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Abstract

High-throughput gene expression data are often obtained from pure or complex (heteroge-

neous) biological samples. In the latter case, data obtained are a mixture of different cell

types and the heterogeneity imposes some difficulties in the analysis of such data. In order

to make conclusions on gene expresssion data obtained from heterogeneous samples,

methods such as microdissection and flow cytometry have been employed to physically

separate the constituting cell types. However, these manual approaches are time consum-

ing when measuring the responses of multiple cell types simultaneously. In addition,

exposed samples, on many occasions, end up being contaminated with external perturba-

tions and this may result in an altered yield of molecular content. In this paper, we model the

heterogeneous gene expression data using a Bayesian framework, treating the cell type

proportions and the cell-type specific expressions as the parameters of the model. Specifi-

cally, we present a novel sequential Monte Carlo (SMC) sampler for estimating the model

parameters by approximating their posterior distributions with a set of weighted samples.

The SMC framework is a robust and efficient approach where we construct a sequence of

artificial target (posterior) distributions on spaces of increasing dimensions which admit the

distributions of interest as marginals. The proposed algorithm is evaluated on simulated

datasets and publicly available real datasets, including Affymetrix oligonucleotide arrays

and national center for biotechnology information (NCBI) gene expression omnibus (GEO),

with varying number of cell types. The results obtained on all datasets show a superior per-

formance with an improved accuracy in the estimation of cell type proportions and the cell-

type specific expressions, and in addition, more accurate identification of differentially

expressed genes when compared to other widely known methods for blind decomposition of

heterogeneous gene expression data such as Dsection and the nonnegative matrix factori-

zation (NMF) algorithms. MATLAB implementation of the proposed SMC algorithm is avail-

able to download at https://github.com/moyanre/smcgenedeconv.git.

Introduction

Gene expression measurement technologies, for example, deoxyribonucleic acid (DNA)

microarray, have made it possible to conduct simultaneous expression measurements from
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thousands of genes on a genome-wide scale [1–4]. Gene expression data obtained from pure

samples, comprising of a single cell type, can be analyzed to yield a significant amount of infor-

mation. For instance, measuring gene expression levels in different conditions may prove use-

ful in medical diagnosis, treatment prescription, drug design [5, 6] and most importantly in

the identification of genes that are differentially expressed between groups of samples [7], such

as tumor versus non-tumor tissues [8].

However, in heterogeneous samples, where more than one cell types are present, drawing

any reasonable conclusion is a difficult task because each of the cell types in the sample will

contribute differently to the measured expression of a given gene [9]. In some cases, manual

methods such as laser microdissection (LMD) [10] and flow cytometry [11] are employed to

isolate cells of interest from the complex mixtures. In spite of that, there are some limitations

in using these techniques. For instance, they are very expensive and often come with low cell

throughput rate [12–14], resulting in a drastic reduction in the yield of biological contents.

In the literature, different computational methods have been proposed for the deconvolu-

tion of gene expression data from heterogeneous biological samples, and these methods can be

loosely grouped into two categories: either deterministic or probabilistic. Of the two, the deter-

ministic approach is more popular. For instance, in addition to the gene expression data, if the

information about the cell-type specific gene expression profiles is available, proportions of

cellular types can be estimated [15], for example, via linear regression [16–18], a very common

technique for analyzing biological data [19]. On the other hand, if in addition to the gene

expression data, cellular proportions are known, then with linear regression, cell-type specific

gene expression profiles can be estimated [7, 20, 21]. Further, [22–24] investigated the efficacy

of the nonnegative matrix factorization (NMF) algorithms [25, 26] for the “blind” deconvolu-

tion of gene expression data in the presence of additional constraints, for example, some prior

biological knowledge [22, 23]. Moreover, [27] proposed a probabilistic approach based on the

Markov chain Monte Carlo (MCMC) method, assuming an availability of a good initial esti-

mate of the cell type proportions. All the approaches mentioned so far, either deterministic or

probabilistic, made one or more assumptions about the availability, either precise or a rough

estimate, of the cell type proportions or the cell-type specific profiles. But in reality, often

times, all we have is the heterogeneous gene expression data.

In this paper, we propose a new probabilistic method, sequential Monte Carlo (SMC) sam-

pler [28–31] for static models to estimate the cell type proportions and the cell-type specific

expression profiles, given the heterogeneous gene expression data. Specifically, we model the

heterogeneous gene expression data using a Bayesian framework where the cell-type specific

expression profiles and the cell type proportions are the unknown model parameters. We seek

to approximate, in an efficient way, the posterior distributions of all the unknown model

parameters by a set of weighted samples (particles) from which their respective point estimates

can be obtained. Bayesian inference is an important area in the analyses of biological data

[32, 33] as it provides a complete picture of the uncertainty in the estimation of the unknown

parameters of a model given the data and the prior distributions for all the unknown model

parameters.

In particular, the SMC method is a class of sampling algorithms which combines impor-

tance sampling and resampling [34, 35]. More importantly, the SMC framework for static

models is very similar to the sequential importance sampling (resampling) (SIS) procedure for

dynamic models [34], the only difference being the framework under which the samples are

propagated and this results in differences in the calculation of the weights of the samples. In

general, SMC allows us to treat, in a principled way, any type of probability distribution, non-

linearity and non-stationarity [36, 37]. It is easy to implement and applicable to very general

settings. As noted in [28], SMC algorithms address some of the major shortcomings of the
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MCMC-based algorithms: (i) diagnosing convergence of a Markov chain (ii) requirement of

burn-in period, and (iii) MCMC algorithms getting trapped in local modes if the target distri-

bution is highly multi-modal. In addition, in big data analyses, unlike the MCMC approach,

SMC algorithms can be parallelized to reduce the computational time [28].

We compared the proposed SMC method with existing methods, including Dsection algo-

rithm in [27] that is based on the MCMC approach and the recently proposed probabilistic

nonnegative matrix factorization (PNMF) algorithm [38], a stochastic version of the determin-

istic NMF framework that takes into account the stochastic nature of the gene expression data.

Overall, in terms of the accuracy of estimates of cell type proportions, cell-type specific gene

expressions, and in addition, in the identification of differentially expressed genes, the pro-

posed method demonstrated a superior performance. More importantly, the proposed method

does not require that we have an initial estimate of the cell type proportions or the cell-type

specific expression profiles.

