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Carbon nanotubes (NTs) are graphene sheets rolled into a 1D material, with a specific chirality that defines

its structure and properties. Graphene has triggered the development of thousands of 2D materials, which

in principle could also be rolled into 1D NTs. However, most of these NTs have not been proposed due to

difficulties in the generation of atomic coordinates for chiral NTs from 2D materials with a non-hexagonal

lattice or multi-layered materials. In this paper we present Chiraltube, an open-source Python code that

allows the quick generation of a complete NT with any chirality from the unit cell of its original 2D

material. We explain the inner workings of the code as well as the theoretical background on which it is

built, generalizing concepts from the construction of chiral and achiral carbon NTs to work on any other

2D material. We show various examples of the resulting chiral NT structures built from phosphorene,

MoS2 and Ti3C2, and present some analysis on the interatomic distortion in the outermost layers of these

NTs, as well as the results of ab initio electronic structure calculations on a set of phosphorene NTs

generated by the program, showing the immediate practicality and usefulness of the program. We also

explore some limitations and details of the tool as well as further work to be done.
1 Introduction

During the last 30 years an immense effort has been devoted to
the study of rst nanotubes (NTs) and then two dimensional
(2D) materials. Their archetypes are carbon based nano-
structures: carbon nanotubes (CNTs)1–3 and graphene,4,5

respectively. CNTs are commonly described as “rolled” sheets of
graphene and are dened by their chiral angle (q) and chiral
vector (C)6 (Fig. 1).

Each CNT has its chirality6–8 dened by the angle at which
a graphene sheet is wrapped to form a specic nanotube (NT). It is
a geometrical classication of CNTs and a topological feature that
governs all CNTs' properties, like electronic and optical ones.6,9,10

A minimal difference between two CNTs' chiralities may differ-
entiate one as metallic and the other as a semiconductor.

Chirality is related to CNTs' symmetry; chiral and achiral
NTs are non-symmorphic and symmorphic respectively. Zigzag
and armchair CNTs are both achiral, with their structure being
identical to their mirror.10 In contrast, chiral CNTs mirror's
images are not superposed with the original ones.10 Chiral tubes
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are called this way from the chemical nomenclature, axially
chiral, presenting a spiral symmetry.

CNTs have been studied in depth, with a huge amount of
theoretical6,7,10–14 and experimental work15–22 devoted to CNTs
wrapped in armchair, zigzag or any other chirality, which in
turn have completely different electronic, optoelectronic,
mechanical and catalytic properties. This diversity hinders the
experimental endeavour of obtaining a specic chirality CNT for
its applications, but it has also opened an endless path for
potential applications.

Generating a supercell of chiral CNTs, with the atomic
coordinates of each atom, is easy, and in fact, there are many
tools and freely available resources to generate sets of coordi-
nates of virtually any chiral/achiral CNT,8,23–25 which can then be
the input of further studies, like density functional theory (DFT)
calculations to obtain the geometrically relaxed structure,
electronic properties, etc.While these tools could be adapted for
other materials, they are made for the specic hexagonal shape
in graphene's unit cell.

As with carbon and graphene, NTs of other elements or
compounds have also been studied, especially their achiral
zigzag and armchair structures, in part because their coordi-
nates are easier to obtain. Some examples are silicene NTs
(SiNTs),26,27 phosphorene NTs (PNTs),28–30 boron nitride NTs
(BNNTs),31 GaAs NTs (GaAsNTs)32,33 transition metal dichalco-
genide (TMD) NTs (TMDNTs) (MoS2,34 WS2,35 and MoSSe36),
MXene NTs (MXene-NTs),37 and others.38–40

However, for most of these materials, their chiral counter-
parts present higher complexity in the construction of their
Nanoscale Adv., 2024, 6, 79–91 | 79
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Fig. 1 (a) Unit cell of an arbitrary 2D material. a1, a2 and a3 are the
vectors of the unit cell. 4 is the angle formed between a1 and a2. (b)
Lattice of a general 2D material with the nanoribbon delimited by the
chiral vector C and the translational vector T. (c) Graphene lattice with
a nanoribbon defined by C and T.
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supercell and the generation of their atomic coordinates. These
supercells are usually bigger in size, constituted by hundreds of
atoms, making their simulations and theoretical studies more
difficult.

Although there are a few examples of theoretical studies in
the literature dealing with chiral NTs (i.e. a molecular dynamics
(MD) study of PNTs self-assembled from phosphorene
ribbons,41 a study on spin orbit effects on chiral MoS2 NTs42 or
electronic structure calculations of NTs made out of two
dimensional (2D) materials with a unit cell similar to that of
graphene or a simple monolayer as BNNTs43,44 and TMD-NTs45),
chiral NTs are still an almost virgin eld to be explored.
Examining the characteristics of chiral nanotubes will reveal
changes in their properties attributable to their unique
chirality, as it occurs with CNTs. Such distinctions hold promise
for potential applications across various scientic domains,
where nanotubes and 2D materials have already made signi-
cant contributions.
80 | Nanoscale Adv., 2024, 6, 79–91
With the rise of 2D materials,46 there is an uncountable
number of NT possibilities to be addressed.47 The broadening of
the spectrum to include not only the achiral, but also the chiral
NTs, would be possible with a tool that could generate the
atomic coordinates of the NTs with the only input being the unit
cell of the 2D material in question (cell parameters and atomic
positions can be found elsewhere47–49).

In this paper we present Chiraltube,50 a concise code written
in Python that allows for the generation of not only CNTs, but
also NTs from any 2D material, with any unit cell and in any
chirality desired.

