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Abstract

Traumatic brain injury (TBI) is a major public health problem. Caused by external

mechanical forces, a major characteristic of TBI is the shearing of axons across the

white matter, which causes structural connectivity disruptions between brain regions.

This diffuse injury leads to cognitive deficits, frequently requiring rehabilitation. Het-

erogeneity is another characteristic of TBI as severity and cognitive sequelae of the

disease have a wide variation across patients, posing a big challenge for treatment.

Thus, measures assessing network-wide structural connectivity disruptions in TBI are

necessary to quantify injury burden of individuals, which would help in achieving per-

sonalized treatment, patient monitoring, and rehabilitation planning. Despite TBI

being a disconnectivity syndrome, connectomic assessment of structural dis-

connectivity has been relatively limited. In this study, we propose a novel

connectomic measure that we call network normality score (NNS) to capture the

integrity of structural connectivity in TBI patients by leveraging two major character-

istics of the disease: diffuseness of axonal injury and heterogeneity of the disease.

Over a longitudinal cohort of moderate-to-severe TBI patients, we demonstrate that

structural network topology of patients is more heterogeneous and significantly dif-

ferent than that of healthy controls at 3 months postinjury, where dissimilarity fur-

ther increases up to 12 months. We also show that NNS captures injury burden as

quantified by posttraumatic amnesia and that alterations in the structural brain net-

work is not related to cognitive recovery. Finally, we compare NNS to major graph

theory measures used in TBI literature and demonstrate the superiority of NNS in

characterizing the disease.
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1 | INTRODUCTION

Traumatic brain injury (TBI) is a global public health problem with

69 million new cases estimated to occur worldwide each year (Dewan

et al., 2018). Primarily caused by motor vehicle accidents, falls, and

sports concussions, TBI has claimed more than 50,000 lives in the US

alone in 2014 (Centers for Disease Control and Prevention, 2019),

and frequently leads to long-term disabilities (Humphreys

et al., 2013).

A major characteristic of TBI is the shearing of axons across the

white matter, induced by external mechanical forces. Diffuse axonal

injury (DAI), as it is called, causes disruptions in the connectivity

between brain regions throughout the network (Adams et al., 1982;

Hayes et al., 2016), leading to cognitive deficits (Fagerholm

et al., 2015) that often require rehabilitation for recovery (Chua

et al., 2007). Another important characteristic of TBI is its heterogene-

ity in many aspects including cause, mechanism, and severity of injury,

as well as recovery rate and burden of chronic symptoms

(Maas, 2016; O'Brien et al., 2020). In treatment and rehabilitation

planning, this heterogeneity poses a big challenge that makes subject

specific approaches necessary (Huie et al., 2020; Stocchetti

et al., 2017). Despite the recent increase in connectomics research

focusing on subject specific analysis (Chamberland et al., 2021; Jolly

et al., 2020), neuroimaging biomarkers for individualized diagnosis

have been very limited for TBI. Considering these two characteristics

of TBI, network level analysis of connectivity disruptions in TBI is

essential to provide subject specific measures quantifying injury bur-

den of individuals (Attye et al., 2021), which would help in achieving

personalized treatment, patient monitoring, and informing the patient

and caregivers regarding the potential long-term progression of the

disease (Huie et al., 2020; Wilson et al., 2017).

Advancements in neuroimaging within the last decades have

enabled analysis of connectivity disruptions in TBI with modalities

such as functional (Hillary et al., 2014; Olsen et al., 2014) and struc-

tural MRI (Hutchinson et al., 2018; Levine et al., 2008; Xiong

et al., 2014). Diffusion MRI (dMRI), a structural MRI method measur-

ing the diffusion of water molecules in the tissue, has especially been

promising in the analysis of TBI as it is shown to be sensitive to axonal

injury at a microstructural level, that is not captured well in conven-

tional MRI (Irimia et al., 2014; Niogi et al., 2008). Most of the dMRI

based studies investigate axonal injury either locally in isolated brain

regions (Singh et al., 2010) or across certain white matter tracts

(Wang et al., 2011), by using dMRI measures such as fractional anisot-

ropy, mean diffusivity, or radial diffusivity (Hulkower et al., 2013;

Irimia et al., 2014, Vijayakumari et al., 2021). Analyses involving such

microstructural measures, however, fall short in capturing the impact

of TBI on overall network topology.

Analysis of structural connectomes, that is, connectivity maps

derived from dMRI data quantifying connections between brain

regions, enables evaluation of the brain as a network (Sporns

et al., 2005). Despite TBI being considered as a “disconnection syn-

drome” due to damaged structural pathways connecting brain regions

(Hayes et al., 2016), analysis of structural connectivity disruptions

evaluated on connectomes and longitudinal change in network organi-

zation is surprisingly scarce (Imms et al., 2019; Irimia et al., 2014; Kim

et al., 2014). The majority of studies investigating structural connec-

tivity in TBI utilize graph theoretical measures, reporting increase in

shortest path length (Kim et al., 2014) and small-worldness (Yuan

et al., 2015), and decrease in global efficiency, clustering coefficient

(Raizman et al., 2020), betweenness centrality, and eigenvector cen-

trality (Fagerholm et al., 2015). Changes in such graph theoretical

measures are also explored for subnetworks of the brain, such as

working memory and reasoning networks, demonstrating significant

differences in patients along with a correlation with cognitive scores

(Jolly et al., 2020). While such measures provide insights into the

mechanisms of change of the brain's network structure in TBI, each

measure captures a specific aspect of connectivity alteration in the

network, which are limited in capturing the overall topological change

representing injury burden (Caeyenberghs et al., 2014; Dennis

et al., 2017; Raizman et al., 2020). As they are mathematical con-

structs that are defined for networks at large without any special con-

sideration for brains, interpretation of ensuing results poses further

challenges. Additionally, in the absence of a hypothesis that defines

the nature of TBI induced change in network topology, it is common

to explore a large set of graph theoretical measures that are available

in the literature to find those that would demonstrate statistical signif-

icance with the data. This exploratory approach, however, suffers

from multiple comparison issues (Poldrack et al., 2017), affecting TBI

studies more than other neuroscientific research due to small sample

sizes in the domain. Hypothesis driven studies that suggest markers

for TBI by taking the characteristics of the disease into account, on

the other hand, are scarce (Kuceyeski et al., 2019; Solmaz

et al., 2017).

