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Mycobacterium tuberculosis genome comprises approximately 10% of two families of poorly characterised
genes due to their high GC content and highly repetitive nature. The largest sub-group, the proline-
glutamic acid polymorphic guanine-cytosine-rich sequence (PE_PGRS) family, is thought to be involved
in host response and disease pathogenicity. Due to their high genetic variability and complexity of anal-
ysis, they are typically disregarded for further research in genomic studies. There are currently limited
online resources and homology computational tools that can identify and analyse PE_PGRS proteins. In
addition, they are computational-intensive and time-consuming, and lack sensitivity. Therefore, compu-
tational methods that can rapidly and accurately identify PE_PGRS proteins are valuable to facilitate the
functional elucidation of the PE_PGRS family proteins. In this study, we developed the first machine
learning-based bioinformatics approach, termed PEPPER, to allow users to identify PE_PGRS proteins
rapidly and accurately. PEPPER was built upon a comprehensive evaluation of 13 popular machine learn-
ing algorithms with various sequence and physicochemical features. Empirical studies demonstrated that
PEPPER achieved significantly better performance than alignment-based approaches, BLASTP and
PHMMER, in both prediction accuracy and speed. PEPPER is anticipated to facilitate community-wide
efforts to conduct high-throughput identification and analysis of PE_PGRS proteins.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Mycobacterium tuberculosis (MTB), the causative agent of pul-
monary tuberculosis, infects one-third of the world’s population
[1]. The emergence of multidrug-resistant and extensively drug-
resistant strains, alarmingly rising numbers of patients with a coin-
fection of HIV and tuberculosis and variable efficacy of immuniza-
tion with Mycobacterium bovis bacillus Calmette-Guerin have
stressed the urgency of developing novel therapeutic intervention
strategies for tuberculosis [2]. Decipher of the Mycobacterium
tuberculosis H37Rv genome revealed approximately 10% of coding
capacity to be accounted for two unrelated gene families encoding
proline-glutamate (PE) and proline-proline-glutamate (PPE) gene
family members, exemplified by the presence of PE and PPE motifs
near the N-terminus of their gene products [3]. PE proteins are
divided into three subfamilies: PE-only (less than100 amino acids
in length); PE_unique, which present downstream of the PE
domain a unique amino acid sequence of variable sequence; and
PE_PGRS, which contain the polymorphic glycine-rich domain of
variable sequence and size [4]. The MTB genome contains 65
PE_PGRS genes, although only 51 of these express a functional pro-
tein, at least in H37Rv [5]. These genes are found in all members of
the MTB complex and a few other mycobacterial species as
Mycobacterium marinum (�148 genes) and Mycobacterium ulcer-
ans (�121 genes). However, PE_PGRS genes in these species show
significant differences with those found in the complex [5].

It is widely considered that PE_PGRS proteins are involved in
disease pathogenicity and progression, but their exact function
remains elusive [6-8]. Some PE_PGRS proteins seem to be potential
Mycobacterium tuberculosis candidate effectors, such as the
PE_PGRS62 protein, which has been experimentally validated to
have a role in virulence [9]. In addition, PE_PGRS proteins are pro-
posed as molecular mantra to deflect host immunity [10], and are
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associated with the mycobacterial cell wall, influence cellular
structure, and form mycobacterial colonies [8]. Furthermore, these
proteins facilitate cell-surface interactions among mycobacteria
and interactions with host macrophages [6]. More importantly,
many previous studies have shown that the mycobacterial
PE_PGRS proteins play essential roles in evading or modulation
of the host immune system [11,12]. Therefore, it is highly impor-
tant to identify PE_PGRS proteins and elucidate their functional
roles.