The remainder of this paper is organized as follows. In Section 2, we present the Materials

and Methods. In Section 3, we investigate the performance of the proposed method using sim-

ulated datasets artificially obtained from downloaded pure tissues expression profiles and het-

erogeneous (impure) samples downloaded from Affymetrix oligonucleotide arrays and GEO

NCBI websites, the set of data that have been employed to assess the performance of deconvo-

lution algorithms. Finally, Section 4 concludes the paper.

In this paper, we use the following notations:

1. p(�) and p(�|�) denote a probability and a conditional probability density functions,

respectively.

2. N ðm; l� 1Þ denotes the Gaussian probability density function with mean μ, precision λ and

variance λ−1.

3. Gamma(α, β) denotes the Gamma probability density function with shape parameter α and

rate parameter β.

4. Uða; bÞ denotes a uniform distribution with support x 2 [a, b].

5. x and xT denote a column vector and its transpose, respectively.

6. X and X̂ denote a matrix and its estimate, respectively.

Materials and methods

Let Y be an I × J gene expression matrix obtained from tissue samples with heterogeneous pop-

ulation, where I denotes the number of probes (or genes) in the measurements and J denotes

the total number of samples present. We assume that the number of cell types, K, in the sam-

ples is known and each sample has the same number of cell types present, but in varying per-

centages. Although, modeling the relationship between the expression value of pure and

mixed samples is not strictly linear, linearity has proved to be a reasonable and valid assump-

tion in gene expression deconvolution [7, 16, 27, 39]. As such, we follow the linear modeling

approach in analyzing the tissue samples. Denoting the indices of cell type, tissue sample and

gene by k, j and i, respectively, then the expression value of gene i in sample j is the sum of its

expressions in all K cell types, i.e.,

yij ¼
XK

k¼1

xikmkj þ eij; i ¼ 1; . . . ; I; j ¼ 1; . . . ; J; ð1Þ

Gene expression deconvolution
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where xik denotes the specific expression of gene i in cell type k, mkj denotes the proportion of

cell type k in sample j and eij is an additive Gaussian distributed noise with zero mean and pre-

cision λ (inverse of variance). Instead of one gene at a time, if all the genes are considered at

once, then (1) can be written in a matrix form as follows:

Y ¼ XMþ E; ð2Þ

where Y denotes the I × J matrix of gene expression measurement from heterogeneous sam-

ples, X denotes the unknown I × K matrix of expression levels of the genes in all the cell types

(pure cell type expression signatures), M denotes the unknown K × J matrix of cell type pro-

portions and E is the additive noise matrix of dimension I × J. Note that all elements of M are

non-negative and each column sums to 1.

The goal of the inference is to obtain an estimate of the unknown matrices X and M, which

are the cell-type specific signatures and the cellular proportions, respectively and in addition,

an estimate of the precision λ, given the heterogeneous gene expression matrix Y. To do this,

we define a data generating model, impose prior distributions on all the unknown model

parameter, derive the sequence of target distributions for all the model parameters and finally,

present the SMC algorithm that estimates, in an efficient manner, the posterior distributions

of all the unknown model parameters.

Likelihood function

As shown in (1), the data point for probe i in sample j i.e., yij, is modeled as a sum of the cell-

type specific expressions of probe i for all cell types, i.e. the ith row of matrix X, denoted by xi,:,

weighted by the proportions of all cell types in sample j, i.e., the jth column of matrix M,

denoted by m:,j plus an additive Gaussian distributed noise, eij i.e.,

pðyijjxi;:;m:;j; lÞ ¼ N ðxi;:m:;j; l
� 1
Þ ¼ N

XK

k¼1

xikmkj; l
� 1

 !

: ð3Þ

Further, if we assume independent and identically distributed (IID) measurements for the

data points in matrix Y, then the joint data likelihood function can be written as:

pðYjθÞ ¼
YI

i¼1

YJ

j¼1

pðyijjxi;:;m:;j; lÞ; ð4Þ

where θ = {λ, xik, mkj: i = 1, . . ., I, j = 1, . . ., J, k = 1, . . ., K} are the unknown parameters of the

model that will be estimated.

Prior densities for all model parameters

Here, we present the prior distributions for all the unknown parameters in the model in (4).

With the prior distributions accurately specified and with the model in (4), we can obtain the

sequence of target distributions for all the unknown model parameters.

Prior densities for the cell-type specific expressions. We model the specific expression

of gene i in cell type k, xik with a Gaussian distribution, i.e., xik � N ðmik; n
� 1
ik Þ, where μik and νik

are the mean and precision, respectively, and are assumed known [27, 38]. Gaussian distribu-

tion is preferred so as to make use of the property of conjugate priors, i.e., the sequence of tar-

get distributions will remain Gaussian given that the prior and the likelihood distributions are

Gaussian [40]. Detailed derivations of the sequence of target distributions and the choice of μik
and νik are discussed in S1 Supplementary Material.

Gene expression deconvolution
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Prior densities for the cell type proportions. We impose a Gaussian distribution on the

proportion of cell type k in sample j, mkj i.e, mkj � N ðmkj; n
� 1
kj Þ, where μkj and νkj are the mean

and precision, respectively, and are assumed known [38]. Although, other distributions can be

considered, surprisingly, Gaussian distribution performs well in our experiments. Detailed

derivations of the sequence of target distributions and the how μkj and νkj are picked are dis-

cussed in S1 Supplementary Material.

Prior density for the precision. Gamma prior is placed on the inverse of the noise vari-

ance (precision), i.e, λ * Gamma(α, β), with α and β assumed known. The choice of Gamma

prior distribution ensures that the sequence of target distributions for the precision parameter

will be Gamma distributions (conjugate prior property), given that the likelihood is a Gaussian

distribution [40]. Detailed derivations of the sequence of target distributions and the choice of

α and β are discussed in S1 Supplementary Material.