Of special relevance to the current study, Irimia et al. (2014) have

explored longitudinal changes of connectivity in three TBI patients

within 6 months post injury at interhemispheric level as well as indi-

vidual connections. Being an early example of connectomic analysis of

TBI, this study is limited in statistical analysis due to the limited sam-

ple size. More recently, Kuceyeski et al. (2019) have reported

increased network segregation in structural and reduced integration in

functional connectivity of TBI patients. Being a hypothesis driven lon-

gitudinal study, this study explored only mild TBI patients. Solmaz

et al. (2017) proposed a specialized network level score quantifying

connectivity disruptions as a weighted sum of frequently damaged

edges across patients for capturing injury burden on moderate-to-

severe TBI, which they showed to correlate with injury severity. This

study, however, was limited in being cross-sectional and edge centric.

Overall, longitudinal analysis of network level change in moderate-to-

severe TBI assessed with a subject specific measure leveraging the

characteristics of the disease is still lacking.

In this article, we present a longitudinal analysis of brain connec-

tivity changes in moderate-to-severe TBI patients using a novel mea-

sure that we call network normality score (NNS). NNS is designed to

capture the integrity of structural connectivity in patients by leverag-

ing two major characteristics of the disease, that are, diffuseness of

the injury and the heterogeneity of the disease. Diffuseness of the
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injury can be best captured by a connectome-level measure that is

sensitive to the global effects of local connectivity disruptions. Het-

erogeneity of the disease, on the other hand, can be best captured by

a normative measure that compares each patient with a reference

healthy control sample. Taking a graph matching based approach by

extending our prior connectomic measures (Osmanlıo�glu et al., 2018;

Osmanlıo�glu et al., 2019), we define NNS as the overall network simi-

larity of moderate-to-severe TBI patients relative to a healthy control

sample. We hypothesize that NNS captures the injury burden of indi-

viduals with TBI, which we test by calculating correlation between

NNS and posttraumatic amnesia scores of patients. We evaluate our

measure on a cohort of 34 patients with moderate-to-severe TBI,

who underwent dMRI and cognitive assessment at 3, 6, and

12 months postinjury, as well as 35 age- and sex-matched healthy

controls. In our analysis, we investigate cross-sectional and longitudi-

nal relationships between the NNS and injury severity, as well as cog-

nitive outcome. We also investigate longitudinal changes in network

topology of patients relative to controls as quantified by NNS, and

evaluate its relationship with the change in cognitive scores over time.

Finally, we compare NNS with standard graph theoretical measures

that are commonly reported in TBI literature, in their relationship with

injury severity and cognitive outcome.

2 | MATERIALS AND METHODS

2.1 | Participants

The data used in this study was acquired as part of a larger project

investigating the neuroimaging correlates of functional recovery after

diffuse TBI (PI: JJK). All participants provided informed consent

directly or via a legally authorized representative. Study procedures

were approved and overseen by the Institutional Review Board at the

Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, and

the University of Pennsylvania. The cohort investigated in this study

consists of 40 participants with moderate-to-severe TBI and

35 healthy controls (HC) (Solmaz et al., 2017). Inclusion criteria for

TBI participants were being in the age range 18 to 64 and diagnosis of

non-penetrating moderate-to-severe TBI, indicated by at least one of

the following: (i) Glasgow Coma Scale score <13 in the emergency

department (ED not due to sedation, paralysis, or intoxication),

(ii) documented loss of consciousness for more than 12 h,

(iii) Prospectively documented PTA >24 h. Exclusion criteria for TBI

participants were (i) history of prior TBI, CNS disease, seizure disorder,

schizophrenia, or bipolar disorder, (ii) history of long-term abuse of

alcohol or psychostimulants that could have resulted in neurologic

sequelae, (iii) pregnancy, (iv) inability to complete MRI scanning due to

ferromagnetic implants, claustrophobia, or restlessness, (v) nonfluency

in English; or (vi) a level of disability preventing completion of testing

and scanning by 3 months postinjury. TBI participants with total esti-

mated volume of focal intraparenchymal lesions larger than 5 cm3 for

subcortical lesions and larger than 50 cm3 for cortical lesions were

also excluded to ensure that the TBI was predominantly diffuse.

Healthy controls recruited were comparable in age, sex, and education

to TBI subjects. Exclusion criteria for HCs were the same with TBI

participants with the addition of exclusion for any history of TBI

resulting in alteration or loss of consciousness.

Cognitive assessment and dMRI scans were obtained for HCs

once and for patients three times at approximately 3, 6, and

12 months postinjury. Imaging data was not available for some of the

patients at certain time points due to either the patient not attending

a follow up session or the data being removed from the dataset

because of MRI quality issues such as segmentation problems arising

from lesions in the brain. Imaging quality assessment (QA) was under-

taken by manual inspection of every volume of the dMRI scans for dif-

fusion artifacts including motion-induced signal drop-out and slice-

wise intensity artifacts (Soares et al., 2013). If more than 33% of the

unweighted volumes (i.e., 2 of b = 0 volumes) or more than 10% of

the weighted volumes (i.e., 3 of b = 1000 volumes) were affected by

artifacts, the entire scan was excluded; otherwise, any artifact-

affected volumes were removed from the data for further analysis. In

our analysis, we removed six patients from the dataset whose imaging

data failed the QA at 3 months postinjury, leaving 34 patients (12 f)

to be analyzed for the study. Among these patients, 27 (10 f) had

dMRI data available at 6 and 12 months. We note that dMRI data of

only 22 (8 f) of the patients had passed the imaging QA at all three

time points. In order to increase the power of the analysis, we used all

patient data available at follow up sessions rather than doing the anal-

ysis with the patients that have data at all time points. Demographics

of the participants are detailed in Table 1.

