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Cantù syndrome (CS) arises from mutations in ABCC9 and KCNJ8 genes that lead to gain of
function (GOF) of ATP-sensitive potassium (KATP) channels containing SUR2A and Kir6.1
subunits, respectively, of KATP channels. Pathological consequences of CS have been reported
for cardiac and smooth muscle cells but consequences in skeletal muscle are unknown.
Children with CS show muscle hypotonia and adult manifest fatigability. We analyzed muscle
properties of Kir6.1[V65M]CSmice, bymeasurements of forelimb strength and ultrasonography
of hind-limb muscles, as well as assessing KATP channel properties in native Flexor digitorum
brevis (FDB) and Soleus (SOL) fibers by the patch-clamp technique in parallel with
histopathological, immunohistochemical and Polymerase Chain Reaction (PCR) analysis.
Forelimb strength was lower in Kir6.1wt/VM mice than in WT mice. Also, a significant
enhancement of echodensity was observed in hind-limb muscles of Kir6.1wt/VM mice relative
to WT, suggesting the presence of fibrous tissue. There was a higher KATP channel current
amplitude in Kir6.1wt/VM FDB fibers relative toWT and a reduced response to glibenclamide. The
IC50 of glibenclamide to block KATP channels in FDB fibers was 1.3 ± 0.2 × 10−7M in WT and
1.2 ± 0.1 × 10−6M in Kir6.1wt/VM mice, respectively; and it was 1.2 ± 0.4 × 10−7M in SOL WT
fibers but not measurable in Kir6.1wt/VM fibers. The sensitivity of the KATP channel to MgATP
was not modified in Kir6.1wt/VM fibers. Histopathological/immunohistochemical analysis of SOL
revealed degeneration plus regressive-necrotic lesions with regeneration, and up-regulation of
Atrogin-1, MuRF1, and BNIP3 mRNA/proteins in Kir6.1wt/VM mice. Kir6.1wt/VM mutation in
skeletal muscle leads to changes of the KATP channel response to glibenclamide in FDB and
SOL fibers, and it is associated with histopathological and gene expression changes in slow-
twitch muscle, suggesting marked atrophy and autophagy.
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INTRODUCTION

Cantù syndrome (CS, OMIM#23985, also known as
hypertrichotic osteochondrodysplasia) is a rare autosomal
dominant inheritance, multi-organ condition (Cantú et al.,
1982), characterized by cardiomegaly, vascular dilation, and
low blood pressure (Grange et al., 2006; Scurr et al., 2011;
Brownstein et al., 2013; Nichols et al., 2013) together with
hypertrichosis and skeletal malformations. Neuromuscular
symptoms have been observed in some patients (Leon
Guerrero et al., 2016). The molecular basis of CS is now
recognized to be gain of function (GOF) mutations in the
ABCC9 and KCNJ8 genes, which encode the regulatory
sulfonylurea receptor SUR2 (ABCC9) and pore-forming Kir6.1
(KCNJ8) subunits of ATP-sensitive K+ (KATP) channels
(Harakalova et al., 2012; Cooper et al., 2014). To date, ∼70
individuals with CS, associated with >30 missense ABCC9 or
KCNJ8 mutations have been reported in the literature (Grange
et al., 2019). All characterized mutations resulted in enhanced
activity of recombinant KATP channels when expressed in
heterologous expression systems that arises from the reduced
sensitivity to ATP (Cooper et al., 2015; McClenaghan et al., 2018).

Patients with CS have a complex phenotype from birth. Some
children with CS show muscle hypotonia leading to delays in the
development of motor skills such as sitting, standing, and walking
(https://ghr.nlm.nih.gov/condition/cantu-syndrome#definition).
Also, adult CS patients tend to have a muscular appearance,
caused by an increase in muscle size, although masked by edema
when older, and self-report fatigability. KATP channels are
present in the membrane of skeletal muscle fibers where they
are responsible for unique feedback between muscle cell
metabolism and electrical activity (Flagg et al., 2010). In
resting skeletal muscle fibers, these sarco-KATP channels are
mostly closed and contribute little to the resting membrane potential
(Tricarico et al., 1997). Activation of sarco-KATP channels occurs as
a response to metabolic stress and reduced ATP/ADP ratio, leading
to a reduction in action potential duration (Tricarico et al., 2016a); in
so doing, they contribute to the decline in skeletal muscle excitability
and force production during prolonged repetitive stimulation and
fatigue (Pedersen et al., 2009). Therefore, KATP channels play a
protective role in skeletal muscle, helping to preserve structural
integrity, avoiding fiber damage caused by intense exercise, buffering
ATP levels during fatigue and tetanus, contributing to glucose
uptake regulation, and Ca2+ handling. This interpretation is
supported by the finding that pinacidil, an opener of KATP
channels, increases the rate of fatigue in Extensor digitorum
longus and Soleus muscles of wild-type mice (Tricarico et al.,
2016b). On the other hand, reduction of sarco-KATP channel
activity is one mechanism of the primary and secondary forms of
hypokalemic periodic paralysis, transient weakness and hypokalemia
(Tricarico et al., 1999a; Tricarico et al., 1999b). Sarco-KATP
channels are predominantly composed of Kir6.2/SUR2A subunits,
but we have documented the existence in skeletal muscle of hybrid
assemblies of other subunits organized as heteromeric complexes
(Tricarico et al., 2006).

CRISPR/Cas9–modified mice, in which CS-associated single
nucleotide mutations have been introduced into native KCNJ8

(Kir6.1[V65M]) or ABCC9 (SUR2[A478V]) loci provide tractable
animal models in which to understand cellular mechanisms and
organ consequences of CS (Huang et al., 2018), and this has led to
the recognition of the role of channel overactivity in vascular
smooth muscle in generating the cardiovascular phenotype CS
(McClenaghan et al., 2020). The majority of studies investigating
KATP channel in skeletal muscle have either used non-selective
pharmacological modulators (glibenclamide/pinacidil/diaxoxide)
or knock-out of Kir6.2. GOF mutation of KCNJ8 gene is found to
be responsible for the most severe CS phenotype both in humans
and animal models. Even so, the consequence of CS mutations in
skeletal muscle and the molecular mechanisms responsible for
exercise intolerance and muscle fatigability in CS patients appear
so far uninvestigated. In this work, therefore, we evaluated the
effects induced by the Kir6.1[V65M] CS mutation on skeletal
muscle from heterozygous Kir6.1[V65M] (Kir6.1wt/VM) and wild
type (WT) mice, by combining in vivo and ex vivo experiments.
We investigated the biophysical and pharmacological properties
of KATP channels in fast-twitch Flexor digitorum brevis (FDB)
and slow-twitch Soleus (SOL) muscle fibers by patch-clamp
technique. The primary endpoint was the change in the KATP
channel current recorded in excised macro-patches from skeletal
muscle fibers of Kir6.1[V65M] (Kir6.1wt/VM) and wild type (WT)
mice, and response to glibenclamide. Secondary endpoints were
forelimb strength measurements and ultrasonography evaluation of
hind limb muscles to assess functional and morphological
consequences. Polymerase Chain Reaction (PCR) analysis of gene
expression, as well as histopathological and immunohistochemistry
evaluations in different muscle types, were performed to understand
the cellular origins of these features.

