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Heart rate variability (HRV) is the fluctuation in time between successive heartbeats
and is defined by interbeat intervals. Researchers have shown that short-term (∼5-
min) and long-term (≥24-h) HRV measurements are associated with adaptability, health,
mobilization, and use of limited regulatory resources, and performance. Long-term
HRV recordings predict health outcomes heart attack, stroke, and all-cause mortality.
Despite the prognostic value of long-term HRV assessment, it has not been broadly
integrated into mainstream medical care or personal health monitoring. Although short-
term HRV measurement does not require ambulatory monitoring and the cost of
long-term assessment, it is underutilized in medical care. Among the diverse reasons for
the slow adoption of short-term HRV measurement is its prohibitive time cost (∼5 min).
Researchers have addressed this issue by investigating the criterion validity of ultra-
short-term (UST) HRV measurements of less than 5-min duration compared with short-
term recordings. The criterion validity of a method indicates that a novel measurement
procedure produces comparable results to a currently validated measurement tool.
We evaluated 28 studies that reported UST HRV features with a minimum of 20
participants; of these 17 did not investigate criterion validity and 8 primarily used
correlational and/or group difference criteria. The correlational and group difference
criteria were insufficient because they did not control for measurement bias. Only three
studies used a limits of agreement (LOA) criterion that specified a priori an acceptable
difference between novel and validated values in absolute units. Whereas the selection
of rigorous criterion validity methods is essential, researchers also need to address such
issues as acceptable measurement bias and control of artifacts. UST measurements
are proxies of proxies. They seek to replace short-term values which, in turn, attempt
to estimate long-term metrics. Further adoption of UST HRV measurements requires
compelling evidence that these metrics can forecast real-world health or performance
outcomes. Furthermore, a single false heartbeat can dramatically alter HRV metrics.
UST measurement solutions must automatically edit artifactual interbeat interval values
otherwise HRV measurements will be invalid. These are the formidable challenges that
must be addressed before HRV monitoring can be accepted for widespread use in
medicine and personal health care.

Keywords: biofeedback, Bland–Altman limits of agreement, criterion validity, heart rate variability, norms,
Pearson product-moment correlation coefficient, predictive validity, reliability
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INTRODUCTION

The purpose of this review article is to critically examine
the criteria used in studies of ultra-short-term (UST) heart
rate variability (HRV) and to identify challenges of criterion,
concurrent, and predictive validity, and measurement artifacts.

Section “Heart Rate Variability” explains HRV from the
perspectives of the neurovisceral integration mode and vagal
tank theory. We underscore that HRV metrics are associated
with regulatory capacity and health, providing an indication of
how HRV predicts health crises such as fetal distress before the
appearance of symptoms or mortality. Further, these metrics
describe the correlation between low HRV, disease, and mortality.

Section “Length of the HRV Recording Period” describes long-
term, short-term, and UST HRV recordings, and it emphasizes
that long-term measurements best predict health outcomes, and
provides a description of time domain, frequency domain, and
non-linear metrics. We explain that short-term measurements
poorly correlate with long-term values, and stress that we
cannot use long-term and short-term norms interchangeably.
We caution that short-term measurements are proxies of long-
term measurements and that their predictive validity is uncertain.
Finally, we characterize UST measurements as proxies of proxies
and call for research into their predictive validity.

Section “Why Is There Interest in UST HRV Measurements?”
discusses the reasons for the limited use in HRV measurements
in medicine, the challenges to their integration into routine
medical care, the opportunity created by wearable products
for consumer HRV monitoring, and the research required
before the widespread adoption of HRV metrics in fitness and
wellness applications.

Section “Criterion Validity Ensures Measurement Integrity”
explains criterion validity, which can be established using
the concurrent and predictive validity approaches. These
approaches depend on a high-quality criterion that is relevant,
reliable, and valid.

Section “UST HRV Research” provides an overview of
28 studies that have reported UST HRV features. We argue
that comparison approaches using correlational coefficients,
coefficients of determination or regression, and group mean
or median comparisons approaches cannot establish criterion
validity because they do not control for measurement bias, which
is the difference between novel and validated measurements.
Section “Correlation Coefficients” explains that although
correlation coefficients can identify potential surrogates, they
cannot establish criterion validity. Correlations show association
but cannot establish equivalence. A proxy measurement can be
perfectly correlated with a reference standard measurement while
falling outside an acceptable range (e.g., ±10% of the reference
standard’s range). Section “Coefficient of Determination or
Regression” argues that neither method is appropriate for
demonstrating equivalence. The coefficient of determination
shares the same limitations as correlation coefficients and use
of regression for this purpose violates its underlying statistical
assumptions. Section “Group Mean or Median Comparisons”
challenges the claim that two methods are comparable if
they yield a non-significant group mean or median difference

because this does not ensure validity and can be confounded
by insufficient statistical power. Lastly, Section “Limits of
Agreement (LOA) Solutions” describes how this approach
establishes criterion validity when accuracy standards are
specified a priori.

Section “UST HRV Studies Reporting Limits of Agreement
Solutions” summarizes four studies that have reported LOA and
compares findings from three reports (Esco and Flatt, 2014;
Munoz et al., 2015; Shaffer et al., 2019) that utilized LOA as a
selection criterion for valid UST measurements. Finally, Section
“Practical Recommendations” outlines four steps for determining
the shortest period that can estimate a 300-s measurement.