2.2 | Data acquisition, preprocessing, and
connectome construction

Structural MRI scans were acquired on a Siemens 3 T TrioTim whole-

body scanner with an 8-channel array head coil (single-shot, spin-echo

sequence, TR/TE = 6500/84 ms, b = 1000 s/mm2, 30 directions, six

unweighted [b = 0] volumes, flip angle = 90�, resolution =

2.2� 2.2� 2.2 mm). High-resolution T1-weighted anatomic images were

TABLE 1 Demographics of the moderate-to-severe TBI dataset
with healthy controls.

Healthy controls Patients

Male Female Male Female

Count 26 9 22 12

Age Avg. 36.7 30.0 35.5 34.0

SD 9.4 10.8 14.7 15.6

PTA Avg. NA NA 31 21.1

SD NA NA 23.6 18.6

GCSa Avg. NA NA 8.73 12.2

SD NA NA 4.68 2.7

aGCS score was not assessed for 10 patients that were sedated or

intubated at admission to ED. Average GCS score is reported for the

remaining 24 patients.
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also obtained using a 3D MPRAGE imaging sequence with TR = 1620 ms,

TI = 950 ms, TE = 3 ms, flip angle = 15�, 160 contiguous slices of 1 mm

thickness, FOV = 192� 256 mm2, 1NEX, resolution = 1� 1� 1 mm. T1

images were preprocessed using the FreeSurfer 5.3.0 recon-all pipeline

(http://surfer.nmr.mgh.harvard.edu) (Fischl, 2012) and registered to the FA

using rigid followed by deformable SyN registration in ANTs (Avants

et al., 2008) with the deformation constrained to the anterior–posterior

direction to correct for the EPI distortions in the dMRI. 86 regions of

interests from Desikan atlas (Desikan et al., 2006) were extracted to rep-

resent the nodes of the structural network. Five-tissue-type images for

anatomically constrained tractography (ACT) (Smith et al., 2012) were

created from Freesurfer outputs. 500 seeds for tractography were placed

at random inside each voxel of the mask of the gray-matter white-matter

interface (GMWMI). Single-shell, multi-tissue constrained spherical

deconvolution (Dhollander et al., 2016; Jeurissen et al., 2014; Tournier

et al., 2007) was performed in mrtrix3 (Tournier et al., 2019) to fit a fiber

orientation distribution (FOD) at every voxel in the brain. Probabilistic

tractography was performed using the iFOD2 algorithm (Tournier

et al., 2010) with angle curvature threshold of 60�, step size of 1 mm,

and minimum and maximum length thresholds of 25 and 250 mm,

respectively. Connectomes were then generated as an 86 � 86 adja-

cency matrix of weighted connectivity values, where each element repre-

sents the number of streamlines between regions. Each connectome was

subsequently normalized by the GMWMI volume of the individual.

2.3 | Behavioral and cognitive measures

TBI patients underwent behavioral assessment at each time point to

yield multiple outcome measures. Duration of posttraumatic amnesia

(PTA), calculated as the number of days between the TBI and the first

of two occasions within 72 h that the patient was fully oriented, was

used as a sensitive behavioral index of the injury severity (Benson

et al., 2007; Povlishock & Katz, 2005). Full orientation was defined as

a score above 25 on the Orientation Log (Jackson et al., 1998), or doc-

umentation of consistent orientation for 72 h in the medical record.

Cognitive outcome was measured using a test battery assessing

three neuropsychological domains: information processing speed (PS),

verbal learning (VL), and executive functioning (EF). To create these

domain scores, all cognitive test scores were transformed to T-score

units based on available normative data. We used T-score trans-

formed Processing Speed Index from the Wechsler Adult Intelligence

Scale-IV (Wechsler, 2008a) to represent the PS domain. To

operationalize the VL domain, the T-score for immediate recall trials

I-V was used from The Rey Auditory-Verbal Learning Test

(Rey, 1958). For the EF domain, we built a composite score to reduce

type I error and increase signal-to-noise ratio, which was defined as

an average of the T-score transformed scores obtained from the fol-

lowing five tests: Controlled Oral Word Association Test (Benton

et al., 1994), Trail Making Test-Part B (Reitan & Wolfson, 1985), the

Color Word section of the Color-Word Interference Test from the

Delis-Kaplan Executive Function System (Delis, 2001), and Digits

Backward and Letter-Number Sequencing subtests from the Wechsler

Memory Scale IV (Wechsler, 2008b). Further details on building

domain scores can be found in (Rabinowitz et al., 2018).

2.4 | Network normality score

In order to evaluate change of brain's network organization in TBI

patients over time, we consider graph matching (Foggia et al., 2014;

Osmanlıo�glu, 2016) to quantify connectomic similarity as it accounts

for changes in the overall topology of the network rather than focus-

ing on local changes in individual connections. Previously, we have

successfully applied graph matching in deriving similarity between

connectomes for quantifying injury severity in TBI patients

(Osmanlıo�glu et al., 2018; Shen et al., 2020), evaluating subject-wise

structure–function correspondence (Osmanlıo�glu et al., 2019), and

investigating connectomic stability within and across subjects

(Osmanlıo�glu et al., 2020). In this study, we extend our previous

approach by adopting a different use of graph matching to provide a

normative connectomic similarity measure.

A graph matching based measure to quantify connectomic similarity.