In the body of this paper, rst, we generalize the notion of
chirality and related concepts (i.e., chiral vector, wrapping
angle, nanoribbons (NRs), translational vectors, symmetry
vector, rotation angle, and NT reciprocal lattice unit vectors),
that have been used for CNTs since the 90s,10 to any type of 2D
material rolled into a chiral NT. This is integrated into an
open-source code capable of dealing with materials with an
asymmetrical unit cell and a width of either single layer or
multiple layers, such as phosphorene, TMDs and MXenes.
Second, we present an explanation of the general methodology
of the code in Python, which generates a NR from a unit cell of
a 2D material, and later wraps it into a NT of the chosen
chirality. Later, in the results and discussion, some families of
NTs are presented, analysing geometrical aspects related to
the generated coordinates. As a proof of concept, the atomic
coordinates of chiral phosphorene nanotubes were used as
input in ab initio calculations, specically geometry optimi-
zation ones, proving the capability of the coordinate generator
code. Finally, the discussion includes some scenarios of
applicability using examples in the literature, followed by the
conclusions.

2 Methodology

In Fig. 1a, the vectors of an arbitrary unit cell are dened as a1,
a2, and a3, and it's important to note the third vector a3,
pointing out of the page, as it will be important for the folding
of multilayered materials such as MoS2. The angle formed
between a1 and a2 is dened as 4 and goes from 0° to 90°. This
angle has a value 4 = 60° for graphene (shown in Fig. 1c).The
chiral vector C is dened as C = na1 + ma2, where n and m are
the chiral indices, as for CNTs.3,6,7,11,21 In fact, several of the cells,
ribbons and nanotube parameters presented here are a gener-
alization of those for CNTs in Table 3.3 of ref. 10.

Fig. 1b shows the crystalline lattice of a general 2D material
with arbitrary 4, only the outline of the unit cells is shown, and
the unit cell could contain any number of atoms in any
conguration. The chiral vector C denes the angle q, which will
be measured from the a2 axis in the counter-clockwise direction
(Fig. 1b), and goes from 0 to 4. The chiral vector denes the
rolling direction of the 2D material to form a NT. Thus, the
nanoribbon (NR) which will be rolled into a NT is formed
between the chiral vector and the vectors perpendicular to it,
called the translational vector T (Fig. 1b and c). The trans-
lational vector is dened as T = xa1 − ya2, where x and y are
positive integers, called from now on the translational indices.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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The minus sign is there in order to keep y positive. T also
denes the NT axis.
2.1 Ab initio calculations

The electronic structure calculations were performed with the
DFT plane wave code, Quantum Espresso.51 Ultraso pseudo-
potential type Rappe Rabe Kaxiras Joannopoulos52 were used
with cutoff energies of 544 eV, and the Perdew–Burke–Ernzerhof
(PBE)53 functional was chosen for exchange correlation
approximation. The convergence energy for self-consistent
calculation was set to 0.001 eV. The Brillouin zone of the
supercells was sampled by using Monkhorst-Pack54 grids of P ×

1 × 1, with P such that the density of k-points in the periodic
direction (along the nanotube axis) was not larger than 0.1 Å−1.
The supercells were built with the periodic direction of the
nanotube along the z axis and allowing a free space of at least
6.5 Å between adjacent nanotubes in the xy plane. Geometry
optimization of the phosphorene nanotubes was performed
with the Broyden–Fletcher–Goldfarb–Shanno algorithm. The
thresholds in the Hellmann–Feynman forces and the stress
along z were set to 0.02 eV Å−1 and 0.05 GPa respectively.
3 Description of the program

The program's main functionality is to return a set of atom
coordinates for a rolled NT made out of a 2D material. These
coordinates are generated and calculated geometrically from
the unit cell of the 2D material, the only input to the program,
which can be either in special-xyz format or as an input le for
Quantum Espresso51 (an example for MoS2 is included in
Section 2 of the ESI†).

Firstly, the unit cell of the 2D material is read from the input
le, the unit vectors are dened and the angle 4 is calculated.
The atomic positions within the unit cell are stored. The user
then inputs the (n,m) chiral indices of the desired NT, which is
used by the program to build the chiral vector.

The program looks for a T that satises (1) being perpen-
dicular to C and (2) having integer components x and y (in such
a way that the translational vector, when folded, lands exactly
on the origin vertex of another unit cell). For a general lattice
with angle 4, the following relation was found between x and y,
satisfying both requirements for a given chiral angle q:

y

x
¼ nja1j2

mja2j2
sinð4� qÞcosð4� qÞ

sinðqÞcosðqÞ (1)

The program then nds integer solutions for x and y. Since
eqn (1) has an innite number of solutions, the program orders
them according to the magnitude of the corresponding T vector
and uses the (x, y) pair that minimizes jTj. For zigzag and
armchair nanotubes where n or m might be zero, the following
relations should be used:

� When n = 0:

y

x
¼ ja1j

ja2j cosð4Þ (2)
© 2024 The Author(s). Published by the Royal Society of Chemistry
� When m = 0:

y

x
¼ ja1j

ja2jcosð4Þ (3)

In general, for arbitrary 4 and ja1j s ja2j, eqn (1) does not have
exact integer solutions, so the program nds approximate
integer solutions with an error eT which can be tuned by the
user (default eT= 0.025). Variations of eT lead to nding an (x, y)
pair faster or slower, yielding bigger or smaller (x, y) pairs for
a given pair of chiral indices (n, m).