MATERIALS AND METHODS

Animal Care
Novel knock-in Kir6.1[V65M] mice, resembling the human
Cantù syndrome (CS), were generated through CRISPR/Cas9
gene editing and genotyped (Huang et al., 2018) at Washington
University, Saint Louis, USA, and then transferred to Italy.
Kir6.1wt/VM mice (N mice � 4) and wild type (WT) mice (N
mice � 4) were maintained two to four per cage at the Stabulario
of the Dipartimento di Farmacia-Scienze del Farmaco, University
of Bari, Italy, under the supervision of the veterinary officer
according to D.lgs. 26/2014. Experiments were performed on
male mice since no evidence of gender differences currently exist
in CS (Grange et al., 2019). The temperature of the laboratory was
maintained at 22 ± 1°C, with a relative humidity of 50 ± 5%, and
under 12:12 light/dark cycles; the animals were provided and
maintained on a standard laboratory diet and water ad libitum.

Ethical Statements
Animal care and all experimental protocols are in agreement with
the European Directive 2010/63/EU on Animal Protection Used
for Scientific Experiments, and the Washington University
School of Medicine Institutional Animal Care and Use
Committee, and were approved by the Italian Ministry of
Health and by the Committee of the University of Bari
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O.P.B.A (Organization for Animal Health) (prot. 8515-X/10, 30-
01-2019). The animal care, protocols, and the sample size
(number of mice needed) were calculated at the minimum
required to reach the statistical significance based on the primary
endpoint according to the 3R “Replace, Reduce, Refine” rules (see
below). For minimizing the risk of observer bias and other
“experimenter effects,” experiments were conducted “in blind,”
meaning that experimenters were unaware, when possible, of the
genotype of the animals (Holman et al., 2015).

In-vivo Parameters of Muscle Strength
Evaluation of forelimb strength was performed using a grip strength
meter (Columbus Instruments, Columbus, Ohio), according to
TREAT–NMD SOPs (De Luca, 2019), by an investigator blinded
to mouse genotype. Mice were allowed to grasp a triangular ring
connected to a force transducer and then gently pulled away until the
grip was broken. The force applied by the animal at this point
represents the maximal resistance the animal can use with its
forelimbs. For each animal, at least five separate measurements
were made within 2min and averaged. Both the absolute and
normalized (to body weight) medium forelimb force values were
used for statistical analysis (De Luca et al., 2003).

Ultrasound Evaluations
Ultrasonography experiments were conducted using the ultra-
high frequency ultrasound bio-microscopy system Vevo 2100
(VisualSonics, Toronto, ON, Canada), by an investigator blinded
to mouse genotype. Each animal was anesthetized via inhalation
(induction with 3% isoflurane and 1.5% O2 l/min, then constantly
maintained via nose cone at 2-1.5% isoflurane and 1.5% O2) and
placed on a thermo-statically controlled table (kept at 37°C)
equipped with four copper leads which allowed monitoring of
heart and respiratory rate. A rectal probe was used to monitor
body temperature. The mice were prepared as previously described
(Mele et al., 2016; Whitehead et al., 2016; Conte et al., 2017).

Ultrasound acquisitions of the hind limb were performed to
evaluate total hind limb volume (in mm3), percentage of
vascularization (PV%) and hindlimb echodensity by using the
MS250 probe. A 3-dimensional (3D) volume scan of the hind
limbs was acquired by translating the ultrasound probe parallel to
the long axis of the hind limb. Multiple 2D images were acquired at
regular intervals in PowerDopplermode. At the end of the procedure,
3D images were reconstructed from previously collected multiple 2D
frames and visualized with VisualSonics 3D software (Mele et al.,
2019). The software provides us the hindlimb volume value and PV%.
Three 2D frames were selected for each mouse and used for
echodensity evaluation. In particular, the images were analyzed by
using ImageJ® software by creating a gray-scale analysis histogram on
the entire outlined hind limb section of constant dimensions of
7392.12 ± 18.45 pixel. For each mouse, hindlimb echodensity was
obtained as the main value obtained from 3 images analysis.
Echodensity differences were expressed as the percentage change
of the mean echodensity of the pixels included in the selected area.

Animal Sacrifice and Tissue Collection
At the end of the in vivo evaluations, the ex vivo experimental
phase started. No more than 2 animals were sacrificed per week,

thus a window of 4–5 weeks was necessary to complete these
procedures. Animal sacrifice was made by cervical dislocation
under ZOLETIL 50/50 (40 mg/kg i.p.) profound anesthesia
(Maqoud et al., 2020). Skeletal muscles and hearts were
extracted under profound anesthesia. Blot-dried organs were
weighed and weights were normalized to the tibia length. All
experimental surgical procedures were performed under a sterile
cell culture hood in which all the necessary equipment was
sterilized to prevent contamination.

Drugs and Solutions
The normal Ringer solution used during muscles and organ
biopsy contained:145mM NaCl, 5 mM KCl, 1 mM MgCl2,
0.5mM CaCl2, 5mM glucose and 10mM 3-(N-morpholino)
propanesulfonate (Mops) sodium salt and was adjusted to pH 7.2
withMops acid. For inside-out patch experiments on FDB/SOL fibers,
the patch-pipette solution contained: 150mMKCl, 2 mMCaCl2 and
1mM Mops (pH 7.2); the bath solution contained 150mM KCl,
5mM EGTA and 10mM Mops (pH 7.2). Stock solutions of
glibenclamide (Glib) (118.6mM) were prepared by dissolving the
drug in DMSO (Tricarico et al., 2012). DMSO applied at themaximal
concentration tested, which was 0.05%, did not affect the channel
currents in the absence or the presence of ATP (solvent control).