Here, we first provide a brief overview of graph matching and its use in

connectomics, and refer the reader to (Osmanlıo�glu et al., 2019; 2020)

for further information where we first devised the approach. Given two

graphs A and B that are deemed to have a similar topology, the aim of

graph matching is to find the optimal mapping between the two graphs

by assigning each node of A to a node of B that structurally resembles it

the most. Given a cost function c: A ⨉ B ! ℝ determining the cost of

assigning each node in A to a corresponding node in B, graph matching

can be formulated as a combinatorial optimization problem where the

aim is to calculate a one-to-one mapping f: A ! B between the nodes of

A and B by minimizing the objective function ϕ¼P
a � Ac a, f að Þð Þ. On

connectomes, we regarded the cost function c as the Euclidean dis-

tance between the k-dimensional feature vectors of nodes encoding

their connectivity signature relative to other nodes in a parcellation

with k ROIs. We obtained the desired mapping by solving the optimi-

zation problem using the Hungarian algorithm (Kuhn, 1955).

Since brain structure has commonalities across healthy people

with a relatively small variation compared with patients, and the

parcellation that yielded graph representations of brains are the same

across subjects, the resulting mapping would match nodes of A with

their corresponding nodes in B among healthy subjects (i.e., the

matching nodes should correspond to the same ROI). We call such a

mapping a correct match. On the other hand, the brain structure of

patients would have a larger variation and dissimilarities relative to

healthy controls as well as among each other due to disease induced

alterations, resulting in connectivity patterns of nodes that vary too

much between the two graphs. This would lead the mapping to have

incorrect matching of some of the nodes where nodes in A will be

assigned to nodes in B that are not their counterparts. Consequently,

we regarded network similarity (NS) as the percentage of correct

matches relative to total number of nodes (Figure 1a), with larger

values indicating higher similarity. Using this graph matching based
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measure in quantifying network similarity allows capturing the similar-

ity of overall network organization since matching between the nodes

are obtained through the solution to an optimization problem.

Normative connectomic similarity: similarity of a subject relative to a

sample. Having defined NS as the similarity measure between two con-

nectomes, we next define the network normality score (NNS) as a nor-

mative measure consisting of the mean NS of the subject relative to the

reference sample (Figure 1b–d). Taking healthy controls as the reference,

we first calculated network normality score among them to provide a

basis for evaluation (Figure 1b). We then calculated similarity of patients

at a certain time point (such as 3 months) relative to the healthy

(Figure 1c), to quantify trauma induced network alterations in TBI

patients. In order to evaluate heterogeneity and the course of relative

changes in network topology among patients, we calculated a third

anomaly score quantifying similarity of patients relative to the rest of the

patients within the same time point (Figure 1d). For the sake of clarity,

we refer to these three scores as NNSH, NNSPH, and NNSP in the rest of

the paper, where subscripts denote NNS among the healthy, NNS of

patients relative to healthy, and NNS among the patients, respectively.

2.5 | Statistical analysis

Group level analysis: In order to evaluate group differences in the

structural network organization cross-sectionally, we ran the Mann–

Whitney U test between NNSPH (or NNSP) and NNSH, and the

Wilcoxon signed-rank test between NNSPH and NNSP. Non-

parametric tests were preferred in calculating group difference since

NNS scores demonstrated a non-Gaussian distribution per

D'Agostino's K-squared normality test (NNSH: p < 10�6, NNSPH:

p < .01 for patients at 3 and 6 months, p = .07 for patients at

12 months, NNSP: p = .08, .006, .17 for patients at 3, 6, and

12 months, respectively). We quantified the amount of change in

scores using the following effect size formula:

ES¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1þn2

p

where n1,n2 are the sample size of groups, and z¼ U�mU
σU

, mU ¼ n1 �n2
2 ,

and σU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 �n2 � n1þn2þ1ð Þ

12

q
, and U is the test statistic for the Mann–

Whitney U test, whereas z¼
P

i
signed�rankiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
signed�ranki

2ð Þp for the Wilcoxon

signed-rank test. Effect size is regarded as small if jESj≥0.1, medium

if jESj≥0.3, and large if jESj≥ 0.5.

Cross-sectional linear model analysis: In devising a subject specific

measure to quantify injury severity with a potential to serve as a bio-

marker, it is necessary to evaluate its relationship with cognitive

scores of individuals cross-sectionally at certain time points. To

achieve this, we utilized a linear model (LM) format that controls for

age and sex as follows:

diseaseRelatedScoretp ~NNStp þ age þ sex ð1Þ

where diseaseRelatedScore is replaced by one of the cognitive scores or

PTA, while tp indicates one of 3, 6, or 12 months time points. Analyses

were done in R using the nlme package (Pinheiro et al., 2021).

(a)

(b)

(c)

(d)

F IGURE 1 Network normality score (NNS) quantifying similarity of structural network organization of a subject's brain relative to a sample.
(a) Taking two connectomes representing the structural connectivity of two subjects as input, the similarity between their graph representation is
calculated using graph matching, yielding a binary matching matrix. Similarity between the connectomes is determined as the proportion of nodes
which were correctly matched. Using graph matching (GM) as the measure of network similarity, we calculate network normality score of (b) each
healthy control relative to the rest of the healthy controls (NNSH), (c) each patient at a certain time point relative to healthy control sample
(NNSPH), and (d) each patient relative to the rest of the patients at the same time point (NNSP).
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Longitudinal linear mixed effect model analysis of NNS: In order to

investigate whether the network organization of patients demon-

strates a linear change over time when considered altogether, we

evaluated the longitudinal change in their network normality scores

(NNSPH and NNSP are evaluated separately). Since imaging data was

not available at all time points for some subjects, we used linear mixed

effects (LMEM) analysis with the following model:

NNS ~DSIþPTAþageþ sexþ 1jsubjectIDð Þ ð2Þ

where we estimated NNS as a linear function of the fixed variables

days since injury (DSI), PTA, age, and sex, along with the random inter-

cept. Analyses were done in R using the lme4 (Bates et al., 2015) and

lmerTest (Kuznetsova et al., 2017) packages. In our LM and LMEM

analysis, we scaled the values of variables. Thus the estimated values

of independent variables (e.g., DSI, PTA, age, etc. in Equation 2) can

be interpreted as their correlations with the dependent variable

(e.g., NNS in Equation 2).