However, for cells where ja1j = ja2j and 4 = 60° (E.g.: CNTs
andMoS2 NTs), eqn (1) does have exact integer solutions, and in
fact the relation simplies greatly to the well known equation:3

y

x
¼ 2nþm

2mþ n
(4)

In orthorhombic unit cells like phosphorene or bipheny-
lene,40,55 4 = 90° and thus eqn (1) also simplies neatly to
produce the following relation:

y

x
¼ nja1j2

mja2j2
(5)

For generality, the program always uses eqn (1)–(3), which
yield the same results.

Aer calculating the translational vector, the program
creates an array of atoms following the distribution of the unit
cells in the lattice. This array is of dimensions (n + x + 2)ja1j in
the a1 direction, and (m + y + 2)ja2j in the a2 direction, corre-
sponding to the shaded area in Fig. 1b. It would be sufficient for
this array to only have dimensions (n + x)ja1j and (m + y)ja2j
(unshaded area in Fig. 1b), as the ribbon ts exactly inside this
area, but one more cell is added in each direction for redun-
dancy in case the unit cell has atoms very close to or on the
boundary of the cell.

The array is rotated (4 − q)° counter-clockwise so that C lays
horizontally and then the 2D nanoribbon is cut out of this array,
with dimensions specied by jCj and jTj (Fig. 1b). The chiral
vector's magnitude jCj also denes the peripheral length of the
NT, so that the radius rc is given by:

rc ¼ jC j
2p

(6)

Aer generating the NR and calculating the radius, the
program rolls the NR into a NT. There is also an option within
the program to just build the NR, which is useful for studies
focusing on the properties of nanoribbons. This is a fairly
simple process for 2D materials with only one layer, like CNTs
or BNNTs, but for multi-layered materials like PNTs or MoS2
NTs, we have to take into account the distribution of atoms
along the a3 direction. For multi-layered materials, atoms are
shied so that they are distributed symmetrically about
a central plane (blue dashed line in Fig. 2c). This plane is

dened by z ¼ ja3j
2
. This central plane will become the central
Nanoscale Adv., 2024, 6, 79–91 | 81



Fig. 2 (a) Example of a chiral nanoribbon (n, m) = (1, 12) made out of phosphorene, and the ribbon has already been rotated so that C is
horizontal. (b) Parameters of the chiral NT rolled from the nanoribbon. Z is the height of the nanotube which equals the magnitude of its
translational vector. X and Y represent the size of the box surrounding the nanotube. (b) Supercell of the chiral NT, where Z is its height, equal to
jTj. X = Y are the parameters of the supercell's base. (c) Side view of the unfolded nanoribbon (top) and cross section view of the resulting NT
(bottom) showing the central plane (blue dashed line) and the central circumference (blue solid circle), respectively.
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circumference in the NT (blue solid circle in Fig. 2c). This
means that anything in the central plane will have the ‘proper’
radius given by eqn (6). The radius corresponding to each atom
ri is given by its z coordinate (zi):

ri = rc + (zi − zc) (7)

where zc is the chosen value of z for the central plane (defaults to

zc ¼ ja3j
2
), so that any atom that lies above the central plane will

have a larger radius when the NT is generated, and any atom
below the central plane will have a lower radius, as shown in
Fig. 2c. Eqn (7) works so that the distance between layers in the
rolled NT is the same as the distance between layers for the 2D
material. This also has the effect of ‘spreading out’ the atoms on
the outer layers and compressing the inner layers. The value of
zc can be chosen by the user so that certain layers of the 2D
materials or certain regions of it have the proper radius, while
the rest of it is expanded/compressed.

Because the a3 component is usually unimportant in the
study of 2D materials and usually le as a big number so that
other layers don't interact with each other, the unit cell given as
input for the program does not have to be centred around the z
= ja3j/2 plane. The program will automatically centre the atoms
in the cell around that plane.

Aer rolling the nanotube, the program outputs the coordi-
nates of each atom in the special-xyz format (see example in
Section 2 of the ESI†). It also outputs the total number of atoms
and the parameters of the nanotube: its central diameter, outer
and inner diameters, its height Z (the magnitude of its trans-
lational vector) and X and Y parameters, which indicate the size
of the box surrounding the nanotube central diameter, shown
in Fig. 2. Note that Zmay not be equal to the z coordinate of the
highest atom, but rather it is the height of the NT unit cell.

Since the program generates the translational vector's
indices (x, y)/ T, it is also able to compute easily other relevant
parameters and quantities such as the number of lattice unit
cells (the number of hexagons for CNTs) N, the surface area of
the nanotube ANT, and the symmetry vector R. Since the ribbon
82 | Nanoscale Adv., 2024, 6, 79–91
is delimited by the chiral vector C and the translational vector T,
which are perpendicular, its area and thus the area of the NT
will be given by:

ANT = jC × Tj = jC‖Tj (8)

Note that this area represents the surface area corresponding
to the central plane of the ribbon/central diameter of the NT,
and the actual surface area of the complete NT may be bigger
because of the expansion of outer layers.