Patch-Clamp Experiments on Flexor
digitorum brevis and Soleus Fibers
Experiments on FDB/SOL fibers were performed in inside-out
configurations by using the standard patch-clamp technique
(Tricarico et al., 2008a). Isolated fibers were obtained from
FDB and SOL muscles by enzymatic digestion with
collagenase (C9697 Sigma, ≈0.5 mg/ml). Channel currents
were recorded in excised macro-patches (R � 0.91 ± 0.07 MΩ)
during voltage steps from a holding potential of 0 mV to −60 mV
(Vm) immediately after excision, at 20–22°C. Currents were
recorded at a 1-kHz sampling rate (filter 0.2 kHz) by using an
Axopatch-1D amplifier equipped with a CV-4 headstage
(Molecular Devices, CA) (Scala et al., 2019). The current
amplitude was measured using Clampfit 10.0. Patch pipettes
were pulled from borosilicate glass capillaries (Glass type 8250,
King, USA) and fire-polished. Macro-patches containing
significant voltage-dependent K+ channels or other Kir
channels or showing marked loss of channel currents during
the time of observation were excluded from the analysis. No
correction for liquid junction potential was made, estimated to
be <1.9 mV in our experimental conditions.

Fiber Survival Evaluation
Evaluation of the morphological parameters of FDB fibers was
performed seeding fibers in the culture medium (DMEM
supplemented with 10% fetal bovine serum, 1% L-glutamine and
1% penicillin-streptomycin), at 37°C (Mele et al., 2012), by an
investigator blinded to mouse genotype. Before analysis, isolated
fibers were equilibrated in the culture medium for at least 30min at
37°C. Fiber morphology was evaluated using a Nikon TMS Inverted
Microscope 4x magnification. Dead fibers were defined as cells
showing marked changes of ≥40% in morphological parameters
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such as length and diameter within 24 h from the excision. The
appearance of multiple sarcolemma blebs preceded cellular death.

Histopathological Analysis
After animal sacrifice, tissue samples were embedded in OCT
tissue-freezing medium, frozen in liquid nitrogen, and stored
at −80°C until analysis. Samples were fixed with 10% animal
buffered formalin for a minimum period of 48 h. Tissues were
incorporated into the paraffin, sections were cut to 5–10 μm and
stained with standard techniques with hematoxylin and eosin
(H.E.), Mallory trichrome stain, and periodic acid-Schiff (PAS).
Other specimens stored at −80 were used for ATPase and
Succinodehydrogenase stains in cryo-section. Muscles were
cross-sectioned using a microtome. Digital images were taken
from the cross-section at 10-100x magnification to evaluate
muscle fiber morphology and to determine fiber cross-sectional
area (CSA) measures. Images from 20 random fields were acquired
for the ten stained sections of each specimen using a D 4000 Leica
DMLS microscope equipped with a camera and image analyzer
NIS elementes-BR-Nikon. Section analysis and the CSA evaluation
of the fibers was performed by QWin software (Leica). Of the
subjects sacrificed, a gross necropsy of all organs was also carried
out (Trapani et al., 2017). Examination of cellular morphology as
well as of intracellular structures was conducted and the severity of
the observed lesions was assessed (Gibson-Corley et al., 2013), by
animal pathologists blinded to mouse genotype.

Immunohistochemistry
Isolated organs were immunohistochemically stained according to
the labeled streptavidin avidin-biotin (LSAB) method using
Autostainer Link 48 Immunohistochemistry Staining System
(Agilent Technology). The slides were controlled by protocols in
the DakoLink software. Tissue sections were cut (4 µm thick), placed
on poly-L-lysine-coated glass slides, and, subsequently, deparaffinized
in xylene and dehydrated, and IHC slides automaticallymounted and
cover-slip applied, after staining and dehydration. To detect anti-
genes, the sections were immersed in citrate buffer (0.1, pH 0.6), for
30min with 0.3% hydrogen peroxide, then inmethanol for 12min to
quench endogenous peroxidase activity. After washing three times for
5min each with phosphate-buffered saline (PBS), the sections were
blocked by soaking for 20min at room temperature in PBS
containing 1% bovine serum albumin. The blocked sections were
incubated overnight at 48°C anti-mouse primary antibodies for NFκB
p50 (E-10): sc-8414; MAFbx (F-9): sc-166806; caspase-3 (E-8): sc-
7272; BNIP-3 (ANa40): sc-56167 (Santa Cruz Biotechnology, Inc.)
diluted 1/100 for 40 min then thoroughly washed in 0.05M buffered
with Tris saline (pH � 7.6) and incubated with streptavidin-
peroxidase (Dako, 1: 100) for 40 min. 3, 3- diaminobenzidine
(DAB) (Dako Glostrup, Denmark) was used as the chromogen;
to counteract the core of Gill’S hematoxylin (Polysciences,
Warrington, PA) after sections have been dehydrated and
assembled (Zizzo et al., 2019). Experiments were performed by
an investigator blinded to mouse genotype.

Polymerase Chain Reaction
Total RNA was isolated and purified from entire FDB and SOL
muscles with Trizol reagent (Invitrogen Life Technologies) and

quantified using a spectrophotometer (ND-1000 Nano-Drop,
Thermo Scientific). PCR amplification was achieved using PCR
Master Mix (Promega) (Dinardo et al., 2012). PCR cycles
consisted of denaturation at 95 °C for 1 min, annealing
segment at 58 °C for 1 min, and extension at 72 °C for
1 min, repeated for 30 cycles. Amplified PCR products were
separated on 1% agarose gel. Primer sequences are reported in
Table 1. The data collection and analysis were performed according
to theMIQE (Bustin et al., 2009). All experiments were performed in
duplicates per muscle and duplicates per genotypes.

Data Analysis and Statistics
Data were collected and analyzed using Excel software (Microsoft
Office 2010), Clampfit 10.5 (Molecular Devices), and SigmaPlot
10.0, and statistical results are presented as mean ± SEM unless
otherwise indicated. The number of replicates relative to each
experimental dataset was reported in the results paragraph and
the figure description.

The primary endpoint was the change in the current amplitude
recorded in excised patch experiments. The comparisons between
groups were performed by using the t-test, two tails between two
independent means to evaluate variance between groups. The
p-value was considered statistically significant if <0.05. The
number of experimental groups: � 2, WT, and Kir6.1wt/VM mice.
The calculation of the sample size was made considering a delta
change of the KATP current amplitude � 412 pA and SD of 100 in
patch-clamp experiments performed in previous experiments on
smooth muscle cells in the transgenic mice Kir6.1wt/VM mice vs WT
mice since no data on skeletal muscle cells are so far available for the
calculation (Huang et al., 2018). The calculated sample size per
genotype was 4, the critical t value of 2.44 with an effect size of 4. The
theoretical power of the study for the calculation of the sample was
0.95 in input and remains high in output 0.99 (G * Power 3.1.9.7).