Analysis of the trajectory of change: In order to evaluate whether

there exists a relationship between the cognition and NNS in how

they change over time, we calculated the rate of change as the slope

of the line connecting measurements between two time points for

each score type. We then used the following linear model that also

accounts for age, sex, and PTA as baselines to determine the

relationship:

diseaseRelatedScoreslope ~NNSslopeþ age þ sexþ PTA ð3Þ

Longitudinal linear mixed effect model analysis of cognition relative

to NNS: We used a linear mixed effects model to longitudinally evalu-

ate the relationship between cognitive scores and network similarity

score of patients relative to healthy controls, days since injury, age,

and sex across three time points using the following formulation:

cognitiveScore � NNS þ DSI þ age þ sex þ 1 V subject IDð Þ
ð4Þ

2.6 | Standard graph theoretical measures

In order to further highlight the efficacy of the proposed score in

characterizing TBI and evaluating whether its global optimization

based approach better captures TBI, we evaluated our moderate-

to-severe TBI cohort using standard graph theoretical measures

that are cited in the TBI literature. We considered node between-

ness centrality, eigenvector centrality, clustering coefficient, small

worldness, characteristic path length, global efficiency, and modu-

larity, as these are the measures commonly used in the prior work.

We used the Python implementation (bctpy, version 0.5.2, https://

pypi.org/project/bctpy/) of Brain Connectivity Toolbox (Rubinov &

Sporns, 2010) to calculate the measures over the connectomes.

The statistical analysis for NNS was repeated for each of these

graph theory measures individually (see Supporting Information S5

for further details on graph theory measures and their analysis).

3 | RESULTS

3.1 | Group level analysis of network similarity
between patients and controls

In order to evaluate whether the proposed measure captures struc-

tural connectivity alterations, we performed a group-level analysis

between patients and healthy controls (Figure 2). We observed sig-

nificantly lower network similarity scores for patients (NNSPH)

compared with healthy controls (NNSH) at 3 months (ES = 0.42,

p < 10�3), 6 months (ES = 0.41, p = 10�3), and 12 months

(ES = 0.59, p < 10�4). This result shows that the NNS captures TBI

induced alterations of the network topology to distinguish struc-

tural connectivity of patients from that of healthy controls up to

12 months postinjury.

We then investigated whether NNS captures the heterogeneity

of the disease at the network level. We observed that patients had

F IGURE 2 Group level analysis of network normality score across
patients and controls. We evaluated network normality scores (NNS)
of patients relative to healthy controls (NNSPH), NNS among patients
within the same time point (NNSP), and NNS among healthy controls
(NNSH). We observed that network topology of patients is
significantly dissimilar to that of the healthy (NNSPH < NNSH, purple
lines at the top), showing that trauma induced injury introduced
alterations across the network. We also observed that NNSH > NNSP
with statistical significance (green lines at the top), highlighting a
larger variance of network topologies among patients than controls.
We then observed that NNSPH > NNSP (black lines at the top),
indicating that patients resemble the healthy more than they resemble
other patients. These results further show that the heterogeneity of
the disease is captured at the structural brain network topology of
patients (Note that lines at the top between pairs of sample groups
show effect size for significant group differences with p < .05, results
are FDR corrected).
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significantly lower within-group network similarity scores (NNSP)

compared with healthy controls (NNSH) at 3 months (ES = 0.72,

p < 10�6), 6 months (ES = 0.76, p < 10�6), and 12 months (ES = 0.82,

p < 10�6). This result underlines a higher heterogeneity in structural

network topology among patients than that among healthy controls,

indicating that the injury affecting each patient differently leads to a

unique network organization. We also observed a significant group

difference between NNSPH and NNSP at 3 months (ES = 0.49,

p < 10�4), 6 months (ES = 0.54, p < 10�4), and 12 months (ES = 0.60,

p < 10�4), which indicate that network structures of patients resemble

that of healthy controls more than they resemble that of other

patients.

3.2 | Relationship between network similarity and
injury severity

A significant negative association between PTA and NNSPH was

observed (see Equation (1) for the LM) at 3 (p = .016,

estNNS = �0.51), 6 (p = .016, estNNS = �0.48) and 12 months

(p = .016, estNNS = �0.52) (Figure 3), while no significant association

was observed for age and sex (see Table 2). This result indicates that

more severely injured patients have lower network similarity in refer-

ence to healthy controls.

3.3 | Change in network normality score over time

Group level analysis of network similarity scores shown in Figure 2

demonstrated an increase in effect size between patients and con-

trols from 3 to 12 months, suggesting that the structural connec-

tivity in patients becomes more unlike healthy controls over time.

A further longitudinal analysis of NNSPH using LMEM (Equation 2)

showed that the similarity score is a function of days since injury

(DSI), PTA, and age (pDSI < 10�3, pPTA = .004, page = .019,

psex = .581, Adj. R2 = 0.316), with a negative association

(estDSI = �0.144, estPTA = �0.429, estage = �0.33) (see Table S1a

for further details). This result indicates that patients become

significantly unlike healthy controls in their structural network

connectivity as time progresses postinjury up to 12 months

(Figure 4).

Repeating the same analysis for network similarity among

patients, we observed a significant decrease of NNSP over time

(pDSI < 10�4, pPTA = .007, page = .066, psex = 0.662, Adj. R2 = 0.298)

with a slope of �0.306 for DSI, indicating a steeper decline when

compared with change in NNSPH with a slope of �0.144 (see

Table S1b for further details). This result indicates that although

patients deviate from “normalcy” as defined by the network topology

of the healthy, they do not converge to an alternate normal that

would be common among patients either.

F IGURE 3 Relationship between network normality score and injury severity. Evaluating whether injury severity (PTA) can be described cross
sectionally as a function of NNSPH, age, and sex using an LM, and we observed a significant relationship between NNSPH and PTA at 3, 6, and
12 months postinjury (p values are FDR corrected). This result indicates that trauma induced alterations at network topology captures injury
severity.