HEART RATE VARIABILITY

Heart rate and HRV are calculated from the time intervals
between successive heartbeats and HRV is associated with
executive function, regulatory capacity, and health (Thayer and
Lane, 2000; Byrd et al., 2015; Laborde et al., 2017; Mather
and Thayer, 2018). Heart rate, the number of heart beats per
minute (bpm), is an UST (<5 min) metric that is widely used
in medicine, performance, and daily fitness assessment using
wearables. HRV is the organized fluctuation of time intervals
between successive heartbeats defined as interbeat intervals
(Shaffer and Ginsberg, 2017; Lehrer et al., 2020). The complexity
of a healthy heart rhythm is critical to the maintenance of
homeostasis because it provides the flexibility to cope with
an uncertain and changing environment (Beckers et al., 2006).
“A healthy heart is not a metronome” (Shaffer et al., 2014).
From the perspective of the neurovisceral integration model
(Thayer and Lane, 2000), increased HRV is associated with
improved executive function and may strengthen descending
medial prefrontal cortex regulation of emotion (Mather and
Thayer, 2018). Laborde et al. (2018) have proposed the vagal tank
theory as an integrative model of cardiac vagal control or vagus
nerve regulation of heart rate. Cardiac vagal control indexes
how efficiently we mobilize and utilize limited self-regulatory
resources during resting, reactivity, and recovery conditions
(Laborde et al., 2017). HRV metrics are important because they
are associated with regulatory capacity, health, and performance
(Shaffer et al., 2014) and can predict morbidity and mortality.

A decline in HRV can signal dangerous health changes
and low HRV values are associated with an increased risk
of illness and death. HRV reductions precede heart rate
changes in conditions of fetal distress (Hon and Lee, 1963)
and sensory disturbances in diabetic autonomic neuropathy
(Ewing et al., 1976). Low HRV correlates with anxiety (Cohen
and Benjamin, 2006), asthma (Kazuma et al., 1997; Lehrer
et al., 2004), cardiac arrhythmia, chronic obstructive pulmonary
disease (Giardino et al., 2004), depression (Agelink et al.,
2002), functional gastrointestinal disorders (Gevirtz, 2013),
hypertension, inflammation, myocardial infarction (Bigger et al.,
1992; Carney et al., 2007; Berntson et al., 2008), post-traumatic
stress disorder (Shah et al., 2013), and sudden infant death
(Hon and Lee, 1963). Low HRV also correlates with all-cause
mortality (Tsuji et al., 1994; Dekker et al., 1997). For example, low
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power in the very-low-frequency (VLF) band (0.0033–0.04 Hz)
more strongly predicted all-cause mortality (higher Z-scores
and relative risk) than low-frequency (LF; 0.04–0.15 Hz) and
high-frequency (HF; 0.15–0.4 Hz) bands, and is associated with
arrhythmic death (Bigger et al., 1992).

LENGTH OF THE HRV RECORDING
PERIOD

Heart rate variability recording periods range from under 1 min
to over 24 h. Long-term recordings (≥24 h) constitute the
reference standard for clinical evaluation due to their predictive
validity, which is the ability to predict future outcomes (Hoenig
et al., 2001). For example, 24-h measurements of the standard
deviation (SD) of the interbeat intervals of normal sinus beats
(SDNN) predict cardiac risk (Task Force of the European
Society of Cardiology the North American Society of Pacing
Electrophysiology, 1996). Acute myocardial infarction patients
with SDNN values under 50 ms are unhealthy, between 50
and 100 ms have compromised health, and over 100 ms are
healthy (Kleiger et al., 1987). Acute myocardial infarction patients
with SDNN values over 100 ms have been reported to have a
5.3 lower mortality risk at a 31-month mean follow-up than
those under 50 ms.

While long-term, short-term (∼5 min), and UST (<5 min)
recordings calculate HRV metrics using the same mathematical
formulas, they are not interchangeable, reflect different
underlying physiological processes, and achieve different
predictive powers. HRV in long-term recordings may be
attributed to changes in the circadian rhythm, fluctuations
in core body temperature and the renin–angiotensin system,
and the sleep cycle (Bonaduce et al., 1994; Task Force of the
European Society of Cardiology the North American Society
of Pacing Electrophysiology, 1996). Long-term recordings
monitor cardiorespiratory regulation across diverse situations,
physical workloads, and anticipatory central nervous system
(CNS) reactions to environmental stimuli. These extended
recording periods reveal the sympathetic nervous system (SNS)
component of HRV (Grant et al., 2011; Shaffer and Ginsberg,
2017). HRV in short-term recordings is produced by four
interdependent sources that operate on a briefer time scale
and are defined by: (1) the complex interaction between the
sympathetic and parasympathetic branches; (2) respiration-
mediated increases and decreases in heart rate via the vagus
nerve, termed respiratory sinus arrhythmia (RSA); (3) the
baroreceptor reflex that regulates blood pressure using negative
feedback; and (4) rhythmic adjustments in blood vessel diameter
(Shaffer and Ginsberg, 2017). Short-term values correlate
poorly with their long-term counterparts (Fei et al., 1996).
Basic research is needed to identify the major HRV generators
in UST recordings.