The Student t-test was also used to evaluate the significance of
differences between the means of two groups for secondary
endpoints, p values < 0.05 were considered to indicate
statistical significance unless otherwise indicated. One WAY
ANOVA was used to evaluate intergroup and intragroup

TABLE 1 | Primer sequences for PCR analysis

Sequence (5’ - 3’)

ABCC8 F ATCATTCTGCTGGCTCCTGT
ABCC8 R CTGGTCATTTCCTTCCTGCG
ABCC9 F CTGGTCCCACATGTCTTCCT
ABCC9 R ATGCGAGTCTGAAACGATGC
KCNJ8 F GTAGACCTGAAGTGGCGTCA
KCNJ8 R GCATGGCGGCTGAAAATCA
KCNJ11 F CACCTCCTACCTAGCTGACG
KCNJ11 R ATGCTAAACTTGGGCTTGGC
FBXO32 F AAGTCACAGCTCACATCCCT
FBXO32 R TGTTAATGTTGCCCACCAGC
TRIM63 F AAGTGATCATGGACCGGCA
TRIM63 R AAGTAGGCACCTCACACGTG
BNIP3 F GCTCCCAGACACCACAAGAT
BNIP3 R TGCGCTTCGGGTGTTTAAAA
CASP3 F GAGCAGCTTTGTGTGTGTGA
CASP3 R TGTCTCAATGCCACAGTCCA
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variability (p < 0.05). The percentage of KATP current inhibition
induced by glibenclamide (Glib) was calculated as -(I CTRL- I
drug)/(I CTRL-I leak) x 100, where I leak was the current recorded
after the application of 5 × 10−3 MMgATP on skeletal muscle fibers.
The frequency of myofibers positivity was calculated on 50 cells per
section (Zizzo et al., 2019).

RESULTS

Cantù Kir6.1wt/VM Mice Show Enlarged, but
Weaker Skeletal Muscles and Higher
Echodensity
We first assessed the macroscopic properties of skeletal muscle in
terms of strength and integrity. At the beginning of the
experimental protocol, 33-week-old Kir6.1wt/VM and age-
matched WT mice were not significantly different in weight
(30.6 ± 1.7 g n � 4 Kir6.1wt/VM mice vs 29.5 ± 1.3 g n � 4 WT
mice, p � 0.321), but forelimb grip strength (both absolute and
normalized to body weight) was significantly lower in Kir6.1wt/VM

mice than in WT mice (Figures 1A,B).
Hind limb muscle morphology was assessed by 3D ultrasound

evaluation. Interestingly, hind limb echodensity was ∼20% higher
in Kir6.1wt/VM than in WT (Figures 1C,D), reflecting lower
muscle mass and fibrotic tissue/fat deposition. Although not

significant, there was a trend towards increased hind limb
volume and percentage of vascularization (PV%) in
Kir6.1wt/VM mice (Figures 2A,B).

Following sacrifice, individual muscles were isolated and
weighed. As previously reported (Huang et al., 2018) there
was dramatic cardiomegaly in Kir6.1wt/VM mice, which showed
a ∼1.7-fold increase in heart weight as evaluated by one WAY
ANOVA (Figure 3). There was also a tendency toward increased
skeletal muscle weights in Kir6.1wt/VM mice, including Soleus
(SOL), and significant increases in Extensor digitorum longus
(EDL) and Tibialis anterior (TA) muscles as evaluated by one
WAY ANOVA (Figure 3).

KATP Channels Show Reduced Sensitivity
to Glibenclamide in Cantù Kir6.1wt/VM

Muscles
We confirmed the expression of KATP channel subunits in fast-
twitch FDB fibers and slow-twitch SOL fibers by PCR analysis of
KCNJ8, KCNJ11, ABCC8, and ABBC9 genes (encoding Kir6.1,
Kir6.2, SUR1, and SUR2, respectively), of FDB (n. muscles � 2)
and SOL (n. muscles � 2) whole muscle samples. Specific bands
were detected for KCNJ11 and ABCC9 in both FDB and SOL
(Figure 4A), which is consistent with the prevailing evidence
that skeletal muscle KATP channels are composed
predominantly of Kir6.2/SUR2 subunits (Tricarico et al.,

FIGURE 1 | In vivo evaluation of skeletal muscle forelimb muscle strength and morphology in WT (n. mice � 4) and Kir6.1wt/VM (n. mice � 4). Either (A) absolute
medium forelimb strength and (B) forelimb strength normalized for body weight medium are lower in Kir6.1wt/VM mice concerning WT mice. Absolute medium forelimb
strength is 0.185 ± 0.003 kg in WTmice (n. measurements � 21) and 0.160 ± 0.005 kg in Kir6.1wt/VM mice (n. measurements � 20). The forelimb strength normalized for
body-weight is 6.326 ± 0.119 in WT mice vs 5.288 ± 0.159 in Kir6.1wt/VM mice. **Data significantly different concerning the control (Student t test, p<0.001). (C) In
an ultrasound evaluation, the mean pixel echodensity in Kir6.1wt/VM hind limb was significantly higher than WT. The mean echodensity of hind limb is 86.78 ± 2.15 (n.
animals � 4) in WT and 104.77 ± 6.42 (n animals � 4) in Kir6.1wt/VM mice, resulting in a significant enhancement of +20.72% of this parameter in Kir6.1wt/VM mice
compared to theWTmice. *Data significantly different concerning the control (Student t test, p<0.05). Data are presented as individual data points in the vertical point blot
and asmean ± SEM. (D) Sample representative images of the grey-scale histogram obtained by ImageJ software analysis of the selected hind limb showing a white-shift
of the pixel intensity in Kir6.1wt/VM mice concerning the WT mice.
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2006). However, a prominent band for KCNJ8 was also present
in both fast-twitch and slow-twitch muscles, with low
expression level in the FDB muscle of Kir6.1wt/VM mice
(Figure 4A).

KATP channel activity was recorded in macro-patches excised
from acutely dissociated FDB fibers (n. muscles � 4) and SOL
fibers (n. muscles � 4) using the patch-clamp technique. Mean
current density (i.e. maximum current in zero ATP) was ∼1.5-
fold higher in Kir6.1wt/VM than WT FDB patches but was not
different between genotypes in SOL patches (Figures 4B–D).
However, we note that Kir6.1wt/VM SOL fibers showed sudden
changes in length and diameters and surface blebs appearance
within 2 h after acute isolation, resulting in a low percentage of
successful experiments, and potentially reflecting membrane
damages and muscle pathology. We assessed the sensitivity of
KATP to MgATP, which provides a compound measure of both

inhibition by ATP itself and the activator effect of MgATP at the
SUR subunit (Reimann et al., 2000; Proks et al., 2014;
McClenaghan et al., 2018). There was no clear shift of
MgATP-sensitivity of the KATP channels in SOL and FDB
patches (Figures 5A,B; Table 2). We tested the KATP
channel sensitivity to the KATP channel inhibitor
glibenclamide (Glib). In both FDB and SOL patches, there
was a significant reduction of Glib-sensitivity, with ∼50%
reduction in the inhibitory effect of 10−7 M Glib in each
muscle (Figures 5C–E; Table 2).