TABLE 2 Results of fitting a linear
model to evaluate the relationship
between injury severity (PTA) and
NNSPH, age, and sex.

Time point Adj.R2 pNNS estNNS page estage psex estsex

3 Months 0.202 .016 �0.509 .810 �0.083 .270 0.568

6 Months 0.223 .016 �0.480 .810 0.045 .454 0.336

12 Months 0.176 .016 �0.521 .810 �0.178 .454 0.276

Note: We note that since the scores were scaled for the LM analysis, the estimated values provided in

the table (columns labeled with “est”) indicate correlation of corresponding variables with PTA (see

Equation 1 for LM, p values are FDR corrected for each variable across three models).

3950 OSMANLIOĞLU ET AL.



3.4 | Relationship between the network similarity
score and cognitive scores

We next investigated whether NNSPH captures information regarding cog-

nitive function. Before evaluating the relationship between NNSPH and

cognition, we first did a group level and LMEM analysis of cognitive scores

to evaluate their change over time and their relationship with PTA. We

observed that the patients perform significantly lower than controls at

3 months for each cognitive score type (Figure S2, top) and that their per-

formance in each category improves over time significantly to reach the

level of healthy controls at 12 months (Figure S2, bottom). We also

observed a significant negative correlation between each cognitive score

and PTA, with verbal learning (VL) having a marginal p value (see Supple-

mentary Information S2 for further details). These results show the pres-

ence of cognitive recovery in patients up to 12 months postinjury and

demonstrate that cognitive performance is related to injury severity.

Observing a disparity between cognitive recovery and increas-

ingly abnormal network topology in patients, we evaluated whether

there exists a meaningful relationship between the two virtually dia-

metrical trends (Figure 5). Calculating the relationship between rates

of changes between consecutive time points for the NNSPH and cog-

nitive scores separately using the linear model (Equation 3), we

observed no significant relationship at any of the time intervals

(i.e., 3–6 months, 3–12 months, or 6–12 months, p > .05 for all vari-

ables. See Supplementary Information S4 for details), indicating the

lack of an association between cognitive recovery and change in

structural connectivity organization of patients.

Despite the lack of a significant relationship between the rate of

change in cognitive scores and NNSPH, we evaluated whether there

exists a relationship between the actual scores. Using an LMEM

(Equation 4), we observed that executive function (EF) and processing

speed (PS) are significantly and positively related with NNSPH and DSI

(EF: pNNS < 10�3, pDSI < 10�4, R2m = 0.206, PS: pNNS = .006,

pDSI < 10�4, R2m = 0.226) while verbal learning did not reveal any sig-

nificant relationship with NNSPH (pNNS = .086, pDSI = 10�4,

R2m = 0.141) (see Table S3 for further details). The positive correla-

tion between NNSPH and EF and PS indicates that patients with struc-

tural connectivity more similar to healthy controls demonstrated

better cognitive function.

3.5 | Evaluation of the cohort with standard graph
theory measures

In our analysis of graph theory measures, we first evaluated the asso-

ciation between NNSPH and graph theory measures longitudinally and

cross-sectionally, and observed no significant relationship (see

Tables S5a and S5b, p values are FDR corrected for multiple compari-

son correction, see Supplementary Information S5 for a detailed

explanation of the analysis). We then evaluated the association

between graph theory measures and PTA using LM (see

Equation S5b) showed statistical significance only for node between-

ness centrality at 6 months (pNBC = .002, page = .962, psex = .984, Adj.

R2 = 0.504) (see Table S5c). Finally, we evaluated the association

between cognitive scores and graph theory measures using a LMEM

analysis (Equation S5c). After FDR correction, no significant associa-

tion was observed (see Table S5d).

F IGURE 5 Change in NNS and cognitive scores across time. Plotting individual trajectories of change in NNSPH and cognitive scores for each
patient, we observed a steady increase (green lines) for cognitive scores in most cases indicating recovery. In contrast, we observed several cases
of decrease (red lines) for NNSPH indicating deviation from normalcy in terms of network topology. Calculating the correlation between the
slopes of lines in NNSPH with the slopes of lines in each cognitive score separately, we did not observe any significant relationship. This result
indicates that the rate of change in NNS is not associated with cognitive recovery.

F IGURE 4 Analysis of change in network normality score of
patients. Using an LMEM, we evaluated the change in NNSPH score as
a function of days since injury, PTA, age, and sex, observing a
significant decline in NNSPH with time. This result indicates that the
structural network topology of the patients becomes unlike that of
healthy controls over time.
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4 | DISCUSSION

Traumatic brain injury is considered a disconnectivity syndrome

(Hayes et al., 2016) due to the diffuse injury of axons across the brain

tissue, leading to structural connectivity disruptions among brain

regions. While local microstructural changes in the brain (Hutchinson

et al., 2018; Levine et al., 2008; Xiong et al., 2014) as well as func-

tional connectivity alterations (Hillary et al., 2014; Olsen et al., 2014)

are well studied in TBI, literature focusing on the structural connectiv-

ity changes in the brain has been very limited (Imms et al., 2019). This

small body of work has two main limitations: First, most of these stud-

ies utilize standard graph theoretical measures in their analysis, which

are limited in capturing the diffuse characteristics of the injury. Sec-

ond, although cross-sectional studies are abundant, longitudinal analy-

sis of structural changes in the brain's network topology and its

relationship with cognitive function of TBI patients are scarce. In this

study, we proposed a novel measure called Network Normality Score

(NNS) that is tailored to capture the two established characteristics of

TBI, the diffuseness of the injury (Adams et al., 1982) and the hetero-

geneity of the disease (O'Brien et al., 2020). In a moderate-to-severe

TBI cohort, we demonstrated that the NNS captures injury-induced

structural connectivity alterations by quantifying the connectivity dif-

ferences at the network level. This highlighted a significantly different

network topology among patients relative to healthy controls. Our

results also show that the heterogeneity of the disease is observable

in the network topology of the patients as quantified by the NNS. We

further observed that the network structure of the patients becomes

more unlike that of healthy controls over time, despite cognitive

recovery over the same interval. As we did not observe any significant

relationship between the change in cognitive scores and the change in

network similarity of patients over time, these results highlight a mis-

match between structural change and cognitive recovery. Finally, we

demonstrated that the NNS captures characteristics of TBI that are

not captured by standard graph theory measures as there was no sig-

nificant association between the NNS and any of the graph theory

measures. We also observed that only node betweenness centrality

demonstrated a significant association with injury burden at 6 months,

and none of the measures showed a significant association with cog-

nitive scores, as the results did not survive multiple comparisons cor-

rection. Overall, our results point to a new direction of research in the

analysis of structural network alterations in TBI, involving similarity

measures that are designed to capture the characteristics of the dis-

ease such as heterogeneity and diffuse injury.