Sequential Monte Carlo samplers for Bayesian inference

General principle of SMC samplers. Before we introduce the SMC sampler algorithm for

gene expression decomposition, we will succinctly describe the general principle of SMC sam-

plers in Bayesian inference settings [28–30]. Denote the prior distribution, the likelihood func-

tion and the posterior distribution in a Bayesian inference setup as p(θ), p(Y|θ) and p(θ|Y),

respectively. Using the Bayes rule, the posterior distribution can be written as a function of the

prior distribution and the likelihood function as follows:

pðθjYÞ ¼
pðθÞpðYjθÞ

Z
ð5Þ

where Z =
R
Θ p(θ)p(Y|θ)dθ, a constant with respect to θ, is referred to as the evidence. With

SMC samplers, rather than sampling from the posterior distribution p(θ|Y) in (5), a sequence

of intermediate target distributions, fptg
T
t¼1

, are designed, that transitions smoothly from the

prior distribution, i.e., π1 = p(θ), which is usually easier to sample from, and gradually intro-

duce the effect of the likelihood so that in the end, we have πT = p(θ|Y) which is the posterior

distribution of interest [28, 29]. For such sequence of intermediate distributions, a natural

choice is the likelihood tempered target sequence [28, 41]:

ptðθÞ ¼
CtðθÞ
Zt

/ pðθÞpðYjθÞ�t ; ð6Þ

where f�tg
T
t¼1

is a non-decreasing temperature schedule with �1 = 0 and �T = 1, CtðθÞ ¼
pðθÞpðθjYÞ�t is the unnormalized target distribution and Zt ¼

R

Y
pðθÞpðθjYÞ�t dθ is the evi-

dence at time t.
Next, we transform this problem in the standard SMC filtering framework [34, 35] by defin-

ing a sequence of joint target distributions up to and including time t, f~ptg
T
t¼1

which admits πt
as marginals as follows:

~ptðθ1:tÞ ¼
C~ tðθ1:tÞ

Zt
; with C~ tðθ1:tÞ ¼ CtðθtÞ

Yt� 1

b¼1

Lbðθbþ1; θbÞ; ð7Þ

where the artificial kernels fLbg
t� 1

b¼1
are referred to as the backward Markov kernels, i.e.,

Ltðθtþ1; θtÞ denotes the probability density of moving back from θt+1 to θt [28, 29, 42]. How-

ever, it is often difficult to sample directly from the joint target distribution in (7). Instead,

samples are obtained from another distribution, known as the importance distribution, with a

support that includes the support of ~pt [34]. Thus, we define the importance distribution at
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time t, qt(θ1:t) as follows:

qtðθ1:tÞ ¼ q1ðθ1Þ
Yt

f¼2

Kf ðθf � 1; θf Þ; ð8Þ

where fKfg
t
f¼2

are the Markov transition kernels or forward kernels, i.e., Ktðθt� 1; θtÞ denotes

the probability density of moving from θt−1 to θt [28, 29].

Given that at time t − 1, we desire to obtain N random samples from the target distribution

in (7), but as discussed earlier, it is difficult to sample from the target distribution and instead,

we obtain the samples from the importance distribution in (8). Following the principle of

importance sampling, we then correct for the discrepancy between the target and the impor-

tance distributions by calculating the importance weights [34]. The unnormalized weights

associated with the N samples are obtained as follows:

~wn
t� 1
/

~pt� 1ðθ
n
1:t� 1
Þ

qt� 1ðθ
n
1:t� 1
Þ
¼

pt� 1ðθ
n
t� 1
Þ
Yt� 2

d¼1
Ldðθ

n
dþ1
; θn

dÞ

q1ðθ
n
1
Þ
Yt� 1

r¼2
Krð�

n
r� 1
; θnr Þ

ð9Þ

and the normalized weights are calculated as:

wn
t� 1
¼

~wn
t� 1XN

l¼1
~wl
t� 1

; n ¼ 1; . . .;N:

As such, the set of weighted samples fθn
1:t� 1

;wn
t� 1
g
N
n¼1

approximates the joint target distribution

~pt� 1. To obtain an approximation to the joint target distribution at time t, i.e, ~pt , the samples

are first propagated to the next target distribution ~pt using a forward Markov kernel

Ktðθt� 1; θtÞ to obtain the set of particles fθn
1:tg

N
n¼1

. Similar to (9), we then correct for the dis-

crepancy between the importance distribution and the target distribution at time t. Thus, the

unnormalized weights at time t are calculated as follows:

~wn
t /

~ptðθ
n
1:tÞ

qtðθ
n
1:tÞ

¼
ptðθ

n
t Þ
Yt� 1

d¼1
Ldðθ

n
dþ1
; θndÞ

q1ðθ
n
1
Þ
Yt

r¼2
Krðθ

n
r� 1
; θnr Þ

¼
ptðθ

n
t ÞLt� 1ðθ

n
t ; θ

n
t� 1
Þ
Yt� 2

d¼1
Ldðθ

n
dþ1
; θndÞ

q1ðθ
n
1
ÞKtðθ

n
t� 1
; θnt Þ

Yt� 1

r¼2
Krðθ

n
r� 1
; θnr Þ

¼
ptðθ

n
t ÞLt� 1ðθ

n
t ; θ

n
t� 1
Þpt� 1ðθ

n
t� 1
Þ
Yt� 2

d¼1
Ldðθ

n
dþ1
; θn

dÞ

pt� 1ðθ
n
t� 1
ÞKtðθ

n
t� 1
; θnt Þq1ðθ

n
1
Þ
Yt� 1

r¼2
Krðθ

n
r� 1
; θn

r Þ

ð10Þ

from (9), we have

~wn
t / ~wn

t� 1

ptðθ
n
t ÞLt� 1ðθ

n
t ; θ

n
t� 1
Þ

pt� 1ðθ
n
t� 1
ÞKtðθ

n
t� 1
; θnt Þ

;

from the definitions of πt and πt−1 in (6) and noticing that Zt and Zt−1 are constants with

Gene expression deconvolution
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respect to θnt and θnt� 1
, then

~wn
t / ~wn

t� 1

Ctðθ
n
t ÞLt� 1ðθ

n
t ; θ

n
t� 1
Þ

Ct� 1ðθ
n
t� 1
ÞKtðθ

n
t� 1
; θn

t Þ

¼ ~wn
t� 1
Wtðθ

n
t� 1
; θn

t Þ; n ¼ 1; . . .;N;

where f~wn
t� 1
g
N
n¼1

are the unnormalized weights at time t − 1, given in (9) and

fWtðθ
n
t� 1
; θnt Þg

N
n¼1

, the unnormalized incremental weights, calculated as

Wtðθ
n
t� 1
; θnt Þ ¼

Ctðθ
n
t ÞLt� 1ðθ

n
t ; θ

n
t� 1
Þ

Ct� 1ðθ
n
t� 1
ÞKtðθ

n
t� 1
; θnt Þ

; n ¼ 1; . . . ;N: ð11Þ

Resampling procedure. In the SMC procedure described above, after some iterations, all

samples except one will have very small weights, a phenomenon referred to as degeneracy in

the literature. It is unavoidable as it has been shown that the variance of the importance

weights increases over time [34]. An adaptive way to check this is by computing the effective

sample size (ESS) as follows: ESS ¼ 1=SN
n¼1
ðwn

t Þ
2

[43]. To avoid degeneracy, one performs

resampling when the ESS is significantly less than the number of samples, discarding the inef-

fective samples and then multiply the effective ones [37, 44]. In all our experiments, we per-

formed resampling when the ESS is less than N/10 [45]. The resampling procedure is briefly

summarized as follows:

• Interpret each weight wnt as the probability of obtaining the sample index n in the set

fθnt : n ¼ 1; . . . ;Ng.