The number of unit cells N in the ribbon, and therefore in
the NT, is given by the ratio of the total area of the ribbon ANT
divided by the area of the unit cell. This ratio is given by:

N ¼ jC� Tj
ja1 � a2j ¼

jðna1 þma2Þ � ðxa1 � ya2Þj
ja1 � a2j /N ¼ mxþ ny

(9)

Any of the N unit cells forming the nanotube can be denoted
by a vector from the origin to its origin vertex. One such vector
which has the smallest component in the C direction is called
the symmetry vector R, shown in Fig. 2a, and is expressed in
terms of the lattice unit vectors:10

R = pa1 + qa2 (10)

where p and q are integers and do not share a common divisor.
By the requirements imposed on R (minimizing R$C and

pointing directly to a unit cell within the ribbon), p and q are
uniquely determined10 by

xq + yp = 1, (1 < mp − nq # N) (11)

The program uses eqn (11) to nd p and q and thus have the
components of the symmetry vector R. The position of any other
unit cell within the NT can be expressed in terms of a multiple
of the symmetry vector iR, where i is an integer from 1 to N.
When iR goes out of the ribbon supercell, the vector is shied to
lie within the supercell using a translation by an integer number
© 2024 The Author(s). Published by the Royal Society of Chemistry
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of C or T vectors, using periodic boundary conditions. As such,
the vector NR returns to the origin and (N + k)R = kR.

Viewed from another perspective, if the NT is extended
beyond its unit cell through the T direction, then the multiples
iR will point to the ith lattice unit cell, possibly on another NT
supercell. Thus, the vector R consists of a combination of
a rotation j around the NT axis and a translation s in the axial
direction (the T direction), as shown in Fig. 3a. Therefore,
applying N times R results in a full rotation around the NT
combined with a translation of an integer number M of unit
cells along the axial direction, pointing to a point in the NT
identical to the origin, as shown in Fig. 3b.

The symmetry vector can therefore be completely dened by
its indices (p, q), like C and T, or by the parameters (s, j).

The translation s across the T direction is given by the
projection of R on T, and it can be shown that:

s ¼ R$T

jTj ¼ jR� Cj
jCj ¼ ðmp� nqÞjTj

N
(12)

It can easily be seen from eqn (12) and the restrictions on p
and q from eqn (11) that s will always be a fraction of jTj, as
expected.

The angle of rotation j around the NT axis is proportional to
the projection of R on the chiral vector C, which means that eqn
(11) also minimizes j. This angle is given by:

j ¼ 2p

jCj
R$C

jCj ¼ 2p

jCj
jR� Tj
jTj ¼ 2pðxqþ ypÞja1 � a2j

jC� Tj

And using eqn (9) and (11),

j ¼ 2p

N
(13)

Therefore, Nj = 2p, which shows that repeating the symmetry
vector N times returns you to the origin, only displaced vertically
by Ns = MjTj (as shown in Fig. 3b), where M is an integer given
Fig. 3 (a) Schematics of a NT unit cell showing the folded nanoribbon
and its now circular chiral vectorC alongwith the translational vector T
parallel to the NT axis. The symmetry vector R is shown with its
component in the T direction s and the rotation around the NT axis j.
(b) M nanotube unit cells joined together through the shared NT axis.
The R vector is shown extended N times so that it wraps around the
NT, ending up on a point equivalent to the origin O.

© 2024 The Author(s). Published by the Royal Society of Chemistry
by M = mp − nq. As stated earlier, since the program generates
the translational vector's indices (x, y), it can print on-demand
the NT parameters ANT, N, (p, q) / R and (s, j) / R using
eqn (8), (9) and (11)–(13). All of these parameters are useful for
the theoretical prediction of cutting lines and therefore the
electronic properties of NTs and their characteristics in recip-
rocal space, which we propose as future work.
4 Results

First, we use black phosphorene nanotubes as an example to
illustrate the main attributes of the code. The input le con-
taining the unit cell of phosphorene is in the special-xyz format
following its description in ref. 56:

where the lattice parameters come from DFT calculations in
ref. 41. These are the only input lines that the program needs in
order to build any chiral or achiral NT desired from this
particular material. All the parameters are given in Å.

Fig. 4a includes an armchair phosphorene NR of indices (n,
m) = (10, 0), and its cell has 40 atoms and jTj = 3.3 Å; however,
for visualization purposes, the NT shown in Fig. 4a is 5 times
the repetition of the unit cell along the NT axis. This PNT has in
total 200 atoms, a height of Z = 16.5 Å and a central radius of rc
= 7.35 Å. The generation of the coordinates of 5 unit cells is also
a feature of the program. Fig. 4b presents a zigzag PNT with
indices (0,10), and its PNT unit cell has 40 atoms as well, with
a height of jTj = 4.62 Å, and it is repeated 3 more times along its
axis to give a total of 160 atoms, a height of Z = 18.48 Å and
a central radius of rc = 5.25 Å. Since these are armchair/zigzag
and the phosphorene unit cell is orthorhombic, eqn (1) has
exact integer solutions and so the error eT = 0.

In Fig. 4c, a (n, m) = (9, 6) chiral PNT is presented, corre-
sponding to a chiral angle of q = 64.54°. This specic chirality
was used because it has an approximate solution of x = 1, y = 3
for the translational indices, with an error of eT = 0.02. There-
fore, the NT unit cell is sufficiently small, with only 135 atoms
and a height of Z = 10.92 Å. Note that this is not in agreement
with eqn (9), which predicts that the NT supercell has N = mx +
ny = 6 + 27 = 33 unit cells. Since the unit cell has 4 atoms, this
would mean there are 33$4 = 132 atoms. However, this doesn't
take into account the error found in eqn (1) when calculating
Nanoscale Adv., 2024, 6, 79–91 | 83



Fig. 4 Schematics of three black phosphorene NTs are shown through orthographic projections in transversal (center) and longitudinal views
(right) along with their respective nanoribbons (left): (a) an armchair PNT with indices (10,0), (b) a zigzag PNT (0,10), and (c) a chiral PNT with
indices (9,6).
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the values for x and y. A function within the program was used
to look for this NT; the function searches for chiral NTs, the
dimensions of which are small enough so that they can be easily
studied. Like for the previous ones, in Fig. 4c, the NT is repeated
1 time along its axis to yield a total of 270 atoms, with Z = 21.85
Å and a central radius of rc = 7.33 Å. This chirality was also
chosen because it has a similar radius to the other two PNTs.