Due to the high GC content (approx. 80%), highly repetitive and
a major source of polymorphism in the Mycobacterium tuberculosis
complex, most genomic studies exclude these proteins, which
results in poor understanding of these proteins [13]. Sequence
identification and characterization by sequence search through
databases is one of the primary ways of studying such variable pro-
teins [14]. Therefore, alignment-based approaches, such as BLAST
[15] and HMMER [16], and protein remote homology detection
tools based on machine learning and BLAST, such as HITS-PR-
HHblits [17], HHsuite [18], ProtDec-BLSTM [19], and ProtDet-CCH
[20], can be used to identify PE_PGRS proteins. However, two
major issues in these methods need to be addressed: (i) Both
alignment-based approaches and protein remote homology detec-
tion methods require considerable computational resources and
time, which are not suitable to perform high-throughput predic-
tion and analysis of PE_PGRS proteins. (ii) Alignment-based
approaches only consider the sequence information of the queried
proteins. Their performance mainly depends on the quality and
coverage of the search library. They are usually performed worse,
especially for those proteins with low sequence similarity with
the proteins in the search library. Machine learning combined with
extensive sequence feature engineering techniques has been suc-
cessfully used in many bioinformatics topics [21–32,69], and pro-
vide an alternative efficient and accurate strategy to study these
enigmatic proteins. As such, we are highly motivated to leverage
cutting-edge machine learning techniques to develop computa-
tional approaches to identify the PE_PGRS proteins rapidly and
accurately.

In this study, we developed PEPPER (PE_PGRS Protein PrEdic-
toR) based on machine learning techniques to identify PE_PGRS
proteins. Firstly, we constructed a benchmark dataset by extracting
manually annotated PE_PGRS proteins from NCBI and Swiss-Prot
[33] databases. Then, we have comprehensively evaluated and
compared 13 popular machine learning algorithms combined with
a variety of sequence and physicochemical property features. PEP-
PER was developed based on the optimal predictor selected
through extensive cross-validation and independent tests and fur-
ther improved through feature selection. Empirical study results
illustrated that PEPPER could achieve the significantly better pre-
dictive performance of PE_PGRS proteins and less computational
time than BLASTP and PHMMER. In addition, we demonstrated
the capacity of PEPPER by two case study proteins and applied PEP-
PER to conduct a proteome-wide prediction of PE_PGRS proteins.
To the best of our knowledge, PEPPER is the first machine
learning-based predictor for PE_PGRS proteins. We anticipate it
will be widely applied to help discover and analyse novel PE_PGRS
proteins and elucidate their functions.
2. Materials and methods

2.1. Overall framework of PEPPER

Fig. 1 provides an overview of the design and performance
evaluation process of PEPPER. Four major steps are involved in
the construction and assessment of PEPPER, including data collec-
tion and wrangling, feature engineering, model training and eval-
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uation, and model deployment. The first step is to collect the
benchmark training and independent test datasets from publicly
available NCBI and UniProt/SwissProt databases. In the second
step, multi-faceted protein sequence profile and amino acid
physicochemical property features are calculated and used as
input for the machine learning algorithms. In the third step, 13
popular machine learning algorithms are employed to construct
and explore the optimal predictors. In addition, feature selections
are adopted to optimise the predictor. In the final step, an online
webserver and a local stand-alone software are implemented for
the model deployment.

2.2. Data collection

NCBI and UniProt/SwissProt are two popular databases that
provide the scientific community with comprehensive, high-
quality and freely accessible protein sequence resources. Firstly,
we use the keyword ‘‘PE-PGRS” to search the NCBI Protein and
Swiss-Prot database databases. For the NCBI database, there are
39,538 proteins obtained from RefSeq [34], then after removing
those proteins annotated with ‘‘partial”, ‘‘part”, ‘‘fragment”, ‘‘PRE-
DICTED”, ‘‘MODEL”, and ‘‘INFERRED”, 11,866 proteins are
extracted. For the Swiss-Prot database, we searched protein
names containing the keyword ‘‘PE-PGRS” and extracted 37 man-
ually reviewed proteins. Those 11,903 PE-PGRS family proteins
are used as the candidate positive samples. For candidate nega-
tive samples, we use the organism ‘‘Mycobacterium” to search
the SwissProt database. By excluding the 37 PE-PGRS proteins,
we have 11,494 candidate negative samples. To develop a reliable
predictor and evaluate the model objectively, the PSI-CD-HIT pro-
gram [35] with a strict sequence identity (SI) threshold of 30%
[23,36-41] between any two protein sequences is used to discard
highly-homologous sequences from the candidate positive and
negative samples. Furthermore, the PSI-CD-HIT is also applied to
remove the redundant sequence between positive and negative
datasets at the SI threshold of 30%. Subsequently, we have
3,041 positive and 3,535 negative samples used for model train-
ing and testing. We randomly selected 70% of samples as the
training dataset and the other 30% of samples as the independent
test dataset. A statistical summary of training and independent
test datasets is provided in Table 1.