• Draw N samples from the discrete probability distribution and replace the old sample set

with this new one.

• Set all weights to the constant value wnk ¼ 1=N .

Target distributions, forward and backward kernels specification for gene expression

deconvolution. In (6)–(8), we need to specify the exact form of the sequence of target distri-

butions fptg
T
t¼1

, the forward kernels, fKtg
T
t¼2

and the backward kernels fLt� 1g
T
t¼2

for the prob-

lem of gene expression deconvolution.

• Sequence of target distributions and forward kernels: As earlier discussed, we are interested

in the likelihood tempered target sequence in (6). Here, we present the sequence of target

distributions for all the parameters in the model presented in (4). Details of the derivations

are in S1 Supplementary Material. Define Y ijk ¼ Sk 0 6¼kxik0mk0j; then the sequence of target dis-
tributions for the cell type proportions are:

ptðmkjj�Þ ¼ N
Vt

kj

Ut
kj
;

1

Ut
kj

 !

;where Ut
kj ¼ nkj þ �tl

XI

i¼1

x2

ik;

Vt
kj ¼ mkjnkj þ �tl

XI

i¼1

yijxik �
XI

i¼1

Y ijkxik

 !

; k ¼ 1; . . . ;K; j ¼ 1; . . . ; J; t ¼ 1; . . . ;T;

ð12Þ

Gene expression deconvolution
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the sequence of target distributions for the cell-type specific expressions are given as:

ptðxikj�Þ ¼ N
Bt
ik

At
ik
;

1

At
ik

� �

;where At
ik ¼ nik þ �tl

XJ

j¼1

m2

kj;

Bt
ik ¼ miknik þ �tl

XJ

j¼1

yijmkj �
XJ

j¼1

Y ijkmkj

 !

; i ¼ 1; . . . ; I; k ¼ 1; . . . ;K; t ¼ 1; . . . ;T;

ð13Þ

and finally, the sequence of target distributions for the precision are given as:

ptðlj�Þ ¼ Gammað~a; ~bÞ;where ~a ¼ aþ
�tIJ
2

and

~b ¼ bþ
�t
2

XI

i¼1

XJ

j¼1

yij �
XK

k¼1

xikmkj

 !2

; t ¼ 1; . . .;T:
ð14Þ

The optimal forward Markov kernel, in the sense of minimizing the variance of the impor-

tance weights is Ktðθt� 1; θtÞ ¼ ptðθtÞ [28, 29]. In general, if πt is not available in closed form

(non-conjugate priors), then an MCMC kernel of invariant distribution πt will be used for

Kt (Metropolis-Hastings MCMC). Fortunately, in our model, we are able to compute the

sequence fptg
T
t¼1

analytically as shown in (12)–(14).

• Sequence of backward kernels: In order to obtain a good performance, the backward kernel

is optimized with respect to the forward kernel as this choice will affect the variance of the

importance weights. Hence, the following Lt is employed [28, 30]:

Lt� 1ðθt; θt� 1Þ ¼
ptðθt� 1ÞKtðθt; θt� 1Þ

ptðθtÞ
; ð15Þ

since it generally represents a good approximation of the optimal backward kernel when the

discrepancy between πt and πt−1 is small [29, 31]. Thus, the unnormalized incremental

weights in (11) become:

Wtðθ
n
t� 1
; θn

t Þ ¼
Ctðθ

n
t Þptðθ

n
t� 1
Þ

Ct� 1ðθ
n
t� 1
Þptðθ

n
t Þ

¼
pðθnt ÞpðYjθ

n
t Þ
�t pðθnt� 1

ÞpðYjθnt� 1
Þ
�t

pðθnt� 1
ÞpðYjθnt� 1

Þ
�t� 1pðθnt ÞpðYjθ

n
t Þ
�t

¼ pðYjθnt� 1
Þ
ð�t � �t� 1Þ; n ¼ 1; . . . ;N;

ð16Þ

where �t − �t−1 is the step length of the cooling schedule of the likelihood at time t. The deri-

vation of the exact analytical expression in (16) for the gene expression deconvolution prob-

lem is presented in S1 Supplementary Material.

Finally, since the unnormalized incremental weights in (16) at time t does not depend on the

particle values at time t but just on the previous particle set, the particles fθn
t g

N
n¼1

should be

sampled after the weights f~wn
t g

N
n¼1

have been computed and after the particle approximation

f~wn
t ; θ

n
t� 1
g has possibly been resampled [28].
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SMC sampler algorithm for gene expression deconvolution

1. Input:Heterogeneous gene expression matrixY, α, β, {μkj, νkj: k = 1, . . ., K,
j = 1, . . ., J}, {μik, νik: i = 1, . . ., I, k = 1, . . ., K}, and the temperature schedule
0 = �1 < �2. . .<�T = 1 (See the S1 Supplementary Materialfor the initialvalues).
2. Set t = 1
for n = 1: N
Take a samplefrom Gamma(α,β).
for k = 1: K
for j = 1: J
Take a samplefrom N ðmkj; n

� 1
kj Þ.

end
end
for i = 1: I
for k = 1: K
Take a samplefrom N ðmik; n

� 1
ik Þ.

end
end

end
Setwn

1
¼ 1=N; n ¼ 1; . . . ;N.

3. for t = 2: T repeatthe followingsteps:
• Computethe unnormalized weightsas followsusing(16):

~wn
t ¼ wn

t� 1
pðYjθt� 1Þ

ð�t � �t� 1Þ; n ¼ 1; . . . ;N:

.
• Normalization of the weights:

wn
t ¼

~wn
tPN

l¼1
~wl
t

; n ¼ 1; . . . ;N:

.