Although long-term, short-term, and UST HRV recordings
are characterized using the same time-domain, frequency-
domain, and non-linear indices, they differ in predictive power.
Time-domain metrics calculate the amount of variability in a
series of interbeat intervals. Frequency-domain measurements

compute absolute or relative power distribution across four
bands: ultra-low-frequency (ULF; ≤0.003 Hz), VLF (0.0033–
0.04 Hz), LF (0.004–0.15 Hz), and HF (0.15–0.40 Hz). Non-
linear indicators measure the interbeat interval time series’
unpredictability (Stein and Reddy, 2005; Table 1). ST recordings
achieve lower predictive power than long-term recordings
(Bigger et al., 1989; Nolan et al., 1998; Kleiger et al., 2005).
To summarize, long-term recordings represent the reference
standard for predicting health outcomes. For this reason, long-
term and short-term norms cannot be used interchangeably.
Short-term values are proxies of long-term values with unknown
predictive validity; therefore, UST measurements are proxies of
proxies. Basic research is also needed to determine the predictive
validity of UST recordings.

WHY IS THERE INTEREST IN UST HRV
MEASUREMENTS?

There is a potential role for UST HRV measurements in medical
assessment, research involving brief (e.g., <30 s) experimental
tasks, and personal wellness assessment once researchers validate
their accuracy and predictive power. Despite the availability of
short-term normative HRV values for adults (Umetani et al.,
1998; Nunan et al., 2010) and elite athletes (Berkoff et al.,
2007), HRV is not widely used in medical assessment outside of
cardiology and obstetrics. For example, nurses do not routinely
monitor HRV as a vital sign during general practice visits.
Short-term HRV assessment’s time cost is one of many barriers
to its integration in routine medical practice: “. . .a 5-min
HRV assessment is prohibitively long when compared with
routine office or home measurements of blood glucose, blood
pressure, core body temperature, heart rate, oxygen saturation,
and weight” (Shaffer et al., 2019, p. 215). If researchers were
to validate the accuracy and predictive power of UST HRV
measurements, and provide age- and sex-related normative
values, manufacturers could add this modality to widely used
instruments like electrocardiographs and pulse oximeters.

Research studies in diverse areas (e.g., clinical and social
psychology) may involve brief experimental tasks that
require UST HRV measurements. For example, short-term
HRV monitoring would be inappropriate for a 30-s task
designed to induce frustration. As with medical applications,
researchers need to validate the accuracy and meaning of UST
HRV measurements.

Consumers increasingly monitor their physiology using
dedicated tracking devices and smartwatches that incorporate
electrocardiographic (ECG) and photoplethysmographic (PPG)
sensors of heart rate and HRV. ECG sensors detect the
R-spike and PPG sensors identify the peak of the pulse
wave to determine when a heartbeat has occurred (Shaffer
et al., 2014). The ECG method is more accurate than PPG
during paced breathing (Jan et al., 2019) and when increased
sympathetic tone results in vasoconstriction in monitored
fingers (Giardino et al., 2002; Schafer and Vagedes, 2013). UST
measurements are ideal for these ambulatory fitness and wellness
applications if investigators can demonstrate their accuracy
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TABLE 1 | Short-Term HRV metrics adapted from Shaffer and Ginsberg (2017) and Shaffer et al. (2019).

HRV metrics Units Description

Time domain

Heart rate 1/min Average heart rate

HRV triangular index (HTI) Integral of the density of the RR interval histogram divided by its height; together, HTI and RMSSD can distinguish
between normal rhythms and arrhythmias

NN ms Average of NN intervals

NN50 count Number of successive RR intervals that differ by more than 50 ms

pNN50 % Percentage of successive RR intervals that differ by more than 50 ms; associated with HF absolute power and RMSSD

RMSSD ms Root mean square of successive RR interval differences; estimates vagal contributions to HRV

SDNN ms Standard deviation of NN intervals; strongly associated with ULF, VLF, LF, and total power; vagally-mediated RSA is
primary source, especially with slow, paced breathing during ST recording

TINN Baseline width of the RR interval histogram

Frequency domain

VLF ms2 Absolute power of the very-low-frequency band (0.0033–0.04 Hz)

LF ms2 Absolute power of the low-frequency power (0.04–0.15 Hz)

LFnu nu Relative power of the low-frequency band in normal units

HF ms2 High-frequency power (0.15–0.4 Hz)

HFnu nu Relative power of the high-frequency band in normal units

LF/HF % Ratio of LF-to-HF absolute power

Total ms2 Sum of absolute power in the VLF, LF, and HF bands in ST recordings

Non-linear

ApEn Approximate entropy, which measures the regularity and complexity of a time series; small values mean signal
predictability

D2 Correlation dimension, which estimates the minimum number of variables required to construct a model of system
dynamics; more variables mean greater time series complexity

DET % Recurrence plot analysis determinism

DFα1 Detrended fluctuation analysis, which describes short-term fluctuations; reflects the baroreceptor reflex

DFα2 Detrended fluctuation analysis, which describes long-term fluctuations; reflects regulation of interbeat interval fluctuation