4.1 | Overall network similarity of TBI patients
relative to the healthy, captures injury induced
alterations in the structural connectivity

The negative correlations between PTA and NNS indicate (Figure 3)

that patients with more severe brain injuries (high PTA score) have

network topologies that are less like healthy controls (low network

similarity score). When considered with the group level differences of

network topologies between patients and controls (Figure 2), these

results highlight the efficacy of the NNS in capturing trauma induced

alterations.

The direct relationship between diffuse axonal injury and the dis-

ruptions in structural connectivity among brain regions underlines the

potential of a network topological analysis in quantifying injury bur-

den of TBI patients. Interestingly, the number of studies examining

this relationship longitudinally on moderate-to-severe TBI patients is

not too many (Caeyenberghs et al., 2014; Raizman et al., 2020). We

were able to identify four major studies that considered graph theo-

retical measures to evaluate network abnormalities of patients and

evaluated their relationship with injury severity, two of which

reported a lack of a significant relationship in moderate-to-severe

adult (Caeyenberghs et al., 2014) and pediatric (Dennis et al., 2017)

TBI patients. Although the third study reported a positive correlation

for node strength and global efficiency scores, it is worth noting that

their cohort included mild TBI patients as well as moderate-to-severe

TBI patients (Raizman et al., 2020). Hypothesis driven longitudinal

study of Kuceyeski et al. (2019) have reported increased network seg-

regation in structural and reduced integration in functional connectiv-

ity of TBI patients, which they evaluated as a function of

characteristic shortest path length. They also demonstrated a positive

relationship between the change in structural and functional network

topology and cognitive recovery. This study also was conducted on

mild TBI patients. A recent study by our group proposed the Disrup-

tion Index of the Structural Connectome (DISC) as a specialized net-

work level score for capturing injury burden on TBI, which

demonstrated a significant correlation with injury severity of patients

(Solmaz et al., 2017). However, this study was limited in being cross-

sectional and the connectivity disruptions being quantified on the

basis of edges, rather than at network level.

The lack of significant associations of graph theory measures with

PTA and cognitive scores (except for node betweenness centrality at

6 months with PTA) along with lack of a significant relationship

between the NNS and any of those graph theory measures, indicate

the novelty and superiority of our measure over standard graph the-

ory measures in characterizing TBI. We note that standard graph the-

ory measures are mathematical constructs that are designed to

evaluate any graph structure such as social networks or airline route

maps, without any specific consideration for brain networks. In the

absence of a hypothesis on which measure to use as a biomarker,

exploratory analysis that investigates several graph theory measures

becomes inevitable. This, however, reduces statistical power of the

study due to multiple comparisons correction, which is already limited

in TBI studies due to small sample sizes. Interpretation of ensuing

results is a further challenge due to measures not being disease spe-

cific. Designed specifically to capture well known characteristics of

TBI, on the other hand, our proposed measure has two major

strengths over standard graph theory measures. First, it focuses on

leveraging the diffuse characteristic of the injury by taking a graph

matching approach. Since graph matching quantifies similarity through

solving an optimization problem, it considers connectivity differences

across the network altogether, rather than summarizing connectivity
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differences on the basis of individual edges. Second, it is a normative

score that is calculated relative to healthy controls that leverage the

heterogeneity of the disease.

4.2 | Heterogeneity of the disease is observable in
the structural connectivity among brain regions

A major characteristic of TBI is its heterogeneity in various aspects

including the cause of initial injury (e.g., fall or motor accident), mecha-

nism (e.g., direct impact or acceleration/deceleration), pathology

(e.g., focal and/or diffuse axonal injury), severity (e.g., mild, moderate,

or severe), ensuing cognitive deficits, and treatment of the disease

(Iraji et al., 2016; Maas, 2016) as well as outcomes in cognitive recov-

ery (Felmingham et al., 2004; O'Brien et al., 2020). Lower NNS of

patients relative to controls show that network topology of TBI

patients differs from the healthy control population at varying degrees

(Figure 2). Network similarity among patients being even lower than

their similarity relative to healthy controls further supports the previ-

ous result, highlighting that injury affects each patient in different

ways, potentially due to heterogeneity of the disease in its etiology,

mechanism, and severity. In combination, these results demonstrate

that the heterogeneity of TBI is also observable at structural brain

connectivity of patients.

4.3 | Revisiting structural plasticity in TBI

Diffuse axonal injury is one of the major characteristics of TBI, which cau-

ses disruptions in the connectivity between brain regions (Adams

et al., 1982), leading to cognitive deficits especially in moderate-to-severe

cases (Scheid et al., 2006). Rehabilitation is known to improve cognitive

functions of patients (Oberholzer & Müri, 2019; Cernich et al., 2010).

Neuroplasticity, that is, the adaptive changes of structural (Schmidt

et al., 2020) and functional (Olafson et al., 2021) neural circuitry in terms

of molecular, synaptic, and cellular changes, is commonly cited as a

potential explanation for the cognitive and functional recovery (Sophie

Su et al., 2016). Although axonal sprouting and functional rewiring post

TBI is reported (Castellanos et al., 2010; Nakagawa et al., 2013), the

underlying mechanism of change in white matter structural connectivity

over time at the network level is still unclear (Zatorre et al., 2012).

