correction effect needs to be improved. 
Compared with regression models, artificial neural networks have a greater advantage in data correction. The 
artificial neural network does not rely on the typical distribution of the original data. It simulates human think-
ing to derive a non-linear mapping relationship between the input and output of the system, and then makes 
intelligent reasoning and prediction.

The SRA-MLP model given in this article combines the advantages of a stepwise regression model and an arti-
ficial neural network combined model. It not only provides the quantitative relationship between the monitoring 

Table 5.   RMSE of six types of air pollutant concentrations between self-built points, model forecast values and 
national control point.

Input variable Self-built points SRA MLP SRA-MLP

PM2.5 22.436 10.147 10.226 9.311

PM10 66.263 20.004 19.149 16.980

CO 0.679 0.343 0.265 0.222

NO2 37.183 15.332 12.126 10.331

SO2 26.24 13.287 9.235 7.811

O3 45.673 20.429 17.695 15.629

Table 6.   MAE of six types of air pollutant concentrations between self-built points, model forecast values and 
national control point.

Input variable Self-built points SRA MLP SRA-MLP

PM2.5 18.181 7.027 7.417 6.591

PM10 50.151 13.677 13.148 11.907

CO 0.549 0.261 0.196 0.165

NO2 29.838 11.61 8.787 7.215

SO2 12.867 9.394 6.093 5.270

O3 36.63 15.597 13.599 11.513

Table 7.   MAPE of six types of air pollutant concentrations between self-built points, model forecast values 
and national control point.

Input variable Self-built points SRA MLP SRA-MLP

PM2.5 0.447 0.166 0.176 0.163

PM10 0.887 0.221 0.213 0.205

CO 0.478 0.313 0.233 0.183

NO2 2.129 0.554 0.398 0.287

SO2 0.685 0.656 0.441 0.394

O3 4.322 1.124 0.985 0.635
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data of self-built points and the concentration of the six pollutants, but also greatly improves the accuracy of the 
prediction of the concentration of the six pollutants. The data used in the model is 4135 groups, the time span 
is 206 days, and the data of all four seasons are involved, and it shows good predictive ability in the training set 
and the test set, so the model is very stable. This model plays a positive role in grid-based monitoring of the 
concentration of various pollutants and guides the scientific deployment of miniature air quality detectors. It can 
also be popularized and applied to the prediction of environmental pollution indexes such as water pollution, 
soil pollution, noise pollution and light pollution. But because this research uses a small data set, it is not suitable 
for deep learning. In future research, we hope to collect more data and use deep learning to improve the model.
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