• Compute ESS ¼ 1=SN
n¼1
ðwn

t Þ
2 and resampleif ESS < N/10.

• Propagation of particles:
for n = 1: N
Take a samplefrom πt(λ|�) in (14).
for k = 1: K
for j = 1: J
Take a samplefrom πt(mkj|�) in (12).

end
end
for i = 1: I
for k = 1: K
Take a samplefrom πt(xik|�) in (13).

end
end

end
end

4. Computethe estimateof the parametersas follows:

θ̂ ¼
XN

n¼1

wn
Tθ

n
T ; ð17Þ

then the estimates of the cell type proportions matrix M̂, cell-type specific expression matrix

X̂ and the precision l̂ are obtained from θ̂ for further analyses (Note that each column of M̂
is re-scaled to sum to unity).
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Results

Ground-truth for variables

We assessed the performance of the proposed method, which we will refer to as the SMC

method, on both simulated dataset and datasets that contain real mixed samples. For ease of

exposition, denote Ytotal ¼ ½Y; ~Y�, where matrix Ytotal is the downloaded matrix of pure and

mixed gene expressions, matrix Y is the gene expression for the heterogeneous/mixed samples

and ~Y is the gene expression matrix for the pure samples (the expression profile of each sample

often come in multiplicity, e.g., technical replicates). First, we compared the estimates of the

cell types proportion and the cell-type specific expression matrices with some existing methods

and secondly, we went further to test the ability of the proposed method to identify differen-

tially expressed genes. Next, we present the “ground-truth” for all the unknown variables in

our analyses. Unless otherwise stated, all the datasets used in the analyses are not log

transformed.

Fig 1. Plot of average MAD for different sample size. Plot of average MAD calculated from varying the sample size for all the methods

(simulated datasets).

https://doi.org/10.1371/journal.pone.0186167.g001
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Ground-truth for the cell types proportions and the cell-type specific expression pro-

files (matrices M and X). For all datasets, “ground-truth” is available for the cell type propor-

tions matrix M. For the pure cell-type expression signatures, matrix X, “ground-truth” is

computed from the matrix ~Y, the gene expression for the pure samples. Denote

~Y ¼ ½~Y1; ~Y2; . . . ; ~YK �, where ~Yk; k 2 f1; . . . ;Kg, is the gene expression matrix that contains

replicate samples from pure cell type k, then, xik is computed as the mean of row i in matrix

~Yk, that is, the mean expression for gene i across samples that contain only cell type k.

List of differentially and non-differentially expressed genes. We produced the “ground-

truth” for the list of differentially expressed and non-differentially expressed genes from the

“ground-truth” for the cell-type expression signatures, matrix X, using the fold change rule

(Although, the median fold change proposed in [46] is theoretically a slightly better alternative

to the mean fold change, empirical results from both method are similar for all our datasets.

More so, mean fold change is better suited to our purpose because in the end, we estimate the

mean expression for each cell type [47]). For gene i, the fold change between cell types r and

u is defined as: FCi = max(xir, xiu)/min(xir, xiu), where xir and xiu are the specific expressions of

Fig 2. Plot of standard deviation of MAD. Plot of standard deviation of MAD for all the methods (simulated datasets).

https://doi.org/10.1371/journal.pone.0186167.g002
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gene i in cell types r and u, r, u 2 {1, . . ., K} [46–48]. Thus, given the specific expressions of

gene i in cell types r, u 2 {1, . . ., K}, if FCi> 2, gene i is said to be differentially expressed in the

two cell types, otherwise no difference in expressions [49].

Cell types mapping and marker probesets. Estimates of the cell-type specific expression

profiles obtained from any blind decomposition algorithm require mapping to the correct cell

types [22]. As such, marker probesets are often employed to perform the mapping of the esti-

mated profiles to the true cell types. However, gene expression data are generated with differ-

ent technologies (microarrays and RNA-seq) using equipment from different manufacturers

(e.g. Affymetrix, Illumina etc.). To avoid discrepancies that may arise in using probeset marker

lists from another source due to probe annotation [50, 51], we defined the list of marker probe-

sets used in our experiments from the gene expression measurements of pure cell types/tissues

samples, i.e. matrix ~Y and matrix X, following the procedures highlighted in [22]. Details of

how the marker probesets are defined and the mapping of the estimated profiles to the true

cell types are discussed in S1 Supplementary Material.

Fig 3. Plot of standard deviation of parameter estimates. Standard deviation of the estimates obtained

from the proposed SMC and MCMC methods.

https://doi.org/10.1371/journal.pone.0186167.g003

Table 1. Effect of the choice of priors for the proposed SMC algorithm.

SMC with conjugate priors SMC with non-conjugate priors

r 0.99 0.99

Runtime (minutes) 132 226

https://doi.org/10.1371/journal.pone.0186167.t001
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Metrics for comparing results. Notice that the mapping of estimated cell-type profiles to

the true cell types also rearranges the rows of the estimated proportions, matrix M̂. Now, to

compare the estimated variables with the true values, we compared the average mean absolute

difference for the simulated datasets and then calculated the Pearson correlation coefficient

(r) between the true value and the estimated value for the real data.

In addition, we tested if the proposed SMC method can identify differentially expressed

genes between cell types. Given the “ground-truth” for the truly differentially and non-

differentially expressed genes, we computed, for each probeset, the expression fold change

between the columns of the estimated cell-type gene expression profiles, matrix X̂. Specifically,

between any two columns of matrix X̂ and for each probeset (and if cell type 1 is upregulated

when compared to cell type 2 or vice-versa, separately), we computed the following by varying

the fold change threshold from 1 to 5 in step of 0.25: true positives (TP), the number of cor-

rectly identified probes that are truly differentially expressed; false positives (FP), the number

of non-differentially expressed probes but incorrectly identified as differentially expressed

genes; false negatives (FN), the number of truly differentially expressed genes but incorrectly

Table 2. Runtime of different methods on the same dataset.