REC % Recurrence rate

SampEn Sample entropy, which measures the regularity and complexity of a time series; like ApEn, small values mean signal
predictability

SD1 ms Poincaré plot standard deviation perpendicular to the line of identity; measures ST HRV and is associated with
baroreflex sensitivity (BRS)

SD2 ms Poincaré plot standard deviation along the line of identity; measures ST and LT HRV and is associated with LF absolute
power and BRS

ShanEn Shannon entropy; measures the average information in a time series; higher values indicate greater uncertainty and
irregularity

Credit: Center for Applied Psychophysiology. Baroreflex sensitivity (BRS), the change in interbeat interval length per unit change in BP and HF absolute power; normal
units (nu) are determined by dividing frequency band absolute power by the summed the absolute power of the LF and HF bands; frequency domain, measurements that
compute absolute or relative power distribution across four bands: ultra-low-frequency (ULF; ≤0.003 Hz), very-low-frequency (VLF; 0.0033–0.04 Hz), low-frequency (LF;
0.004–0.15 Hz), and high-frequency (HF; 0.15–0.40 Hz); non-linear, indicators that measure the interbeat interval time series’ unpredictability; short-term, measurements
∼ 5 min; time domain, metrics that calculate the amount of variability in a series of interbeat intervals.

under non-stationary and stationary conditions, their predictive
validity, and normative values.

CRITERION VALIDITY ENSURES
MEASUREMENT INTEGRITY

Criterion validity confirms that test scores accurately estimate
scores of validated measures or metrics and depends on the
identification of a high-quality criterion (Gulliksen, 1987).
Researchers use concurrent and predictive validity approaches to
provide evidence of criterion validity. In the concurrent approach,
investigators obtain test and criterion scores simultaneously
(Price, 2018). The UST HRV studies reviewed in this article

illustrate this strategy. Here, the test scores are UST and the
criterion scores are short-term HRV values. In the predictive
approach, researchers obtain test scores to estimate future
outcomes or performance. The success of both strategies depends
on the existence of a high-quality criterion, which is relevant,
valid, and reliable (Price, 2018). Relevant means that we can
objectively assess the criterion (e.g., SDNN). Validity means
that the criterion (e.g., 5-min SDNN) accurately measures
the metric of interest (e.g., SDNN). Finally, reliability means
that criterion scores (e.g., 5-min SDNN values) obtained
from the same individuals under identical conditions are
consistent. Although valid measures are always reliable, reliable
measures are not valid unless they accurately assess a given
construct (e.g., SDNN).
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TABLE 2 | Studies that reported UST HRV measurements and their primary
criterion validity criteria.

Did Not Investigate UST Criterion Validity

Arza et al. (2005) Pandey et al. (2016)

Choi and Gutierrez-Osuna (2009) Papousek et al. (2010)

De Rivecourt et al. (2008) Pereira et al. (2017)

Hjortskov et al. (2004) Schubert et al. (2009)

Kim et al. (2008) Sun et al. (2010)

Kwon et al. (2016) Wang et al. (2009)

Li et al. (2009) Wijsman et al. (2011)

Mayya et al. (2015) Xu et al. (2015)

Nardelli et al. (2018)

Correlational and/or Group Difference UST Criterion Validity Criteria

Baek et al. (2015) Munoz et al. (2015)

Brisinda et al. (2015) Nussinovitch et al. (2011)

Esco and Flatt (2014) Salahuddin et al. (2007)

Li et al. (2009) Schroeder et al. (2004)

McNames and Aboy (2006) Thong et al. (2003)

Limits of Agreement UST Criterion Validity Criterion

Esco and Flatt (2014)

Munoz et al. (2015)

Shaffer et al. (2019)

Credit: Center for Applied Psychophysiology. Correlational criterion, two methods
are equivalent if their values are correlated; concurrent validity, a novel
measurement procedure produces comparable results to an already validated
measurement tool; HRV, heart rate variability; group difference criterion, two
methods are comparable if they yield a non-significant group mean or median
difference; limits of agreement criterion, two methods are equivalent if there is
an acceptable a priori difference between their values in absolute units; UST,
ultra-short-term (<5 min).

UST HRV RESEARCH

We evaluated 28 studies that reported UST HRV features with
a minimum of 20 participants (Table 2). Seventeen studies did
not investigate criterion validity. Eight studies primarily used
correlational and/or group difference criteria to demonstrate the
criterion validity of UST (test scores) with respect to short-term
values (criterion scores; Thong et al., 2003; Schroeder et al., 2004;
McNames and Aboy, 2006; Salahuddin et al., 2007; Li et al.,
2009; Nussinovitch et al., 2011; Baek et al., 2015; Brisinda et al.,
2015). Correlation coefficients, the coefficient of determination
or regression, and group mean or median comparisons are
insufficient to establish criterion validity because they do not
control for measurement bias—the difference between UST and
short-term measurements.