Together, these results indicate that Kir6.1 subunit is
functionally present in KATP channels in both SOL and FDB
muscles resulting in a marked loss of channel sensitivity to Glib in
Kir6.1[V65M] mice.

Cantù Kir6.1wt/VM Skeletal Muscle Fibers
Show Pathologic Atrophy and Low
Survivability
Histochemistry and immunohistochemistry evaluations were
performed on slow-twitch Soleus (SOL) (n. muscles � 2) and
fast-twitchGastrocnemius (GA) (n. muscles � 2), Tibialis (TA) (n.
muscles � 2) and Extensor digitorum brevis (EDL) (n. muscles �
2) skeletal muscles. Hematoxylin-Eosin (H.E.), Mallory
trichrome and P.A.S. stains showed marked fiber atrophy in
all muscles, with a cross-sectional area (CSA) being markedly
reduced (by 21.6%) in slow-twitch SOL muscle (Figures
6A,B,G). The diameter of succinodehydrogenase-stained
fibers with high mitochondrial SDH activity, in SOL sections
from Kir6.1wt/VM mice, was also ∼20% less than in similar
sections from WT mice. Lesions, histologically apparent as
regressive-necrotic with regeneration zones, were present in
SOL sections from Kir6.1wt/VM mice. Advanced degeneration
and regeneration, and replacement with connective tissues were
observed in some groups of myofibrils using Mallory trichrome,
but were P.A.S. negative (Figures 6C,D; Figures 7A–E).
Myofibrils with angular atrophy and pyknotic nuclei were
found (Figure 6D).

Atrophic phenomena were particularly evident in type I fibers
of Kir6.1wt/VM mice, but less in type II fibers, as observed with
high myosin-ATPase activity at acidic pH and high
mitochondrial SDH activity evidenced in muscle cryo-sections
of GA muscle (Figures 6E,F). CSA was only reduced by 13.7% in
fast-twitch GA muscle (Figure 6G); TA and EDL muscles were
also less affected than SOL muscle.

Finally, immunohistochemistry was performed on sections of
SOL, the most affected muscle in histological analysis, on silanized
slides using anti-mouse primary antibodies for NFκB p50 (E-10),
MAFbx (F-9), caspase-3 (E-8) and BNIP-3 (ANa40), which are
respectively involved in inflammation, atrophy, apoptosis and
autophagy processes in skeletal muscle. SOL sections of
Kir6.1wt/VM mice stained markedly positive for NFκB p50 and
BNIP-3 (Table 3), with immunoreaction of inflammatory cells of
the endomysium, compared tomuch lower positive staining inWT
sections. Marked nuclear immunostaining (IMS) for MAFbx (F-9)
was detected in Kir6.1wt/VM but not in Table 3 WT sections
(Figures 8A–H). Caspase-3 (E-8) was not detected in

FIGURE 2 | Ultrasound evaluation of hind limb A tendency toward higher
hind limb (A) volume and (B) vascularization was found in Kir6.1wt/VM mice (n.
mice � 4) concerning the WT (n. nice � 4). Data are presented as individual
data points in the vertical point blot and as mean ± SEM.

FIGURE 3 |Organ weight differences betweenWT and Kir6.1wt/VMmice.
A tendency toward higher organ weight is observed in Kir6.1wt/VM mice.
Values are presented as mean ± SEM (n. mice � 4 for WT and Kir6.1wt/VM);
organ mean weights are normalized by the control mean. No differences
were found in terms of weight among right and left muscles. GA,
Gastrocnemius; TA, Tibialis anterior; EDL, Extensor digitorum longus; SOL,
Soleus; PECTORAL M., Pectoral muscles. *Data significantly different within
groups and between groups was evaluated by one WAY ANOVA with
calculated F values > 1.3 (p < 0.05).
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FIGURE 4 | Channel subunits expression and current amplitude distribution in FDB and SOL fibers at physiological membrane voltage of −60 mV (Vm). (A)
Representative sample gel of PCR analysis in FDB and SOL muscles: high levels of expression of ABCC9 and KCNJ11 genes, encoding respectively SUR2 and Kir6.2,
were found in both phenotypes. KCNJ8 gene, encoding Kir6.1 subunit, was found expressed both on FDB and SOL muscles of WT and Kir6.1wt/VM mice. (B) In inside
out patch-clamp experiments on fast-twitch FDB fibers, the calculated mean was −786.9 ± 98.3 pA for WT (n. patches � 15 from ≥ 3 mice) and −1092.6 ±
130.9 pA for Kir6.1wt/VM (n. patches � 14 from ≥ 3 mice). (*data are significantly different, Student t test, p < 0.05) (C) In slow-twitch SOL fibers, the calculated mean
was −748.9 ± 65.3 pA for WT (n. patches � 9 from ≥ 3 mice) and −740.9 ± 126.3 pA for Kir6.1wt/VM (n. patches � 7 from ≥ 3 mice). Values of current amplitude are
presented as individual data points in the vertical point blot and as mean ± SEM. (D) Representative sample traces of the recorded KATP currents in inside-out patch-
clamp experiments in FDB and SOL fibers. Higher current amplitude was observed in Kir6.1wt/VM FDB fibers concerning the WT whereas no differences were detected
among the two phenotypes in SOL fibers. 5 × 10−3 M MgATP completely closed KATP currents.

FIGURE 5 | Percentage changes of KATP currents amplitude vs. MgATP or glibenclamide (Glib) concentrations in FDB and SOL muscles. (A) A slight rightward
shift of MgATP-sensitivity was detected in FDB patches whereas (B) no difference in response of the KATP currents to MgATP was observed in Kir6.1wt/VM SOL fibers
concerning the WT. (C) Reduced sensitivity to Glib was observed in Kir6.1wt/VM FDB fibers concerning the WT. (D) A partial inhibitory effect of Glib was observed in
Kir6.1wt/VM SOL fibers concerning the WT. (E) Sample traces of CTRL currents, 10−7 M Glib, and 5 × 10−3 M MgATP in WT FDB, Kir6.1wt/VM FDB, WT SOL, and
Kir6.1wt/VM SOL. *Data significantly different concerning the control (Student t test, p < 0.05). Data were fitted using the Hill equation; fitting analysis failed for Kir6.1wt/VM

SOL fibers, for which only a few experimental points were collected. Each experimental point represents the mean ± SEM of at least three patches from ≥ 3 mice each.
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Kir6.1wt/VM or WT sections (). PCR analysis revealed that FBX O
32, TRIM63 and BNIP3 (encoding atrogin-1, MuRF1, and BNIP3,
respectively) are markedly up-regulated in Kir6.1wt/VM SOL
muscle; no expression of Casp3 gene was detected in WT or
Kir6.1wt/VM muscle (Figure 8I).