SMC method MCMC method PNMF method

Runtime (minutes) 132 116 84

r 0.99 0.93 0.95

https://doi.org/10.1371/journal.pone.0186167.t002

Fig 4. Plot of proportions. Plot of the true proportions vs. estimated proportions obtained from the proposed

SMC method (affymetrix dataset).

https://doi.org/10.1371/journal.pone.0186167.g004
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identified as non-differentially expressed probes, and true negatives (TN), the number of cor-

rectly identified non-differentially expressed probes. Further, we computed the sensitivity or

true positive rate (TPR) = TP/(TP+FN) and the false positive rate (FPR), also defined as 1

− specificity = FP/(FP+TN). With the TPR and the FPR for the different threshold values, we

generated the receiver operating characteristic curves (ROC) for all pairs of cell types. Area

Table 3. Pearson correlation coefficient (r) and AUROC for the affymetrix dataset (AUROC in columns 3 and 4).

rM rB rH Brain > Heart Heart > Brain

SMC 0.99 0.98 0.98 0.99 0.98

MCMC 0.93 0.92 0.94 0.91 0.92

PNMF 0.95 0.95 0.95 0.96 0.94

rM, rB and rH denote the Pearson correlation coefficients between the true and the estimated: (i) cell types proportions, (ii) the brain cell expression profiles,

and (iii) the heart cell expression profiles, respectively. In columns 5 and 6, Brain > Heart, for example, implies that brain is upregulated as compared to

heart.

https://doi.org/10.1371/journal.pone.0186167.t003

Fig 5. Brain >Heart. ROC plot obtained from the proposed SMC method for brain vs. heart cell types, brain upregulated (affymetrix dataset).

https://doi.org/10.1371/journal.pone.0186167.g005
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under the ROC (AUROC) is obtained for each plot. High value of AUROC (maximum is 1)

indicates that the deconvolution method is specific and sensitive in identifying differentially

expressed probeset.

In addition, to compare our method with other existing gene expression deconvolution

methods that require same set of input data, we analyzed the datasets with two other methods:

another sampling algorithm developed by [27] which we will refer to as the MCMC method

and a recently developed probabilistic version of NMF [38] which we will refer to as the

PNMF method. Although, the MCMC method assumes that a rough estimate of the mixing

proportions might be available, in some cases, in addition to the gene expression data, we ini-

tialized all methods with equal cell type proportion in order to produce a fair comparison of

the results. Also, for the NMF method, cell-type specific gene expression profiles, matrix X is

initialized by drawing its entries from a uniform distribution Uð0; max ðYÞÞ.

Fig 6. Heart > Brain. ROC plot obtained from the proposed SMC method for brain vs. heart cell types, heart upregulated (affymetrix dataset).

https://doi.org/10.1371/journal.pone.0186167.g006
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Simulated dataset

To test the proposed algorithm on simulated data, we created heterogeneous gene expression

datasets with varying number of samples from pure tissue samples. Specifically, we down-

loaded the gene expression measurements (tissue specific gene expression data) from the

publicly available dataset series GSE1133, from the GEO website [52] for human lung, heart

and liver. Data preprocessing, that is, background adjustment, normalization, and summariza-

tion were done with robust multi-array average (RMA) procedure [53]. For the cell type pro-

portion matrix M, each column of the matrix is generated from a Dirichlet distribution.

Heterogeneous gene expression measurement is then created by multiplying the tissue specific

gene expression profiles, matrix X by the simulated cell type proportions, matrix M. Finally,

normally distributed noise with mean zero and variance that is equal to the global variance in

gene expression between duplicate samples in GSE1133, is added. Then, we created heteroge-

neous gene expression data, matrix Y that comprises of 10, 15, 20, 25, 30, 35 and 40 samples,

respectively.

With each sample size, we made 25 experimental runs with each of the proposed SMC algo-

rithm, MCMC method and the PNMF method. For each of the methods and a sample size, we

record the mean absolute difference (MAD) between the true cell type proportions and the

estimated cell type proportions after each experimental run and average MAD was computed

after 25 runs. The results for the average and the standard deviation of MAD for the three

Fig 7. Plot of proportions. Plot of the true proportions vs. estimated proportions obtained from the MCMC

method (affymetrix dataset).

https://doi.org/10.1371/journal.pone.0186167.g007
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methods and all the sample sizes are presented in Figs 1 and 2. In addition, for each sample

size, we took the average of the estimated standard deviations over the 25 experimental runs.

For each sample size, we showed, in Fig 3, a scatter plot of the standard deviations for the SMC

and the MCMC methods (PNMF algorithm returned only the maximum a posteriori (MAP)

estimates). Overall, the proposed SMC method outperforms its two other counterparts across

all the sample sizes, in terms of the accuracy of the estimates. In addition, it can be seen that as

the number of sample sizes goes up, estimates of model parameters also improve.

Moreover, we investigated how much the results obtained from the proposed SMC algo-

rithm depends on the choice of the prior distributions. Specifically, we considered a Dirichlet

distribution for modeling each column of the cell type proportions (non-conjugate prior),

matrix M. With this choice of prior distribution, the sequence of target distributions πt for the

mixture proportions are no more in closed form as we have in (12). Thus, to propagate the par-

ticles after the resampling procedure in the proposed SMC algorithm, we employed an

Metropolis-Hastings MCMC kernel of invariant distribution πt [28]. For each particle, we ran

10 chains and the last iteration is chosen as the propagated particle. On the GSE1133 dataset

with 10 samples and 500 randomly chosen genes, the results obtained for the conjugate and

the non-conjugate prior distributions (Dirichlet distributions) are shown in Table 1. Particu-

larly, we recorded the correlation coefficient (r) and the runtime for the two cases on a 3.5 Ghz

Fig 8. Plot of proportions. Plot of the true proportions vs. estimated proportions obtained from the PNMF

method (affymetrix dataset).

https://doi.org/10.1371/journal.pone.0186167.g008
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Intel 8 processors running MATLAB. From Table 1, the two cases yielded similar results in

terms of the accuracy of the estimates, but the algorithm implemented with the non-conjugate

priors is slower than its counterpart with conjugate priors. This is due to the fact that the

MCMC kernel used in propagating the particles ran multiple iterations for each particle, and

the similarity in the results is because the MCMC kernel used has an invariant distribution πt,
where the particles are sampled from.