Correlation Coefficients
Although correlation analysis can help researchers identify
potential surrogates, they cannot measure criterion validity
(Pecchia et al., 2018). Many researchers make the mistake
of applying a correlation coefficient, typically Pearson’s r, to
conclude that two methods are sufficiently comparable or in
agreement. The Pearson r quantifies the direction, magnitude,
and probability of a linear relationship between two continuous

FIGURE 1 | Hypothetical scatterplot of UST and ST heart rates (bpm)
depicting a perfect correlation (r = 1), but no agreement (points do not fall
along the line of equality where y = x). Credit: Center for Applied
Psychophysiology.

variables, x and y. The magnitude of the Pearson r ranges from−1
to +1 (Devore, 2016). A correlation coefficient, however, is merely
a measure of association and does not provide evidence that one
method agrees with or is comparable to another method (Altman
and Bland, 1983). In fact, it is possible for two methods to have a
perfect correlation of r = 1 but no agreement or comparability
between the measurements (Watson and Petrie, 2010). For
example, consider the situation where Method A and Method B
both measure heart rate, but only Method A does this accurately.
If Method B yields readings that are consistently 10 bpm higher
than Method A, they would be perfectly correlated (r = 1) but
their measurements would disagree by 10 bpm (Figure 1).

The American National Standards Institute criterion
(ANSI/AAMI, 2002) for heart rate accuracy is the larger of
±10% of all values or ±5 bpm. If we set the allowable heart rate
difference at ±10% of Method A’s range, Method B would report
heart rates far beyond acceptable measurements as shown by a
Bland–Altman plot (Figure 2).

Additionally, a significant correlation between two different
methods “is generally useless because two methods designed
to measure the same quantity will rarely be uncorrelated”
(Choudhary and Nagaraja, 2005, p. 218). For these reasons,
researchers conclude that a “correlation coefficient . . . is of
no practical use in the statistical analysis of comparison data”
(Westgard and Hunt, 1973, p. 53).

Coefficient of Determination or
Regression
Some method comparison studies use the coefficient of
determination (r2) or simple regression analysis to claim two
methods are comparable via intercepts or slopes (Bland and
Altman, 2003). The coefficient of determination estimates the
percentage of variability of variable y that can predicted by x.
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FIGURE 2 | Hypothetical Bland–Altman difference plot of UST and ST heart
rates (bpm). Credit: Center for Applied Psychophysiology. The line at 0
represents the line of equality or y = x (the diagonal line from Figure 1). When
measures achieve absolute agreement, they will all fall along that line at 0.

Denoted as r2, the coefficient of determination is identical to
the square of the Pearson r coefficient. For example, a Pearson
r coefficient of 0.50 corresponds to an r2 value of 0.25, meaning
that 25% of the variability in y is accounted for by variability
in x. The magnitude of r2 ranges from −1 to +1. Simple
regression analysis estimates a straight line with a slope (B1)
and height at which the line crosses the vertical axis (B0) to
predict the value of y, given x (Devore, 2016). These measures are
also inappropriate for demonstrating agreement. The coefficient
of determination estimates the proportion of variance that
Method A and Method B share but present the same pitfalls
as the correlation coefficient (Zaki et al., 2012). In addition,
the coefficient of determination calculates how well a regression
equation or model fits the observed data. This is problematic for
method comparison studies as measurements from each method
are dependent variables, each possessing their own measurement
error. Linear regression models make an implicit assumption
that some portion of the variance in a dependent variable (Y)
is being explained by variance in an independent variable (X).
Therefore, a simple linear regression assumes that the procedure
measures X without error. This method is not appropriate
when comparing two dependent measures and may produce a
biased regression coefficient (Altman and Bland, 1983; Hays,
1991). If regression is used, both variables should be treated as
possessing measurement error. In these cases, Deming regression
(parametric) or Passing–Bablok regression (non-parametric) are
more appropriate alternatives (Giavarina, 2015).

Deming regression (Deming, 1943) is a type of total least
squares regression that accounts for measurement error in both
X and Y variables, as opposed to ordinary least squares regression
which merely accounts for error in the dependent variable.
Deming regression assumes that errors are independent and
normally distributed, but the procedure is sensitive to outliers.
Passing–Bablok regression (Passing and Bablok, 1983, 1984) is
a robust non-parametric rank method that also accounts for
error in both X and Y and produces an unbiased slope estimate
by calculating the median of all possible slopes (Linnet, 1993).
Passing–Bablok regression is less sensitive to outliers and does

not have assumptions about the distribution of errors, but it
does require that the two variables measured do not significantly
deviate from linearity (Passing and Bablok, 1983).

Group Mean or Median Comparisons
Another statistical approach misused in method comparison
studies is to claim that two methods are comparable if they
yield a non-significant group mean or median difference via
parametric or non-parametric tests. For example, a two-sample
t-test is a parametric statistic that evaluates whether the difference
between pairs of normally-distributed scores can be explained
by chance. A Kruskal–Wallis test is a non-parametric procedure
that determines whether samples were obtained from a single
distribution (Devore, 2016). There are several issues with such
an approach. First, the goal of comparing two different methods
of measurement is not to have an equivalent overall group
agreement (mean or median), but rather that the methods
appropriately agree across individual observations. Such logic
would imply that having greater measurement error would be
more favorable because it decreases the probability of finding a
significant difference (Altman and Bland, 1983). Non-significant
group differences do not indicate whether two methods agree
or have acceptable bias. Second, significance is related to the
power and sample size of the study (Zaki et al., 2012), and so a
non-significant mean or median difference between two methods
could be the result of an underpowered study or one without
a large enough sample. Third, because many HRV measures
are non-normally distributed, some studies inappropriately use
a parametric t-test or ANOVA on data that have not been log-
transformed or fail to use a non-parametric test instead (Pecchia
et al., 2018).