Besides, following isolation, ex-vivo survival over 24 h was
worse for Kir6.1wt/VM FDB fibers than for WT FDB fibers
(Figures 9A,B). Although long-term incubation for 24 h in the
presence of 10−7 M Glib significantly reduced fiber viability in
both phenotypes (Figure 9C), Glib only caused a marked short-

TABLE 2 | Fitting parameters of the concentration–response relationships of percentage reduction of KATP currents amplitude vs. MgATP or Glib concentrations in FDB and
SOL muscles. Values are expressed as the mean ± SEM of at least three replicates, as evaluated by using SigmaPlot 10. *Data significantly different with respect to the
WT data (Student t test, p<0.05). N.a. indicates experimental conditions for which fitting parameters were not obtained.

Muscle types MgATP
E max (%)

MgATP
IC50 (M)

MgATP
Hill slope

WT Kir6.1wt/VM WT Kir6.1wt/VM WT Kir6.1wt/VM

FDB −100.6 ± 4.4% −99.5 ± 0.4% 4.2 ± 0.8 x 10−5 5.8 ± 0.07 x 10−5 1.2 ± 0.3 1.8 ± 0.05
SOLEUS −98.9 ± 4.1% n.a. 4 ± 0.7 x 10−5 n.a. 1.6 ± 0.4 n.a.

Glib
E max (%)

Glib
IC50 (M)

Glib
Hill slope

WT Kir6.1wt/VM WT Kir6.1wt/VM WT Kir6.1wt/VM

FDB −97.9 ± 1.3% −93.7 ± 1% 1.3 ± 0.2 x 10−7 *1.2 ± 0.1x10−6 0.6 ± 0.01 *0.4 ± 0.01
SOLEUS −98.8 ± 2.2% n.a. 1.2 ± 0.4 x 10−7 n.a. 0.5 ± 0.1 n.a.

FIGURE 6 | Histological analysis on slow-twitch Soleus SOL and fast-twitch Gastrocnemius (GA) muscle from WT and Kir6.1wt/VM mice. (A) Section of SOL from
WT mice shows no sign of damage (H.E 40X, Bar 100 μm) whereas (B) atrophic phenomena (arrow) with myofibrils of various sizes grouped according to the zones in
small or in large groups in SOL section from Kir6.1wt/VM mice (H.E. 40X, Bar 100 μm). (C,D) In the SOL section from Kir6.1wt/VM mice, the myofibrils red-stained (double
arrows) consequent to necrotic phenomena can be surrounded by abundant endomysia connective tissues blue stained (arrow) replacing them completely (C,
Mallory trichrome 40X, Bar 100 μm). (D) In the SOL section fromKir6.1wt/VMmice, myofibrils with angular shapes, rounded corners (arrow), and pyknotic nuclei (H.E. 40X,
Bar 100 μm) were observed. (E,F) In GA sections from Kir6.1wt/VM mice, atrophy in succinodehydrogenase (SDH) positive myofibrils, which appear colored in dark gray
sections and stained by acidic ATPase reaction (arrow) (pH � 4.3 10X, Bar 100 μm) was observed. (G) Bar chart showing the cross-sectional area (CSA) of slow-twitch
SOL and fast-twitch GA muscles in WT and Kir6.1wt/VM mice, as assessed with H.E. coloration. A strong reduction of CSA is observed in both muscles of Kir6.1wt/VM

mice; in SOL muscle CSA � 1805.88 ± 76 μm2 in WTmice (n sections � 58) vs. 1415.18 ± 111 μm2 in Kir6.1wt/VM mice (n sections � 38); in GA muscle CSA � 2115.98 ±
66 μm2 in WT mice (n sections � 48) vs. 1825.39 ± 109 μm2 in Kir6.1wt/VM mice (n sections � 47). Values are expressed as the mean ± SEM. * Data significantly different
concerning the WT data (Student t test, p < 0.05).
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term loss of viability of WT fibers; consistently with the lack of
inhibitory effect of Glib on Kir6.1wt/VMmutant channels, no effect
of Glib was observed on Kir6.1wt/VM fiber survival (Figure 9D).

DISCUSSION

KATP Channels and Skeletal Muscle
KATP channels are present in all muscle types and are abundant in
skeletal muscle-sarcolemma (Tricario and Conte Camerino, 1994).

Although gene knockout studies have implicated Kir6.2 and SUR2A
as primary constituent subunits inmostmuscles (Spruce et al., 1985;
Tricarico et al., 2006; Tricarico et al., 2016a), expression of all four
KATP channel subunits has been demonstrated at the transcript
level; and prior electrophysiological and pharmacological analyses
provide evidence for expression of channels with single-channel
conductance and drug sensitivities consistent with Kir6.1 and SUR1
expression contributing to channels with variable properties in
different muscle types to overcame different muscle function. A
straightforward hypothesis is that muscle KATP channels should

FIGURE 7 | Histological analysis of slow-twitch SOL muscle from Kir6.1wt/VM mice. (A) Advanced degeneration characterized by the central nuclei (arrow A) and
surrounding inflammatory cellular elements (arrow B) (H.E. 100X, Bar 100 μm), (B,C) cell death (B, 100X, Bar 100 μm; C, H.E. 40X, Bar 100 μm) and (D) replacement
with connective tissue (arrow) (Trichrome Mallory 40X, Bar 100 μm). (E) Regenerating myofibres were present within or near areas of degeneration, histologically
characterized by the presence of rows of nuclei of internal myoblasts with bulky nuclei and prominent nucleoli (arrow) (P.A.S. 40X, Bar 100 μm).