The significant decline in network similarity of patients relative to

healthy controls over time (Figure 4), may be indicative that the connec-

tivity alterations happening in the network are mainly degeneration in

connectivity rather than a recovery. This is in line with consistent neu-

rodegeneration and neuronal loss that is widely reported in the TBI liter-

ature, which starts with injury and continues decades postinjury (Farbota

et al., 2012; Graham & Sharp, 2019; Johnson et al., 2013). An alternative

explanation for connectivity alterations in favor of structural recovery

could be that the network topology of patients reorganizes to converge

to a new normal unlike that of healthy controls to regain the network

integrity. The decline of longitudinal change in the similarity of patients

among themselves being steeper (Sections 3.3 and Supplementary Infor-

mation S1) than that of their similarity relative to healthy controls

(Figure 4), however, contradicts this alternative, further supporting the

point that the alterations in the white matter network are not a recovery

but a degeneration.

In contrast to the decline in their NNS, the cognitive recovery of

patients over time (Figure S2) highlights an interesting disparity. When

considered together with the lack of a significant association between

the rate of change in NNS and cognition (Figure 5), it can be inferred

that the structural changes in the network topology do not directly

translate into cognitive recovery. Considering that TBI is a complex

disease with multiple, potentially opposing, mechanisms at work

simultaneously (Veenith et al., 2009), there might be several reasons

for this apparently paradoxical disparity between structural connectiv-

ity degeneration and cognitive recovery (Farbota et al., 2012). One

possible explanation is that neuroplasticity happens at the gray matter

in terms of axonal sprouting more than white matter plasticity such as

myelination. Supporting this perspective, axonal rewiring and

sprouting in cortical gray matter are reported to happen in mice post

TBI (Niogi et al., 2008). Several studies on functional MRI, which

investigate connectivity of gray matter regions, reported network

reorganization after TBI which correlates with cognitive recovery, pro-

viding further evidence to that option (Castellanos et al., 2010,

Castellanos et al., 2011, Han et al., 2020). Complementing this per-

spective of synaptic plasticity, another mechanism at play could be

that structural connectivity is disrupted at the time of injury, leading

to cognitive deficit, due to axonal damage. Although those injured

axons do not get repaired and are practically nonfunctional, some are

captured by MRI as healthy fiber tracts connecting brain regions due

to the coarse resolution of imaging data. This makes the network

topology of a patient look similar to that of a healthy control. As the

debris of the damaged axons gets removed from the network, on the

other hand, network similarity of patients declines. Since injured

axons do not function following the injury, their removal from the net-

work does not have any effect on the cognitive scores of patients as

it does not introduce any further disconnectivity into the network.

Another potential explanation could be that the decline in network

similarity of patients is due to a mixture of degeneration of neurons

and strengthening of compensatory pathways, where the latter leads

to cognitive recovery (Bengtsson et al., 2005).

We note that the positive correlation between the NNS and EF

and PS do not contradict the earlier observations of network similarity

declining over time while cognitive scores improve. Since higher NNS

values indicate a lesser injury, better cognitive performance would be

expected from such individuals as disconnectivity between regions

will be lesser. Thus, the negative correlation between injury severity

as quantified by PTA and both the NNS and cognitive scores support

a positive correlation between the NNS and cognition.

5 | LIMITATIONS, FUTURE DIRECTIONS,
AND CONCLUSIONS

Although this study investigates a unique longitudinal TBI dataset

with dMRI data and cognitive assessment acquired at three

timepoints and uses an advanced graph theoretical technique, certain
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limitations should be acknowledged. First, diffusion MRI is known to

have inaccuracies in determining connectivity between regions, such

as its limitations in characterizing white matter in complex regions

where fibers intersect (Jones, 2010). In the case of TBI, axonal injury

causing the degeneration of one of the crossing fibers, for example,

can result in increased FA over the other fiber, which in turn results in

increased connectivity between two regions (Hayes et al., 2016). Dif-

fuse injury can potentially introduce further noise to the structural

connectivity, that in turn affects the resulting network, leading to a

structure that is dissimilar to healthy controls as assessed by NNS

score. Since such shortcomings are inherent to dMRI based analysis,

and the proposed approach does not make an assessment of the

integrity of the brain graph, the results presented here should be con-

sidered accordingly. Second, as typical of TBI studies, statistical signif-

icance of our results is limited by the sample size of TBI cohort (Wang

et al., 2018). Also, our study lacks mild TBI patients, and it should be

noted that the results may not translate to a lower injury severity.

Similarly, as patients with large lesions were excluded from our analy-

sis and the proposed measure was devised for diffuse injury, efficacy

of the measure on TBI with large lesions requires further evaluation.

In order to evaluate the trajectory of structural change in the acute as

well as chronic phase of the disease across the injury spectrum, re-

evaluation of results presented here on a larger dataset (such as

TRACK-TBI, https://tracktbi.ucsf.edu/; Yue et al., 2013) is left as a

future work. We also see a potential in evaluating the changes in

functional network topology and its association with cognitive recov-

ery on TBI, as such a recovery was recently reported on stroke

patients using graph matching (Olafson et al., 2021). Finally, evalua-

tion of the measure on data obtained by alternative preprocessing

techniques as well as investigation of the change at functional sys-

tems and nodal levels is to be carried out on a future study with a

larger cohort.

In conclusion, our results demonstrate that the structural brain

networks of patients with moderate-to-severe TBI differ from those

of healthy controls by 3 months and become increasingly different up

to 1 year postinjury. It also demonstrates the efficacy of our network

normality score (NNS) as a principled measure for evaluating severity

of diffuse injury, which can have potential uses in creating diagnostic

and prognostic biomarkers of the disease when evaluated on larger

datasets. Moving forward, we will expand our method to investigate

changes in network topology of functional connectivity in TBI

patients, in order to explore mechanisms of cognitive recovery with

an overall network analysis perspective.
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