Lastly, on the same dataset, we performed experiments with the MCMC method and the

PNMF algorithm. In particular, the MCMC was run with chain length of 40,000, with the ini-

tial 20000 as burn-in and a thinning interval of 20. The results are shown in Table 2

Affymetrix dataset: 2 cell types

Next, we evaluated the performance of the proposed SMC algorithm on a tissue mixture oligo-

nucleotide microarray probe-level dataset from Affymetrix previously analyzed by [27]. Data

preprocessing were done by the RMA procedure [53]. This dataset, Ytotal, consists of heteroge-

neous expressions from human brain and heart cells. There are 33 samples and each sample

comprises of specific proportions of the two distinct cell types. The true mixture proportions

are shown in Table A in S1 Supplementary Material where the samples are designated S1,. . .,

Fig 9. Plot of proportions. Plot of the true proportions vs. estimated proportions obtained from the proposed

SMC method (GSE19830 dataset).

https://doi.org/10.1371/journal.pone.0186167.g009
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S33 for sample 1,. . .,sample 33, respectively. Samples S1—S3 and S31—S33, samples from the

pure cell types, constitute the matrix ~Y, for approximating the “ground-truths” for the cell-

type expression profiles (matrix X), marker probesets and the list of truly differentially

expressed and non-differentially expressed genes. Samples S4—S30 constitute the heteroge-

neous gene expression matrix Y that was analyzed.

First, we analyzed the heterogeneous gene expression matrix Y with the SMC method and

the plot of the estimated proportions, matrix M̂ versus the true proportions, matrix M is

shown in Fig 4 with the Pearson correlation coefficient, r = 0.99. In Table 3, we record the cor-

relation between the true and the estimated cell-type specific expression profiles for all the cell

types. Further, we test the power of the SMC method to detect truly differentially expressed

and non-differentially expressed genes between cell types. Figs 5 and 6 show the ROCs gener-

ated with the SMC method and the AUROC for each plot is recorded in Table 3. Moreover, we

analyzed the same dataset with the MCMC method and the PNMF algorithms and the results

are presented in Figs 7 and 8, and in Table 3. The results obtained and presented in Table 3

show that the proposed SMC method accurately estimates cell type proportions, cell-type spe-

cific expressions and in fact, more specific in identifying the differentially expressed genes

when compared to the other two methods.

Fig 10. Plot of proportions. Plot of the true proportions vs. estimated proportions obtained from the MCMC

method (GSE19830 dataset).

https://doi.org/10.1371/journal.pone.0186167.g010
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GEO series GSE19830 dataset: 3 cell types

In the mixture experiment by [7], tissue samples from the liver, brain and lung of a single rat

were analyzed using Affymetrix expression arrays. Biospecimens from the three different tis-

sues were mixed in different proportions (mixture proportion of each sample is shown in

Table B in S1 Supplementary Material). The data consists of 11 different mixtures, each mix-

ture with 3 technical replicates. In addition, there are 9 samples for the pure tissues (S1—S9), 3

technical replicates for each pure tissue type. We downloaded the dataset from the NCBI GEO

website and performed data preprocessing with the RMA.

Fig 11. Plot of proportions. Plot of the true proportions vs. estimated proportions obtained from the PNMF

method (GSE19830 dataset).

https://doi.org/10.1371/journal.pone.0186167.g011

Table 4. Pearson correlation coefficient (r) for the GSE19830 dataset.

rM rLi rBr rLu

SMC 0.99 0.98 0.95 0.98

MCMC 0.91 0.90 0.91 0.89

PNMF 0.94 0.93 0.93 0.94

rM, rLi, rBr and rLu denote the Pearson correlation coefficients between the true and the estimated: (i) cell

types proportions, (ii) the liver cell expression profiles, (iii) the brain cell expression profiles, and (iv) the lung

cell expression profiles, respectively.

https://doi.org/10.1371/journal.pone.0186167.t004
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We analyzed the heterogeneous gene expression matrix with the SMC method and the plot

of the estimated proportions, matrix M̂ versus the true proportions, matrix M is shown in

Fig 9 with the Pearson correlation coefficient, r = 0.99 (similar results are obtained for the

MCMC and the PNMF methods in Figs 10 and 11, respectively). In addition, we record the

correlation between the true and the estimated cell-type specific expression profiles in Table 4.

Next, on this dataset, we test the power of the SMC method to detect truly differentially

expressed and non-differentially expressed genes between cell types. Figs 12, 13 and 14 (and

Fig A in S1 Supplementary Material) show the ROCs generated with the SMC method and the

AUROC for each plot is recorded in Table 5. Moreover, we analyzed same dataset with the

MCMC method and the PNMF algorithm and the results for the correlations and AUROC are

presented in Tables 4 and 5, respectively. The results obtained show that the proposed SMC

method accurately estimates cell type proportions, cell-type specific expressions and in fact,

more specific in identifying the differentially expressed and non-differentially expressed genes

when compared to the two other methods.

Fig 12. Liver > Brain. ROC plot obtained from the proposed SMC method for liver vs. brain cell types, liver upregulated (GSE19830 dataset).

https://doi.org/10.1371/journal.pone.0186167.g012
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GEO series GSE11058 dataset: 4 cell types

In the real mixtures with 2 and 3 cell types, expression differences between different cell types

are relatively higher compared to the expression differences between cell types within a tissue

sample. Hence, we tested the proposed algorithm on real tissue samples that are composed of

cell types with gene expression profiles that are more similar to each other. Specifically, we

analyzed a publicly available dataset from the GEO series GSE11058, downloaded from the

NCBI GEO [54] and data preprocessing was done by RMA. Each heterogeneous sample in the

data comprises of 4 different cell lines of immune origin, namely: Jurkat (J), IM-9 (I), Raji (R)

and THP-1 (T). In total, there are 24 samples in the dataset, that is, triplicates of each pure cell

type and four different mixtures for which the relative proportions of each cell type are known,

as shown in Table C in S1 Supplementary Material where samples are designated S1,. . .,S24

for sample 1,. . .,sample 24, respectively. The first 12 samples, samples from pure cell types con-

stitute the matrix ~Y, which is used for approximating the “ground-truths” for the cell-type

expression profiles (matrix X), marker probesets and the list of truly differentially expressed

and non-differentially expressed genes.