With an in-built function of the program, one can look for
NTs of a selected radius or diameter, instead of looking for
a specic (n, m) pair. The program goes through all combina-
tions of n and m (up to a user-customised limit) and calculates
their radii with eqn (6). It then prints out those combinations
that give a radius similar to the wanted radius, up to an error er.

In Table 1 we present the translational vector and the NT
parameters of a few chiral PNTs to illustrate the capabilities of
the program.
Table 1 Central diameter (dc), chiral angle (q), number of unit cells in the N
y) for a small set of chiral PNTs

C(n, m) NT parameters
NT size
(eT = 0.025)

n m dc (Å) q (deg.) N Z (Å)

6 7 11.49 50.19 51 21.55
9 7 15.14 60.95 237 18.91
10 4 15.29 74.05 218 17.13
10 13 20.07 47.12 226 13.54
14 9 22.66 65.34 205 10.92

84 | Nanoscale Adv., 2024, 6, 79–91
As explained before, since eqn (1) in general does not have
exact integer solutions, the program looks for approximate
solutions up to an error eT. To be more specic, eT represents
themaximum accepted difference between a non-integer x (or y)
value that satises eqn (1) and the closest integer to it. It
therefore has units relative to the size of the unit cell vectors,
e.g., if eT = 0.2, then the translational vector would be off by
a maximum value of ja1j$ eT z 0.9 Å. eT is a user-customisable
parameter, which denes the allowed error, and thus increasing
the error will yield more solutions (and smaller solutions), but
those solutions will in general be farther from being exact. The
two columns in Table 1 include two different values of eT. It is
clear that decreasing the accepted error from eT = 0.025 to eT =
0.01 makes several (n, m) pairs not suitable for study due to the
gigantic proportions of the corresponding NT unit cells. This is
better illustrated in Fig. 5, where four chiral PNTs were
T supercell (N), height of the NT unit cell (Z) and translational vector (x,

T(x, y)
(eT = 0.025)

NT size
(eT = 0.01)

T(x, y)
(eT = 0.01)

x, y N Z (Å) x, y

3,5 427 180.42 25,42
2,5 2968 237.83 25,63
1,5 2120 168.17 10,49
2,3 7300 441.32 65,98
1,3 4137 221.49 20,61

© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 Plot of the size of nanotubes (its height, jTj) vs. the error eT for
several chiral PNTs. The dashed line represents the default value of the
program eT = 0.025.
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generated with different errors eT. One can see clearly that
increasing the error decreases the size of the NT. The program
has eT = 0.025 as default, yielding moderately sized NTs with
high precision. However, as explained, this setting is user-
customisable and it is recommended to tune it for every mate-
rial and purpose. For example, we recommend decreasing the
accepted error when working with CNTs, because these have
suitable exact solutions for (x, y) and having a large eT returns
approximate answers, especially for large n + m and for near-
armchair CNTs where (n, m) = (n, n ± 1). Setting the error to
Fig. 6 Plots of the number of atoms for all chiral and achiral nanotub
SWCNTs, (b) PNTs, (c) MoS2 NTs and (d) Ti3C2 NTs. In a, c, and d, those N
with g.c.d = 2 in green, and those with g.c.d = 3 in blue. For b, the serie
respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
eT = 0.01 yields results that reproduce exactly those of Mar-
uyama8 in the translational indices, chiral angle, diameter, and
number of hexagons of hundreds of chiral and achiral CNTs. In
fact, the agreement with Maruyama's results was an important
benchmark to achieve in order to validate the code.

Further comparison with Maruyama's results8 was done by
looking at the relation between the nanotube size (the number
of atoms or the number of unit cells in its supercell) and radius.
The results are presented in Fig. 6, where there are 4 graphs
showing the number of atoms (on a logarithmic scale) in every
nanotube (chiral and achiral) with n, m < 30, ordered by their
radius for different materials, including CNTs, PNTs, MoS2 NTs
and Ti3C2 NTs. In Fig. 6a, we were able to reproduce exactly the
patterns from the literature8 for CNTs. The results for the
number of atoms were produced through completely general
methods, using eqn (1) and the steps explained above to create
the NT, and then counting how many atoms were in the nal
structure. Setting eT= 0.01, these results matched perfectly with
theoretical results from eqn (4) and (9), and produced the
patterns shown in Fig. 6a.

Following the same entirely general procedure, results for
MoS2 NTs and Ti3C2 NTs were obtained and are presented in
Fig. 6c and d, respectively. They share the same patterns as for
CNTs, as expected, since all have hexagonal unit cells. This
specic lattice structure distinguishes precisely between those
NTs having (n, m) pairs where n and m are coprime, and those
where the greatest common divisor (gcd) of n and m is another
number. The distinction is clear in Fig. 6a, c and d, where these
es in the range n, m < 30 vs. their radius for 4 different materials: (a)
Ts with n, m pairs which are coprime are highlighted in yellow, those

s of NTs with n/m = 1 and n/m = 2 are highlighted in yellow and blue,

Nanoscale Adv., 2024, 6, 79–91 | 85



Nanoscale Advances Paper
NTs have been highlighted in yellow, those with a gcd = 2 in
green, and those with a g.c.d = 3 in blue. For hexagonal unit
cells, whether n − m is divisible by 3 is also an important dis-
tinguishing factor in the electronic properties of NTs, and those
NTs that do not have this divisibility criteria (and are coprime)
form the upper curve in Fig. 6a, c and d.