FIGURE 8 | Immunohistochemistry analysis of slow-twitch SOL muscle from WT and Kir6.1wt/VM mice. (A) Immunostaining (IMS) for NFκB p50 (E-10) on
endomysia in SOL section from Kir6.1wt/VM (arrow) (40X, Bar 100 μm), (B) negative reaction in WT mice (40X, Bar 100 μm). (C,D) Nuclear IMS for MAFbx (F-9) in the
myofibrils of the Kir6.1wt/VM mice (C, 40X, Bar 100 μm; D, 100X, Bar 100 μm); (E) negative IMS in the myofibrils of the WT mice (E, 40X, 100 μm). (F) IMS for BNIP-3
(ANa40) on endomysia in SOL section from Kir6.1wt/VM (40X, Bar 100 μm); (G) negative IMS in the WT mice section (40X, Bar 100 μm). (H) Negative IMS for
caspase-3 (E-8) in the Kir6.1wt/VM mice section (40X, Bar 100 μm). (I) Representative sample gel of PCR analysis: in SOL muscle, FBX O 32, TRIM63 and BNIP3, genes
encoding atrogin-1, MuRF1 and BNIP3, are markedly up-regulated in Kir6.1wt/VM SOL muscle. Casp3 is not detected in SOL from both phenotypes.

TABLE 3 | Immunohistochemistry on silanized slides using anti-mouse primary antibodies for NFκB p50 (E-10), MAFbx (F-9), caspase-3 (E-8) and BNIP-3 (ANa40) in soleus
muscle sections from Kir6.1wt/VM and WT mice. Values are expressed as the percentage of immunostained cells. *Data significantly different with respect to the WT
data (Student t test, p < 0.05).

Muscle types NFκB p50 BNIP-3 MAFbx Caspase 3

WT Kir6.1wt/VM WT Kir6.1wt/VM WT Kir6.1wt/VM WT Kir6.1wt/VM

SOLEUS 16.6 ± 7% *94.5 ± 10% 10.7 ± 6% * 70.3 ± 11% 9.2 ± 5% *40.1 ± 9% 7 ± 2% n.s. 5 ± 1%
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open as the [ATP]/[ADP] falls during repetitive contractions,
leading to hyperpolarization and action potential failure, thereby
limiting contractile force in different skeletal muscle types. This
would suggest that removing KATP channels would then enhance
or prolong contractility. Kir6.2 knockout mice revealed rapidly
fatiguing, weaker muscles (Cifelli et al., 2007), indicating that
fatigue, and ultimately necrosis (Thabet et al., 2005), resulting
from [Ca]-overload and energy depletion, as a consequence of
the failure of KATP to limit excitability (Scott et al., 2016), is the
dominant outcome.

Loss-of-function mutations in Kir6.2 and SUR1 are associated
with congenital hyperinsulinism (Nestorowicz et al., 1996;
Thomas et al., 1996; Dunne et al., 1997; Nestorowicz et al.,
1997). Interestingly, there does not appear to be any obvious
skeletal muscle defect, although Albaqumi et al. (2014) described
a family with congenital hyperinsulinism and rhabdomyolysis
associated with Kir6.2 mutations (Albaqumi et al., 2014), and
Flanagan et al. (2017) recently reported a patient with persistent
hyperinsulinaemic hypoglycaemia and severe hypotonia resulting
from an activating mutation in a calcium channel subunit, which
etiologically may have the same basis (Flanagan et al., 2017).
Recently, we described a novel ABCC9-related Intellectual

disability Myopathy Syndrome (AIMS) resulting from loss-of-
function mutations in ABCC9 (SUR2) (Smeland et al., 2019), in
which patients also exhibit muscular pain and fatigue, and
evidence of muscle fiber damage.

Conversely, increased KATP channel activity would be
predicted to limit action potential generation, resulting in
‘electrical fatigue’ before energetic fatigue. Gain-of-function
mutations in Kir6.2 and SUR1 are associated with
developmental delay, epilepsy, and neonatal diabetes (DEND)
syndrome, which is accompanied by muscle flaccidity and motor
impairment. Transgenic mice with tissue-specific expression of
Kir6.2 GOF in skeletal muscle have not revealed any obvious
muscle phenotype (Clark et al., 2010), but there are no knock-in
models of DEND with the targeting of the endogenous locus. Gain-
of-function mutations in the other canonical KATP channel gene
pair, Kir6.1, and SUR2, are associated with Cantù Syndrome (CS),
with a distinct, unique, set of features. Among them, CS patients
tend to have a muscular appearance, accompanied by
hyperextensible joints and self-reported fatigue-ability.

In the present work, we studied the effects of the Kir6.1[V65M]
mutation in slow-twitch and fast-twitch muscles of a new murine
model of CS, in which patient-specific disease mutation is

FIGURE 9 | Immunohistochemistry analysis of slow-twitch SOLmuscle fromWT and Kir6.1wt/VMmice. (A) Immunostaining (IMS) for NFκB p50 (E-10) on endomysia
in SOL section from Kir6.1wt/VM (arrow) (40X, Bar 100 μm), (B) negative reaction in WT mice (40X, Bar 100 μm). (C-D) Nuclear IMS for MAFbx (F-9) in the myofibrils of the
Kir6.1wt/VMmice (C, 40X, Bar 100 μm; D, 100X, Bar 100 μm); (E) negative IMS in the myofibrils of theWTmice (E, 40X, 100 μm). (F) IMS for BNIP-3 (ANa40) on endomysia
in SOL section from Kir6.1wt/VM (40X, Bar 100 μm); (G) negative IMS in the WTmice section (40X, Bar 100 μm). (H) Negative IMS for caspase-3 (E-8) in the Kir6.1wt/
VM mice section (40X, Bar 100 μm). (I) Representative sample gel of PCR analysis: in SOL muscle, FBXO32, TRIM63 and BNIP3, genes encoding atrogin-1, MuRF1 and
BNIP3, are markedly up-regulated in Kir6.1wt/VM SOL muscle. Casp3 is not detected in SOL from both phenotypes.
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introduced to the identical locus in the mouse genome (Huang et al.,
2018). In vivo experiments showed that Kir6.1wt/VM mice generate
significantly lower forelimb forces than WT mice. This is consistent
with prior studies showing that abnormal activation of skeletal
muscle KATP channels is associated with early fatigue during
tetanus and that in vivo treatment of mice with KATP openers
causes fatigue (Cifelli et al., 2008; Tricarico et al., 2016b), and also it
resembles the fatigability and exercises intolerance observed in CS
patients. Despite this weakness, isolated Kir6.1wt/VM muscles tended
to be heavier and, also, ultrasonography has revealed a significant
increase of echodensity in Kir6.1wt/VM hind limbmuscles, associated
with a tendency toward increased hind limb volume and
vascularization. Additionally, histological analysis has revealed
marked myofiber atrophy (see below). Taken together, these data
suggest the presence of damage in skeletal muscle integrity along
with fibrous tissue deposition (Pillen et al., 2009), explaining the
increase in echodensity, the decrease of muscle strength, and the
pseudo-hypertrophy.