Limits of Agreement (LOA) Solutions
To overcome the aforementioned issues with analyzing
agreement between methods, the authors recommend the use
of LOA in Bland–Altman plots (Altman and Bland, 1983; Bland
and Altman, 1986). An important caveat is that Bland–Altman
plots and LOA do not indicate whether or not the agreement
between measures is sufficient. The researcher must decide
a priori the extent to which two measures must agree for them
to be comparable. Although there are industry standards for
the accuracy of blood pressure and heart rate measurement
(ANSI/AAMI, 2002, 2008), there are no comparable standards
for HRV short-term measurements such as SDNN. The degree
of precision may depend upon the specific question being asked
and may vary by discipline (Giavarina, 2015).

Bland–Altman plots are a graphical approach to assessing
the extent to which two methods agree with each other by
plotting the difference between the two methods (Method A –
Method B) on the y-axis against the mean of the two methods
([Method A + Method B]/2) on the x-axis. If the two methods
agree completely, the mean difference (d̄) between them will
be zero, and all the points on the Bland–Altman plot would
fall along a line of y = 0. Because perfect agreement between
two methods rarely occurs, the distance between an ideal d̄ of
zero and the observed d̄ is an index of bias. The greater the
bias—the distance of d̄ from zero—between the two methods,
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the less the two measures tend to agree. Assuming that the
differences are normally distributed, the SD of the differences can
then be multiplied by 1.96 and added/subtracted from the mean
difference d̄. This calculation produces a lower LOA (d̄ – 1.96s)
and an upper LOA (d̄ + 1.96s), representing the range where 95%
of the differences should fall; the lower LOA represents the 2.5th
percentile and the upper LOA represents the 97.5th percentile.

Researchers should construct confidence intervals and
statistically determine whether the disagreement between the
two methods falls within the LOA. They should construct
95% confidence intervals around the mean difference and the
lower/upper LOA to take variability into account (Hamilton and
Stamey, 2007; Ludbrook, 2010). Next, they should perform a
statistical analysis to determine whether the differences between

the two methods fall within the appropriate LOA (Giavarina,
2015). Finally, they should follow with an equality test (H0:
µdifference = 0) such as the Student’s t-test. Bland–Altman
plots do not require the raw measurements from the two
methods to be normally distributed, but the differences between
the two methods should be normally distributed. Researchers
should take appropriate steps if the differences are not normally
distributed or the differences are proportional to the size of the
measurement (e.g., greater differences between the two methods
as the measurements get larger). They can logarithmically
transform the raw data or the ratios or percentages ([Method
A – Method B]/Mean%) before constructing a Bland–Altman
plot. This transformation can provide superior results to plotting
a simple difference between the methods against the average

TABLE 3 | UST studies that reported limits of agreement adapted from Shaffer and Ginsberg (2017).

Study, date N Method Position Conditions UST (s) HRV metrics UST criteria

Baek et al., 2015 467 249 men
218 women

PPG Sitting Baseline 10–270 HR, pNN50, RMSSD,
SDNN, VLF, LF, HF, LF/HF,
Total, LFnu, HFnu

Pearson r and
non-significant
Kruskal–Wallis

Esco and Flatt, 2014 23 men ECG Supine Pre/post-exercise 10, 30, 60 RMSSD ICC and Bland–Altman

Munoz et al., 2015 3,387 1658
men 1729

women

Portapres R© Supine Baseline 10, 30, 120 RMSSD, SDNN ICC, Pearson r, and
Bland–Altman

Shaffer et al. (2019) 38 20 men 18
women

ECG Sitting Baseline 10, 20, 30, 60, 90,
120, 180, 240

Table 1 r ≥ 0.90 and Bland–Altman
LOA ± 5% of the range

Credit: Center for Applied Psychophysiology. D2 (also CD), correlation dimension, which estimates the minimum number of variables required to construct a model of
a studied system; DFA α1, detrended fluctuation analysis, which describes short-term fluctuations; DFA α2, detrended fluctuation analysis, which describes long-term
fluctuations; ECG, electrocardiogram; HF ms2, absolute power of the high frequency band; HF nu, relative power of the high frequency band in normal units; HF peak,
highest amplitude frequency in the HF band; HF%, HF power as a percentage of total power; HR, heart rate; HTI, HRV triangular index or integral of the density of the NN
interval histogram divided by its height; limits of agreement, criterion that two methods are equivalent if there is an acceptable a priori difference between their values in
absolute units; LF ms2, absolute power of the low frequency band; LF nu, relative power of the low frequency band in normal units; LF peak, highest amplitude frequency
in the LF band; LF%, LF power as a percentage of total power; LF/HF, ratio of LF-to-HF power; NN interval, time between adjacent normal heartbeats; nu, normal units
calculated by dividing the absolute power for a specific frequency band by the summed absolute power of the LF and HF bands; pNN50, percentage of successive
interbeat intervals that differ by more than 50 ms; RMSSD, root mean square of successive R–R interval differences; R–R interval, time between all adjacent heartbeats;
SampEn, sample entropy, which measures signal regularity and complexity; SD1, Poincaré plot standard deviation perpendicular to the line of identity; SD2, Poincaré
plot standard deviation along the line of identity; SD1/SD2, ratio of SD1 to SD2 that measures the unpredictability of the R–R time series and autonomic balance under
appropriate monitoring conditions; SDNN, standard deviation of NN intervals; TINN, triangular interpolation of the R–R interval histogram or baseline width of the RR
interval histogram; total power, sum of power (ms2) in VLF, LF, and HF bands; UST, ultra-short-term (<5 min).