However, for PNTs (Fig. 6b) the same pattern does not
emerge because they do not share the same type of unit cell. For
PNTs, the main feature is n/m, as can be seen directly from eqn
(5). This creates a different pattern for the PNTs, exemplied by
the yellow and blue curves in Fig. 6b, which represent those NTs
with n/m = 1 and n/m = 2, respectively.

In all four cases, armchair and zigzag NTs are all conned to
a relatively small number of atoms compared to chiral NTs. This
is due to all zigzag and armchair NTs of a certain material
having the same height (same translational vector) regardless of
their radius. Therefore, their increase in size comes only from
their radius in a linear tendency, and they stay small compared
to their chiral counterparts.

To visualise how the number of atoms in a NT supercell
depends on the (n, m) pair, in Fig. 7 we present two plots of the
number of atoms corresponding to all (n, m) pairs with n, m <
50. CNTs (Fig. 7a) show a periodic and size increasing behaviour
as n and m increase. The pattern, besides its beauty, allows the
line for n = m (armchair) to be distinguished, which stays with
a small number of atoms. The plot is perfectly mirrored around
the armchair line because of the symmetry in CNTs (and other
materials with hexagonal unit cells as MoS2), where (n, m) = (m,
n). Note that those NTs around this line (near-armchair) have
a large number of atoms. On the other hand, in Fig. 7b, PNTs do
not present a periodic behaviour. However, lines corresponding
to n/m = 1 and n/m = 2 can be distinguished, along with the
general increase in NT size as n and m increase.

All of these results were calculated using the code and setting
the error to eT = 0.01 (eT = 0.001 for Fig. 7a). This yielded some
NTs with thousands of atoms in their supercell, as can be seen
in Fig. 6, but gave much more exact results for the desired
purpose. Using the default error (0.025) would give much
smaller NTs, which are more easily studied using other
Fig. 7 Plot of the number of atoms corresponding to each (n, m) pair fo
atoms in the CNT supercells and is plotted in a plane where the x and y
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computational tools, but would give less accuracy for these
results.

The lack of precision in the values of x and y results in
a slightly altered geometry on the NTs. Since the purpose of the
program is to geometrically generate NT coordinates for several
2D materials, so that these coordinates can be used in further
computational studies and simulations, we advise to rst relax/
optimise the structures obtained by the program, so that these
slight inaccuracies will be ultimately negligible. The error also
impacts other parameters, which depend on x and y, such as N,
R and its components (p, q) or (s, j), whose calculated values
may not be completely accurate.

Another source of geometric alteration we have talked about
is the different radii of different layers of the same material,
where atoms above the central plane will be spread out and the
ones below the central plane will be compressed. This
compression/expansion changes the interatomic distances of
atoms in each layer, introducing positive/negative stress within
the structure. To exemplify the construction of multilayered
NTs (MLNTs) (which is different than the commonly used
acronym MWNTs for multiwall CNTs) and features in them, we
will use MoS2 with 3 atomic layers, and the MXene Ti3C2, with 5
atomic layers, and the results will be compared against CNTs
and PNTs, with 1 and 2 atomic layers respectively. All the input
les used are in Section 1 of the ESI.†

In Fig. 8, we present four graphs with the distance to the rst
and second neighbours of the outermost layer for all NTs with n,
m < 30 for different materials, including CNTs, PNTs, MoS2 NTs
and Ti3C2 NTs, materials with 1, 2, 3 and 5 atomic layers
respectively. Using the program allowed us to include all chiral
NTs in this range, as well as the usual zigzag and armchair NTs,
making certain patterns more obvious to nd. One can see from
Fig. 8 that most NTs present some change in the distance to the
1st and 2nd neighbours due to the curvature and that this
behaviour depends heavily on the radius of the NT.

NTs generated from materials with more than one atomic
layer present an increased distance to the 1st and 2nd neigh-
bours as expected due to the outermost layer being expanded.
For these NTs with more than one layer, the increase in the
distance depends on the direction towards the 1st and 2nd
r n, m < 50 for (a) CNTs and (b)PNTs. Color represents the number of
axes represent the chiral indices n and m, respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 8 Plots of the 1st and 2nd neighbours of the outermost atomic layer for all the chiral and achiral nanotubes in the range n, m < 30 vs. their
radius for 4 different materials: (a) SWCNTs, (b) PNTs, (c) MoS2 NTs and (d) Ti3C2 NTs. In the 4 cases, the nanotube series (8, m) and n + m = 8
were highlighted in red and purple, respectively. The insets show atomistic models to illustrate each NT family.
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neighbours relative to the NT axis. If the distance to a neighbour
is directly in the direction of the NT axis, then the curvature will
not change this distance as the curvature is present only in the
chiral vector's direction. This behaviour can be seen in the 1st
neighbours of armchair MoS2 NTs and armchair Ti3C2 NTs,
which remain constant as the radius increases, as shown in
Fig. 8c and d, respectively. This also occurs for the 2nd neigh-
bours of armchair PNTs and of zigzag CNTs. SWCNTs, as shown
in Fig. 8a, show a different behaviour as expected due to being
a single layer, where the distance falls very slightly as the radius
decreases, and beyond r z 10 Å every NT has a typical inter-
atomic distance for graphene (1.42 Å).