2.3. Feature engineering

In this study, we used three groups of sequence-based features
to encode the PE_PGRS protein sequences. Group 1 is amino acid
composition features, Group 2 is Composition/Transition/Distribu
tion (CTD) features, and Group 3 is the Conjoint Triad features.
These three groups of feature encoding schemes are introduced
in the following sections.

2.3.1. Group 1. Amino acid composition features
Proteins with different amino acid sequences correspond to dif-

ferent structures, which result in differing functions. In this group,
we consider four types of features, including Amino Acid Composi-
tion (AAC), Grouped Amino Acid Composition (GAAC), Composition
of K-Spaced Amino Acid Pairs (CKSAAP) and Composition of K-
Spaced Amino Acid Group Pairs (CKSAAGP).

2.3.1.1. Amino Acid Composition (AAC). The Amino Acid Composi-
tion encoding considers the frequencies of amino acids in the pro-
tein sequences. AAC calculates the frequencies of 20 natural amino
acids as:

AAC að Þ ¼ NðaÞ
lenðPÞ ð1Þ



Fig. 1. The overall framework of PEPPER.

Table 1
The statistical summary of the benchmark dataset used for training and testing.

Original After CD-HIT (<30%) Training Independent test

Positive 11,866 3041 2139 902
Negative 11,529 3535 2464 1071
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where NðaÞ is the number of amino acid type a in the given pro-
tein sequence P, while lenðPÞ is the length of the protein sequence
P. Therefore, each protein sequence is represented as 20 AAC fea-
tures [42-45].

2.3.1.2. Grouped Amino Acid Composition (GAAC). Different amino
acids have different physicochemical properties, such as hydropho-
bicity and molecular size. The Grouped Amino Acid Composition
encoding classified the 20 natural amino acids into five groups
according to their different physicochemical properties [46]. The
five different amino acid groups are shown in Table S1. GAAC
encodes protein sequences according to the frequency of each
amino acid group, which is calculated as:

PAAC gð Þ ¼ NðgÞ
lenðPÞ ; g 2 ðg1; g2; g3; g4; g5Þ ð2Þ

N gtð Þ ¼
X

N tð Þ; t 2 g ð3Þ
where NðgÞ is the number of amino acids belonging to group g

in the given protein P, lenðPÞ is the length of the given protein P,
and N tð Þ is the number of amino acid type t.

2.3.1.3. Composition of K-Spaced Amino Acid Pairs (CKSAAP). CKSAAP
is an encoding scheme that considers the frequency of amino acid
pairs separated by k residues. The CKSAAP encodes a given protein
sequence as a 400-dimensional feature vector, because 20 types of
natural amino acids have 400 distinct types of k-spaced amino acid
pairs (i.e., AðX � kÞA, AðX � kÞC, AðX � kÞD, . . ., YðX � kÞY). The
664
AðX � kÞA means the amino acid pair AA separated by k residues,
X implies any kind of amino acid and X � k means k any residues.
The CKSAAP feature vector is defined as:

CKSAAP Pð Þk ¼
NAðX�kÞA

Nk
;
NAðX�kÞC

Nk
;
NAðX�kÞD

Nk
; � � � ;NYðX�kÞY

Nk

� �
400

ð4Þ

Nk ¼ len Pð Þ � k ð5Þ
where the value of each element in the feature vector repre-

sents the composition of the corresponding k-spaced residue pair
in the given protein sequence. NAðX�kÞA is the number of times k-
spaced residue pair AðX � kÞA appears in the given protein P. Nk is
the total number of k-spaced residue pairs in the given protein P.
In this study, we calculate the CKSAAP features with
k ¼ 0;1;2;3;4;5 and the total number of features CKSAAP features
is 400 � 6 = 2400.