Fig 13. Liver > Lung. ROC plot obtained from the proposed SMC method for liver vs. lung cell types, liver upregulated (GSE19830 dataset).

https://doi.org/10.1371/journal.pone.0186167.g013
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Samples S13—S24 constitute the heterogeneous gene expression matrix Y that we analyzed

with the proposed SMC method, the MCMC method and the PNMF method. Figs 15, 16 and

17 and Table 6 show the correlation values obtained between the estimated cellular propor-

tions and the true proportions, and then the estimated cell-type specific expression profiles

and the true expression profiles. In addition, AUROC for all methods is shown in Table 7 and

the ROC plots obtained for the proposed SMC method are shown in Figs 18, 19 and 20 and in

Fig 14. Brain > Lung. ROC plot obtained from the proposed SMC method for brain vs. lung cell types, brain upregulated (GSE19830

dataset).

https://doi.org/10.1371/journal.pone.0186167.g014

Table 5. AUROC for the GSE19830 dataset.

Liver > Brain Liver > Lung Brain > Lung Liver < Brain Liver < Lung Brain < Lung

SMC 0.98 0.98 0.98 0.98 0.97 0.98

MCMC 0.90 0.89 0.91 0.88 0.90 0.91

PNMF 0.93 0.94 0.94 0.93 0.95 0.95

For example, Liver > Brain implies that liver is upregulated as compared to brain.

https://doi.org/10.1371/journal.pone.0186167.t005
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Fig 15. Plot of proportions. Plot of the true proportions vs. estimated proportions obtained from the

proposed SMC method (GSE11058 dataset).

https://doi.org/10.1371/journal.pone.0186167.g015

Fig 16. Plot of proportions. Plot of the true proportions vs. estimated proportions obtained from the

proposed MCMC method (GSE11058 dataset).

https://doi.org/10.1371/journal.pone.0186167.g016
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Figs B and C in S1 Supplementary Material. Again, the SMC method outperformed the

MCMC method and the PNMF method in terms of the accuracy of the cellular proportions

estimates and the cell-type specific expression estimates, and finally, in identifying differen-

tially and non-differentially expressed genes.

Discussion

In this paper, we modeled the heterogeneous gene expression data using a Bayesian frame-

work. Specifically, we modeled the expression of a gene in each sample as the sum of

Fig 17. Plot of proportions. Plot of the true proportions vs. estimated proportions obtained from the

proposed PNMF method (GSE11058 dataset).

https://doi.org/10.1371/journal.pone.0186167.g017

Table 6. Pearson correlation coefficient (r) for the GSE19830 dataset.

rM rJ rI rR rT

SMC 0.99 0.97 0.98 0.98 0.96

MCMC 0.91 0.90 0.90 0.91 0.92

PNMF 0.94 0.93 0.95 0.93 0.94

rM, rJ, rI, rR, and rT denote the Pearson correlation coefficients between the true and the estimated: (i) cell

types proportions, (ii) the Jurkat cell expression profiles, (iii) the IM-9 cell expression profiles, (iv) the Raji cell

expressions profiles, and (iv) the THP-1 cell expression profiles, respectively.

https://doi.org/10.1371/journal.pone.0186167.t006
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expressions of that gene in all the constituting cell types in the sample, weighted by the propor-

tions of all cell types in the sample plus an additive Gaussian noise.

We proposed an efficient SMC algorithm, a novel Bayesian approach that is based on sam-

pling technology suited for approximating the posterior distributions of complex model

parameters. In this paper, we obtained the estimates of the cellular proportions (matrix M)

and the cell-type specific expression profiles (matrix X) from the heterogeneous gene

Table 7. AUROC for the GSE19830 dataset.

J>I J>R J>T I>R I>T R>T J<I J<R J<T I<R I<T R<T

SMC 0.98 0.93 0.83 0.93 0.89 0.93 0.92 0.90 0.87 0.95 0.96 0.96

MCMC 0.90 0.89 0.91 0.88 0.90 0.91 0.92 0.91 0.91 0.89 0.92 0.91

PNMF 0.93 0.94 0.94 0.93 0.95 0.92 0.94 0.94 0.94 0.93 0.95 0.95

J = Jurkat; I = IM-9; R = Raji; T = THP-1. For example, J > I implies that Jurkat is upregulated as compared to IM-9.

https://doi.org/10.1371/journal.pone.0186167.t007

Fig 18. Jurkat > IM-9. ROC plot obtained from the proposed SMC method for Jurkat vs. IM-9 cell types, Jurkat upregulated (GSE11058

dataset).

https://doi.org/10.1371/journal.pone.0186167.g018
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expression data. Further, the estimated expression profiles are used to identify genes that are

differentially expressed which is one of the major reasons for carrying out gene expression

deconvolution analysis. In addition to the identification of the differentially expressed genes,

performing the complete gene expression deconvolution is an attractive method that provides

an alternative to the very expensive and time consuming manual approaches like LCM and

flow cytometry for separating cells which often lead to an altered cell-type specific gene expres-

sion profiles. Unlike some previously proposed methods for gene expression data deconvolu-

tion, our method does not rely on any prior knowledge of the cell type proportions or the cell-

type specific gene expression profiles.

In testing the performance of the proposed SMC method, we evaluated the method on sim-

ulated datasets and publicly available real datasets. From the results obtained in all the experi-

ments, the proposed SMC method demonstrated a superior performance in terms of accuracy

of the estimated model parameters and also in identifying differentially expressed genes as

shown in the Results Section and in the S1 Supplementary Material, when compared to the

two other methods.

Fig 19. Jurkat >Raji. ROC plot obtained from the proposed SMC method for Jurkat vs. Raji cell types, Jurkat upregulated (GSE11058

dataset).

https://doi.org/10.1371/journal.pone.0186167.g019
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Moreover, in mapping the estimated cell-type specific profiles (matrix X̂) to the true cell

types, we defined a set of marker probesets which were defined from the gene expression data

from pure samples, matrix ~Y. Although in the real settings, we have no access to these pure

samples, a small number of cell-type specific markers are often available, for instance, [55]

identified a set of markers for different immune subsets.

Finally, it was shown that PNMF and the MCMC methods are faster than the SMC method

in terms of computational speed. However, when there is an option of parallelization of

computational resources, the SMC method can be considerably improved in terms of the

computational time.

Supporting information

S1 Supplementary Material. Supplementary Material for “A Sequential Monte Carlo

Approach to Gene Expression Deconvolution”.

(PDF)

Fig 20. Jurkat > THP-1. ROC plot obtained from the proposed SMC method for Jurkat vs. THP-1 cell types, Jurkat upregulated (GSE11058

dataset).

https://doi.org/10.1371/journal.pone.0186167.g020
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