On all graphs from Fig. 8 patterns emerge for different series
of NTs. Those NTs with chiral indices (n, m) sum to the same
number, and form trends in a curve with a high slope (e.g. (8,0),
(4,4), (3,5), (2,6) and (1,7)), because they have a similar radius, as
shown in Fig. 8, where the n + m = 8 families have been high-
lighted in red. Out of the 4 materials presented, phosphorene is
the only one to have a rectangular unit cell with ja1j s ja2j,
which effectively means that the NT characterized by the chiral
indices (n, m) is completely different from the (m, n) NT. This
splits the vertical trend into two curves, each corresponding to
armchair-like NTs (n > m) or to zigzag-like NTs (m > n), and they
meet at the point where n=m (in this case, where n=m= 4), as
shown in Fig. 8b.

Another pattern can be found for all four materials for NTs
sharing the same n or m. This is exemplied in Fig. 8 where the
series (8, m) has been highlighted in purple, forming an almost
horizontal curve, which is mirrored around the curve dened by
© 2024 The Author(s). Published by the Royal Society of Chemistry
the 1st neighbours of zigzag NTs (highlighted in orange). We
note that all the 1st neighbours of chiral and armchair NTs are
situated below the orange curve of zigzag NT 1st neighbours. On
the other hand, all 2nd neighbours are located above this
orange curve, Fig. 8. A zoomed-in version of these plots is
included in Fig. 1 of the ESI,† in which the regions of series n +
m = 8 and (8, x) are amplied.

It should be noted that these results were obtained prior to
any relaxation of the structures and were calculated purely from
the geometric structure given as output by Chiraltube. The
relaxation of the generated structures is briey explored in the
following section for four phosphorene nanotubes. However,
a systematic relaxation and calculation of the electronic struc-
ture of full nanotube families is proposed as future work.
4.1 Electronic properties of phosphorene nanotubes

As a proof of concept, electronic structure calculations with
Quantum Espresso were performed on four phosphorene
nanotubes: two with chiral indices (4,8) and (6,6), and also one
armchair NT (7,0) and a zigzag NT (0,10). Black phosphorene
was selected for the calculations because its unit cell is not
hexagonal and it consists of 2 atomic layers, representing
important variations in contrast with conventional cells as that
of CNTs and thus representing the utility of the proposed
program. These PNTs were selected with a relatively similar
radius 5 < r < 6 Å, and with a relatively small number of atoms
(between 28 and 72 atoms) in order to reduce computational
costs (again, using built-in functions of the program).
Nanoscale Adv., 2024, 6, 79–91 | 87



Table 2 Properties of geometry-optimized and electronic structure calculations for phosphorene nanotubes with the chirality (C(n,m)), central
diameter (dc) and chiral angle (q), number of atoms (N) and initial height (Z), PNT total energy (ET), % change of dc and Z after relaxation, and
bandgap (Eg)

C(n, m) Parameters Initial size ET/atom D% Eg

Classication n m dc (Å) q (deg) N Z (Å) (eV) dc Z (eV)

Chiral 4 8 10.26 34.99 48 5.68 −19.0823 5.82 9.02 Metallic
Armchair 7 0 10.29 90 28 3.30 −19.0969 7.68 0.16 0.27
Zigzag 0 10 10.50 0 40 4.62 −19.0895 12.62 7.33 Metallic
Chiral 6 6 10.84 54.46 72 8.06 −19.0915 9.59 −0.09 0.42
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The atomic coordinates generated by the program provide
the input to the ab initio calculations. Firstly, the atomic coor-
dinates and the length of the z dimension of the supercell were
allowed to fully relax. Table 2 includes the characteristics of
these PNTs before geometry relaxation, and the effect of the
relaxation on their diameter and height. PNTs (7,0) and (6,6)
present a negligible adjustment of the nanotube height, while
NTs (4,8) and (0,10) have an increment of 9% and 7.3%,
respectively. All NTs had their (central) diameters increased in
the range of 5–12%. The chiral (4,8) PNT had the lowest increase
in the diameter of 5.82%, while the zigzag (0,10) had the highest
increase, with 12.62%. Interestingly, within this small sample of
the 4 PNTs, the zigzag (0,10) and the chiral (4,8) present a higher
strain when folded as NTs, and although their original supercell
presents high initial stresses along Z, relaxation was success-
fully achieved in all cases. The four PNTs present a very similar
total energy (ET) per atom, with variations in the thousandth
of eV; all nanotube supercells are equally stable.

Secondly, aer obtaining the relaxed structures, the band
structures were calculated and are presented in Fig. 9. Notice
that armchair (7,0) and chiral (6,6) PNTs are semiconducting
with indirect bandgaps (Eg) of 0.27 eV and 0.42 eV respectively,
while the chiral (4,8) and the zigzag (0,10) PNTs presented
a metallic character.
Fig. 9 Band structure of phosphorene nanotubes, with a metallic
character for (4,8) and (0,10), and a semiconductor structure for (7,0)
and (6,6), and their bandgaps are 0.27 eV and 0.42 eV, respectively.
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5 Discussion

The large number of different NT (especially chiral NT) cong-
urations that could be explored having at hand their atomic
coordinates could unveil either interesting specic properties of
an individual NT with a particular (n, m), or trends in a physical
property of a family of NTs. For example, it has been experi-
mentally found that the broken inversion symmetry of chiral
WS2 NTs endows them with a bulk photovoltaic effect.57 An
approach to this phenomenon from the theoretical point of
view could shed light onto which specic chirality would
enhance this effect. Calculating the electronic structure of the
relaxed coordinates obtained from our program could unveil
similar properties in other TMD NTs. On the other hand,
experimental evidence has shown that BNNTs present a chiral
distribution that not only includes armchair or zigzag NTs.58

This evidence could be corroborated with DFT calculations of
the cohesion energy of these nanotubes, hopefully matching the
experimental evidence.