2.3.1.4. Composition of K-Spaced Amino Acid Group Pairs
(CKSAAGP). Similar to GAAC, the CKSAAGP encoding also classi-
fied the 20 natural amino acids into five groups according to
their different physicochemical properties. Therefore, the
CKSAAGP calculates the frequency of amino acid group pairs
separated by any k residues. There are 25 k-spaced amino acid
group pairs (i.e., g1 X � kð Þg1, g1 X � kð Þg2, g1 X � kð Þg3, . . .,
g5 X � kð Þg5). The g1 X � kð Þg1 means the amino acid group pair
g1g1 separated by k residues, X implies any kind of amino acid
and X � k means k any residues. The CKSAAGP feature vector is
defined as:
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CKSAAGP Pð Þk ¼
Ng1 X�kð Þg1

Nk
;
Ng1 X�kð Þg2

Nk
;
Ng1 X�kð Þg3

Nk
; � � � ;Ng5 X�kð Þg5

Nk

� �
25

ð6Þ

Nk ¼ len Pð Þ � k ð7Þ
where the value of each element in the feature vector repre-

sents the composition of the corresponding k-spaced residue group
pair in the given protein sequence P. Ng1 X�kð Þg1 is the number of
times k-spaced residue pair g1 X � kð Þg1 appears in protein P. Nk

is the total number of k-spaced residue pairs in the given protein
P. In this study, we calculate the CKSAAGP features with
k ¼ 0;1;2;3;4;5, and the total number of CKSAAP features is
25 � 6 = 150.

2.3.2. Group 2. Composition/Transition/Distribution (CTD) feature
The Composition Transition and Distribution (CTD) feature is a

type of physicochemical property of amino acid sequences, repre-
senting the global distribution patterns and physicochemical prop-
erties of the protein sequences [47,48]. CTD feature includes
composition in CTD (CTDC), transition in CTD (CTDT) and distribu-
tion in CTD (CTDD). There are 13 types of physicochemical proper-
ties in the CTD encoding scheme, including seven types of
hydrophobicity (e.g., PRAM900101, ARGP820101, ZIMJ680101,
PONP930101, CASG920101, ENGD860101, and FASG890101), nor-
malised van der Waals volume, polarity, polarizability, charge, sec-
ondary structure, and solvent accessibility. According to their
attributes, 20 natural amino acids are categorised into three groups
for each property. Supplementary Table S2 provides the three
groups information of 20 natural amino acids. For example, a 20-
amino acid example sequence ‘‘RKEDQNGASTPHYCLVIMFW” will
be encoded as ‘‘11111122222223333333” according to hydropho-
bicity_PRAM900101 group in Supplementary Table S2, where ‘‘1”,
‘‘2”, ‘‘3” means ‘‘Group1”, ‘‘Group2”, ‘‘Group3”, respectively.

In this study, CTDC is defined as a 13 � 3 = 39-dimensional fea-
ture vector as follows:

CTDC Pð Þ ¼ NP1 G1

lenðPÞ ;
NP1 G2

lenðPÞ ;
NP1 G3

lenðPÞ ; � � � ;
NP13 G1

lenðPÞ ;
NP13 G2

lenðPÞ ;
NP13 G3

lenðPÞ
� �

39

ð8Þ
where lenðPÞ means the sequence length of given protein P;

NP1 G1 means, in given protein P, the number of amino acids
belongs to the Group 1 (G1) of property 1 (G1, which is hydropho-
bicity_PRAM900101 according to Supplementary Table S1). Simi-
larly, NP13 G3 means the number of amino acids belongs to Group
3 of property 13 (Solvent Accessibility) in given protein P. For the
example sequence, lenðPÞ ¼ 20, and for property 1 (P1 ¼ hydropho-
bicity_PRAM900101), NP1 G1 ¼ 6, NP1 G1 ¼ 7, and NP1 G1 ¼ 7,
because 6 amino acids belong to Group 1, 7 amino acids belong
to Group 2, and 7 amino acids belong to Group 3. Therefore, the
composition features of hydrophobicity_PRAM900101 are calcu-
lated as 6/20, 7/20, and 7/20, respectively. The CTDC features for
other 12 properties can be calculated in a similar way.