TABLE 4 | Minimum time period required to estimate 5-min HRV metrics adapted from Shaffer et al. (2019).

Minimum UST period HRV metric

10 s HR

60 s pNN50, NN50, RMSSD, SDNN

90 s TINN, LF absolute power, SD1, and SD2

120 s HRV triangular index, DFA α1

180 s LFnu, HF absolute power, HFnu, LF/HF power, DFA α2, DET, SampEn

240 s ShanEn

DFA α1, detrended fluctuation analysis, which describes short-term fluctuations; DFA α2, detrended fluctuation analysis, which describes long-term fluctuations; ECG,
electrocardiogram; HF ms2, absolute power of the high frequency band; HF nu, relative power of the high frequency band in normal units; HF peak, highest amplitude
frequency in the HF band; HF%, HF power as a percentage of total power; HR, heart rate; HTI, HRV triangular index or integral of the density of the NN interval histogram
divided by its height; limits of agreement, criterion that two methods are equivalent if there is an acceptable a priori difference between their values in absolute units; LF
ms2, absolute power of the low frequency band; LF nu, relative power of the low frequency band in normal units; LF peak, highest amplitude frequency in the LF band;
LF%, LF power as a percentage of total power; LF/HF, ratio of LF-to-HF power; NN interval, time between adjacent normal heartbeats; nu, normal units calculated by
dividing the absolute power for a specific frequency band by the summed absolute power of the LF and HF bands; pNN50, percentage of successive interbeat intervals
that differ by more than 50 ms; RMSSD, root mean square of successive R–R interval differences; R–R interval, time between all adjacent heartbeats; SampEn, sample
entropy, which measures signal regularity and complexity; SD1, Poincaré plot standard deviation perpendicular to the line of identity; SD2, Poincaré plot standard deviation
along the line of identity; SD1/SD2, ratio of SD1 to SD2 that measures the unpredictability of the R–R time series and autonomic balance under appropriate monitoring
conditions; SDNN, standard deviation of NN intervals; TINN, triangular interpolation of the R–R interval histogram or baseline width of the RR interval histogram; total
power, sum of power (ms2) in VLF, LF, and HF bands; UST, ultra-short-term (<5 min).
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(Giavarina, 2015; Hoffman, 2015). In addition to assessing
agreement, Bland–Altman plots can also be used to detect
outliers (Watson and Petrie, 2010).

UST HRV STUDIES THAT REPORT
LIMITS OF AGREEMENT SOLUTIONS

Of the 28 UST HRV studies that we reviewed, four reported
LOA plots whether used as a selection criterion or not (Esco and
Flatt, 2014; Baek et al., 2015; Munoz et al., 2015; Shaffer et al.,
2019) (Table 3).

Baek et al. (2015) obtained resting PPG measurements from
467 healthy participants (249 men and 218 women; aged 8–
69 years). They compared 10-, 20-, 30-, 60-, 90-, 180-, 210-, 240-,
and 270-s values with 300-s measurements. Their criteria for
selecting the shortest UST period were a significant Pearson r
and non-significant (p > 0.05) Kruskal–Wallis statistic. Although
they illustrated their results with Bland–Altman plots (mean
difference ± 1.96 SD), the authors did not use them to
draw conclusions.

Esco and Flatt (2014) acquired ECG measurements from 23
male collegiate athletes (aged 19–21 years) for 10 min while
supine before a treadmill test and for 30 min post-exercise. They
analyzed the last 5 min of each rest period and compared log-
transformed 10-, 30-, and 60-s with 300-s root mean square
of the successive differences (RMSSD) values. They compared
intra-class correlations (ICCs) and Bland–Altman plots (mean
difference± 1.96 SD) across the three UST periods and concluded
that that 60 s yielded the largest ICC and most stringent LOA.
Whereas the ICC test identified 60 s as a potential surrogate, a
Bland–Altman plot confirmed its criterion validity with respect
to 300-s RMSSD measurements.

Munoz et al. (2015) recorded beat-to-beat middle finger
pressure using a Portapres R© device from 3387 participants (1660
men and 1727 women; aged 44–63 years) in the Prevention
of Renal and Vascular End-Stage Disease study. They obtained
recordings over a 15-min period while resting in the supine
position. The authors analyzed the last 4–5 min of data
that exhibited a stationarity pattern and compared the log-
transformed 10-, 30-, and 120-s with 300-s RMSSD and SDNN
values. They compared ICC, Pearson r values, and Bland–Altman
plots across the three UST periods. The authors concluded that
a minimum of 10 s was required to measure RMSSD and 30 s
to calculate SDNN.