Some interesting features could be rst studied theoretically,
for example, nding the smallest (in radius) NT possible of
a certain material through DFT calculations and corroborating
them with experiments. Going back to the CNT archetype,
SWCNTs, their minimum diameter proposed to be structurally
stable and characterised by transmission electronmicroscopy is
the (2,2) armchair SWCNT with a diameter∼3 Å13. Thus, relying
on a set of atomic coordinates for any 2Dmaterial, their NT with
the minimum diameter could be predicted.

There are even more options considering functionalised 2D
materials leading to functionalised NTs. Theoretical calcula-
tions have been done for hydrogenated graphene (graphane)59

and hydrogenated BN.44 Their respective functionalised NT
coordinates are easily obtained by the program presented here,
allowing the calculation of any functionalised NT, not only with
H, but also with any desired functionalisation.

As graphene, phosphorene is also an interesting and well
studied 2D material, existing in one of two allotropes, blue and
black phosphorene. The last one presents an Eg = 1.0 eV at G60

and its tunability through doping has been reported.61 PNTs in
their zigzag and armchair congurations have been re-
ported,29,30 but the properties of their chiral NTs remain
unknown, presenting an area of opportunity now made readily
available through the use of this tool as shown in the short
example of Table 2.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Other stars among 2D materials are TMDs. From the early
studies of Tenne et al., the issue of chiral NTs, analogous to
chiral CNTs, has been stated.62 The chirality of experimental
TMD NTs is ambiguous in some experimental studies;35,63–65

however high resolution transmission electron microscopy and
electron diffraction studies have proved the presence of chiral
NTs.57,66,67 Some remarkable properties have been proven in
chiral TMDNTs. For example asymmetric superconducting
transport has been proved in chiral WS2 NTs.68 Regarding TMD
NTs, some theoretical studies have focused on a tiny sample of
them45 and also on self-scrolling MoS2,69 which are similar to
NTs. It has been suggested that single-walled TMDs have elec-
tronic properties that depend on their chirality: zigzag TMDNTs
present a direct band gap, resembling their 1H 2D forms, and
armchair TMD NTs are similar to the 2H 2D structures;34

however the electronic structure of their chiral congurations is
an open problem. Counting with accurate atomic positions of
any chiral TMD NT will open the eld to high-throughput
calculations, allowing experimental data to be proved and
expanding the theoretical results that are currently only avail-
able for a limited number of NTs.

Perhaps the most promising avenue is the prediction of Van
Hove singularities, and the interband energy transition for any
nanotube, as has been done with SWCNTs.16,70 Knowing the
electronic conguration of a 2D material, and their reciprocal
lattice geometry, could bring forward a set of Kataura-like plots
for many other 2D materials rolled into 1D NTs. Multilayered
materials may face Eg shrinkage due to the stress accumulated
in the inner and outer layers.

6 Conclusions

Most current theoretical research on nanotubes focuses on the
structure of well-known materials and is usually limited to the
study of achiral NTs, especially for more complex materials.

The program here presented, Chiraltube, is a tool that allows
the expansion of current research of 2D materials into 1D chiral
NTs of the same materials. It does this by generalising the
concepts learned from the construction of CNTs and applying
them to an arbitrary 2D unit cell, thus working with any
conceivable 2D material. Knowing the unit cell of a certain 2D
material, one can now immediately generate any number of NTs
from that material with any chirality desired. The capability of
the code was conrmed by comparing the resulting parameters
and structures to those in the literature, mostly with CNTs but
also with a few achiral examples of PNTs and MoS2 NTs. Addi-
tionally, ab initio calculations were performed on generated
PNT structures, proving their stability aer a successful relax-
ation simulation and extracting important characteristics from
these NTs such as their electronic bandgap.

A user-customised error parameter allows for the generation
of shorter nanotube supercells for easier study in further ab
initio calculations, at the expense of slight geometric alterations
which might affect the overall stability of the structure.

One can easily obtain important parameters of generated
NTs like their height, radius, translational vector, symmetry
vector or the number of unit cells in the NT supercell. This
© 2024 The Author(s). Published by the Royal Society of Chemistry
provides immediate understanding into the trends and main
characteristics of NTs of a certain material, exemplied in this
work by the analysis of the number of atoms and the inter-
atomic distances of the 1st and 2nd neighbours on the outer-
most layers of PNTs, MoS2 NTs, Ti3C2 NTs and CNTs.

The main advantages are anticipated to result from the
employment of Chiraltube to produce nanotube coordinates
that will be a source of information for future research and
calculations.

Future work includes calculations of the reciprocal space
from the generated structures, in order to give a rough predic-
tion of the electronic properties of the nanotube families purely
from a geometric standpoint. Additionally, with the use of
Chiraltube, there is an opportunity for a larger project that gives
a quick relaxation to the generated NTs and determines their
stability to form a massive database of stable nanotube struc-
tures of different materials and make it freely available online.
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