The Cellular and Pharmacological
Consequence in Cantù syndrome Muscle
We, therefore, found an enhancement of the KATP current
density in Kir6.1wt/VM FDB fibers concerning WT and no
significant enhancement of this parameter in SOL fibers of
Kir6.1wt/VM. Patch clamp data allow statement that the Glib
data indicates that mutant channels are present in the
muscle.

The relative expression of different KATP channel subunits
varies between muscles, and may be altered in different disease
states (Tricarico et al., 2006; Tricarico et al., 2008b), though as yet
unknownmechanisms.We do not have evidence of an increase of
the Kir6.1 or Kir6.2 gene expression in the transgenic mice
muscles, but our PCR analysis revealed expression of Kir6.1
subunit in WT SOL and FDB muscle but, unexpectedly, lower
levels of Kir6.1 in Kir6.1wt/VM FDB than in WT, despite higher
KATP currents in the former. Reduction in mRNA expression,
and of protein expression, has been observed for mutations linked
to Kir6.2 GOF in neonatal diabetes (Lin et al., 2006; Lin et al.,
2013), and we speculate that down-regulation of the over-
activated Kir6.1 subunit in fast-twitch FDB muscle fibers could
be a protective mechanism which preserves the function and the
morphology of these tissues, with reduction of current density
acting as a compensatory effect for the nucleotide insensitivity
caused by mutation. Interestingly, there was no down-regulation
of Kir6.1 transcript in Kir6.1wt/VM SOL muscle, which
additionally manifested worse atrophy, the low survival rate of
the fibers, and lack of response to glibenclamide.

We however failed to show a significant rightward shift of
MgATP-sensitivity in FDB and SOL patches. Based on
experiments with recombinant channels, the loss of nucleotide
inhibitory sensitivity is expected to be relatively subtle (Cooper
et al., 2017) and can be masked in our experiment in native tissues
due to the high expression levels of Kir6.2 and SUR2 subunits. The
modest reduction of Glib-sensitivity observed in both Kir6.1wt/VM

FDB and SOL patches, as is reported for vascular smooth muscle
cells in these animals (Huang et al., 2018), supports the presence of
the Kir6.1 subunit in the muscle. It has been reported that the

reduction in ATP sensitivity of Kir6.2/Kir6.1(V65M) channels is ∼5
fold but the reduction of Glib sensitivity is ∼1000 fold heterologous
expression system (Cooper et al., 2017). The 10 fold change in Glib
sensitivity inmuscle suggests is significantly less than that shown in
heterologous expression. This also suggests that the reduction in
ATP sensitivity of the KATP channel of the skeletal muscle is also
drastically less than that the 5 fold change shown in heterologous
expression (Cooper et al., 2017), and questions the pathological
significance of its presence in the skeletal muscle. Additional
experiments at single-channel levels are needed to clarify these
issues.

The functional presence of a KATP channel current
component uncoupled to the nucleotide metabolism as is
expected for the Kir6.1wt/VM mice may have deleterious effects
specifically in the slow-twitch oxidative SOL fibers rather than in
FDB or other fast-twitch muscles.

In WT FDB fibers, Glib induced cytotoxic effects within the
first few hours of incubation but was without effect in Kir6.1wt/
VM cells, consistent with loss of sensitivity to the drug. After
long-term (24 h) incubation Glib had similar toxicity in both
genotypes. Previous studies have demonstrated that ex vivo long-
term exposure to KATP channel inhibitors is coupled to
apoptosis and atrophic signaling in muscle fibers (Tricarico
et al., 2010; Mele et al., 2014a; Mele et al., 2014b; Cetrone
et al., 2014), although this may be due to non-KATP channel-
dependent actions of the drug (de Sant’Anna et al., 2015;
Subramaniyam et al., 2018). We have recently shown that Glib
treatment can effectively reverse many of the cardiovascular
complications of CS (Ma et al., 2019; McClenaghan et al.,
2020). However, reduced Glib sensitivity in recombinant
Kir6.1[V65M] channels, and the markedly reduced sensitivity
that we show here, raises the potential that Glib treatment may be
ineffective for treating muscle impairments in certain patients
and that other therapeutic approaches may be needed.

Atrophy was more marked in Type I fibers than Type II, and
there was a markedly lower survival rate in Kir6.1wt/VM SOL vs.
FDB fibers. This raises the possibility that SOL muscle, and slow-
twitch fibers more generally, maybe more severely affected in CS
than fast-twitch fibers, such as FDB. Markers of atrophy and
autophagy, including Atrogin-1, MuRF1, and BNIP3 genes were
all upregulated in Kir6.1wt/VM SOL, and expression was not
detected in WT muscles (Foletta et al., 2011). Relative to WT,
muscle diameter was more markedly reduced in Kir6.1wt/VM SOL
than fast-twitch GA muscle, further suggesting a major
pathological involvement of slow-twitch fibers, a possibility
that should be examined in future studies of CS patients.

An additional hypothesis can be drawn explaining at least in
part the observed changes of themuscle function in the Kir6.1wt/VM

mice. We have shown that changes in heart size/function in the CS
mouse model are secondary to changes in the KATP channel
function in Vascular Smooth Muscle and these changes are
reversed by glibenclamide (McClenaghan et al., 2020). The
recorded changes in muscle function may be therefore
secondary to skeletal muscle remodeling rather than an altered
function of the KATP channel in the SOLmuscle as observed in the
cardiovascular apparatus in these mice. It should be of note,
however, that we failed to evidence any significant change of %
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of vascularization of the hind limbmuscles in the Kir6.1wt/VM mice
vs WT mice as evaluated by ultrasonography thereby not
supporting this hypothesis. Inflammatory cells were also
observed in CS muscle. The evaluation of the relative
contribution of the direct and indirect effects of the Kir6.1wt/VM

mutation in skeletal muscle requires further experiments.
This is the first report showing a direct genotype-phenotype

correlation in CS skeletal muscle, revealing how Kir6.1wt/VM

mutation in the KATP channel Kir6.1 subunit is associated
with a reduction of limb strength, skeletal muscle atrophy,
autophagy, and connective tissue replacement of myofibers in
this animal model of CS. It should of note that several factors
can mediate the muscle-specific degeneration that we found in
Kir6.1wt/VM SOL muscle. For instance, lactate accumulation
into the muscle following the overactive KATP channels may
be involved in atrophy and degeneration in slow-twitch
muscle.

In conclusion, these data suggest that Kir6.1wt/VM mutation
affects directly and/or indirectly skeletal muscle through vascular
dysfunction and this could be a significant issue, particularly for
slow-twitch muscle, in CS patients suffering from this mutation
and warrants future investigation.
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