Shaffer et al. (2019) obtained 5-min EEG recordings from
38 healthy undergraduates (20 men and 18 women; aged 18–
23 years) while sitting upright under resting conditions with
their eyes open. They acquired 10-, 20-, 30-, 60-, 90-, 120-, 180-,
and 240-s epochs from the 5-min recordings. Following manual
removal of artifacts, they calculated the time domain, frequency
domain, and non-linear HRV metrics outlined in Table 1. The
authors identified potential surrogates using a Pearson r with a
conservative criterion (r ≥ 0.90). They applied Bland–Altman’s
LOA technique using an allowable difference of ±5% of the
range of the 5-min value and a Student’s t-test to confirm the
equality of UST and ST values. The results of LOA analyses are

summarized in Table 4. These findings were consistent with Esco
and Flatt (2014) who also reported that a time interval of 60 s
was required to estimate 5-min RMSSD. However, the finding
that a 60-s sample is required to measure RMSSD and SDNN was
inconsistent with the study by Munoz et al. (2015) who reported
minimum periods of 10 and 30 s, respectively. This disagreement
may have been due to the more stringent LOA requirement (±5%
of the range of the 5-min measurement) and smaller sample in the
Shaffer et al. (2019) study.

PRACTICAL RECOMMENDATIONS

Recommendations for analyses of data from method-comparison
studies differ. As previously mentioned, correlation/regression
analyses quantify the degree of association between variables but
do not denote agreement (Bland and Altman, 1986). As such, we
recommend using LoA solutions to assess whether two methods
produce comparable results. Although oft-cited guidelines
recommend correlation/regression analyses in addition to the
LoA solutions (Dewitte et al., 2002), most researchers incorrectly
consider them to be supplemental (Dewitte et al., 2002; Bunce,
2009). Although correlation/regression analyses may answer
certain questions that are relevant in method-comparison
studies (e.g., whether two measures are not associated),
there is a strong argument against their inclusion in favor
of only reporting the LoA and their respective confidence
intervals (Bland and Altman, 1986; Bunce, 2009). Prior to
conducting method-comparison studies, researchers should
consider whether conducting correlation/regression analyses
is appropriate.

Assuming that researchers obtain 10-s, 20-s, 30-s, 60-s, 90-
s, 120-s, and 180-s RMSSD values and want to determine the
shortest period that can estimate a 300-s RMSSD measurement,
they should consider the following steps:

(1) Determine whether the RMSSD measurements
are normally distributed. If not, use a logarithmic
transformation like log(e) or the natural log (ln).

(2) Determine a priori the largest acceptable difference between
30-s and 300-s RMSSD values.

(3) Prepare difference plots like Bland–Altman using a 95%
confidence interval and then conduct an equality test (e.g.,
Student’s t-test) to confirm that the 30-s and 300-s RMSSD
values are identical.

(4) If the 30-s RMSSD measurement passes the equality
test, then a suitable surrogate has been found. If it
fails the test, perform the same analysis with the 60-s
measurement, and so on.

CONCLUSION

Eight of the 11 HRV criterion validity studies we reviewed
used correlational and/or group difference criteria that did not
control for measurement bias. Because these criteria do not
require a maximum acceptable difference (e.g., 5 bpm), they
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could yield an UST heart rate value that was 10 bpm higher or
lower than its 5-min counterpart. Therefore, minimum recording
length prescriptions from studies that used these criteria (Thong
et al., 2003; Schroeder et al., 2004; McNames and Aboy, 2006;
Salahuddin et al., 2007; Li et al., 2009; Nussinovitch et al.,
2011; Brisinda et al., 2015) should be treated with caution and
confirmed by studies that use a LOA criterion and confirmative
equality tests. As Fleming and DeMets (1996) succinctly stated,
“A correlate does not a surrogate make” (p. 605).

The routine use of UST HRV measurements in medicine,
performance, and personal fitness assessment awaits advances
in six key areas. First, HRV monitoring with automatic artifact
correction needs to be added to existing hardware (e.g., activity
trackers, pulse oximeters, and smartwatches). Second, researchers
should identify the short-term HRV metrics (e.g., RMSSD)
most strongly associated with health and performance outcomes.
Third, researchers should determine the minimum UST time
periods required to estimate these short-term HRV features
with respect to age and sex. We recommend a LOA criterion
based on the a priori determination of the largest acceptable
difference between UST and short-term values confirmed by
an equality test. Fourth, researchers should demonstrate that
UST HRV metrics themselves can forecast real-world health
or performance outcomes. UST measurements are proxies of
proxies. They seek to replace short-term values, which, in turn,
attempt to estimate reference standard long-term metrics. This

criterion validity requirement is the most intractable and may
prove insurmountable. Fifth, researchers should establish UST
HRV norms stratified by age and sex. Sixth, researchers and
manufacturers need to educate healthcare professionals and the
public about what HRV means, its importance to their health
and performance, how it should be measured, and the strategies
that can increase it. These six breakthroughs are necessary
before HRV monitoring can be more widely used in medicine,
performance, and personal health care.
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