CTDT calculates the frequency of a Group 1 residue followed by
a Group 2 residue or vice versa. For example, a CTDT (transition)
from Group 1 to Group 2 is the percentage frequency with which
a Group 1 residue is followed by a Group 2 residue or a Group 2
residue by a Group 1 residue. The CTDT features can be calculated
as:

CTDT Pð Þ ¼ TP1 12

NT
;
TP1 13

NT
;
TP1 23

NT
; � � � ; TP13 12

NT
;
TP13 13

NT
;
TP13 23

NT

� �
39

ð9Þ

TPi MN ¼ NPiðMNÞ þ NPiðNMÞ ð10Þ
665
NT ¼ len Pð Þ � 1 ð11Þ
where lenðPÞ is the sequence length of given protein P, TPi MN is

the transition from GroupM to Group N of property i. For the given
example sequence, NT ¼ 19, and for property 1 (P1 ¼ hydrophobic-
ity_PRAM900101), TP1 12 ¼ NP1ð12Þ þ NP1ð21Þ ¼ 1, where NP1ð12Þ
and NP1ð21Þ are the numbers of dipeptide encoded as ‘‘12” and
‘‘21” in the sequence, respectively. Therefore, TP1 12 ¼ 1=19,
TP1 13 ¼ 0=19, and TP1 23 ¼ 1=19. The CTDT features for other 12
properties can be calculated in a similar way. Accordingly, CTDT
is also presented as a 13 � 3 = 39-dimensional feature vector.

CTDD describes the distribution of each physicochemical prop-
erty in the sequence [47]. It calculates five distribution features for
each physicochemical group according to the five sequence lengths
(in percent), within which the first, 25%, 50%, 75%, and 100% of the
amino acids with a certain property are contained. For the property
1 of (P1 ¼ hydrophobicity_PRAM900101) given example sequence,
there are 6 amino acids (‘RKEDQN’) in group 1. The first residue of
the given sequence to group 1, hence the first feature is calculated
as (1/20) � 100%=5. Twenty-five percent of group 1 amino acids
(25%�6�2 amino acids) are contained within the first two resi-
dues. Therefore the second feature is calculated as (2/20) � 100%
=10. Similarly, 50% of group 1 amino acids (50%�6 = 3) are within
the first three residues of the example sequence. Therefore, the
third feature is calculated as (3/20) � 100%=15. Then, 75% of group
1 amino acids (75%�6 = 4.5�5) are within the first five residues of
the example sequence. Therefore, the fourth and fifth features are
calculated as (5/20) � 100%=25 and (6/20) � 100%=30, respec-
tively. Similar calculations were performed for groups 2 and 3.
For example, there are 7 amino acids (‘GASTPHY’) in group 2. The
first group 1 amino acid is located at the 7th residue of the
sequence. Therefore the first feature of group 2 is calculated as
(7/20) � 100%=35. Twenty-five percent of group 2 amino acids
(25%�7�2 amino acids) are contained with the first eight residues
(positions 7 and 8). Hence the second feature of group 2 is calcu-
lated as (8/20) � 100%=40. Others can be calculated in a similar
method. Therefore, CTDD is presented as a 13 � 3 � 5 = 195-dimen
sional feature vector.

2.3.3. Group 3. Conjoint Triad feature
Group 3 contains two types of feature encoding schemes, i.e.,

Conjoint Triad, and K-Spaced Conjoint Triad. Conjoint Triad
(CTriad) feature describes the properties of a triad amino acid unit,
which is a combination of any three amino acids [49]. CTriad clas-
sifies the 20 nature amino acids into seven groups and uses these
for the feature encoding, which include [A, G, V] for group 1, [I, L,
F, P] for group 2, [Y, M, T, S] for group 3, [H, N, Q, W] for group 4,
[R, K] for group5, [D, E] for group 6, and C for group 7. The CTriad
feature is defined as:

Conjoint Triad Pð Þ ¼ f 1 �min
max

;
f 2 �min
max

; � � � ; f 342 �min
max

;
f 343 �min

max

� �
343

ð12Þ

f i ¼ NVii 2 ð1;2;3; � � � ;343Þ ð13Þ
where NVi denotes the number of type Vi appearing in the given

protein sequence P and Vi represents triad type, containing three
contiguous amino acids. The max ¼ maxðf 1; f 2; � � � ; f 343Þ and
min ¼ minðf 1; f 2; � � � ; f 343Þ. Thus, the longer protein sequences are
more likely to have larger f i values. To eliminate the factor of pro-
tein length, the feature is normalised, and the feature vector is
73 = 343-dimension.

The K-Spaced Conjoint Triad (KSCTriad) is based on CTriad,
besides the numbers of three continuous amino acid units,
KSCTriad also considers the continuous amino acid units separated
by any k residues.
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2.4. Machine learning algorithms

The PE_PGRS protein prediction task is a binary classification
problem, e.g., classifying PE_PGRS proteins with non-PE_PGRS pro-
teins. To find the optimal machine learning algorithms for PE_PGRS
protein prediction, this study comprehensively evaluate and com-
pare 13 popular supervised machine learning algorithms for
PE_PGRS protein prediction, including CatBoost [50], extreme gra-
dient boosting (XGBoost) [51], Light Gradient Boosting Machine
(lightGBM) [52], Gradient Boosting Decision Tree (GBDT) [53],
Adaptive Boosting (AdaBoost) [54], Random Forest (RF), Extra
Trees, Logistic Regression (LR), Decision Tree, Naïve Bayes (NB),
Support Vector Machine (SVM), K-Nearest Neighbours classifier
(KNN), and Linear Discriminant Analysis (LDA). These machine
learning algorithms are successfully applied in many bioinformat-
ics sequence-based prediction tasks [37-39,41,55-58]. For LR, NB,
SVM, KNN, and LDA, the feature set is first standardised by using
Z-score normalisation. While for tree-based algorithms, e.g., Cat-
Boost, XGBoost, lightGBM, GBDT, AdaBoost, RF and Extra Trees,
the original features are used as they are not sensitive to the vari-
ance in the data. The hyper-parameters of each classifier are opti-
mised by the Bayesian optimisation algorithm [59] and the
performance comparison for these 13 algorithms is conducted on
the training dataset with 10 times 10-fold cross-validation tests
and report the average performances. After extensive performance
evaluation, we finally selected lightGBM build the model of PEP-
PER. LightGBM is an effective extension of GBDT, an iterative deci-
sion tree algorithm, which learns a boosting model from mistake
residual errors and performs prediction by adding the previous
predictions of all trained trees. LightGBM has been proposed to
improve efficiency and reduce calculation cost by employing a his-
togram algorithm [52]. Furthermore, lightGBM algorithm equips
the Gradient-based One-Side Sampling (GOSS), Exclusive Feature
Bundling (EFB), and Leaf-wise Tree Growth strategies to reduce
computational complexity and improve the accuracy. In this study,
lightGBM was implemented using the lightgbm package in Python
(https://github.com/Microsoft/LightGBM).
2.5. Performance evaluation

The predictive performance of prediction models is compared
and evaluated by several commonly used performance metrics
[36,37,60], including Accuracy, Recall, Precision, F1, Matthew’s
Correlation Coefficient (MCC) and area under the receiver-
operating curves (AUC). Accuracy, Recall, Precision, F1, and MCC
are respectively defined as:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð14Þ
Recall ¼ TP
TP þ FN

ð15Þ
Precision ¼ TP
TP þ FP

ð16Þ
F1 ¼ 2� Precision� Recall
Precisionþ Recall

ð17Þ
MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ � TP þ FNð Þ � TN þ FPð Þ � TN þ FNð Þp ð18Þ

where TP, TN, FP, and FN represent the number of true positives,
true negatives, false positives, and false negatives, respectively.
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3. Results and discussion

3.1. Sequence analysis

3.1.1. Sequence length distribution and amino acid frequencies of
PE_PGRS proteins

In this section, we analysed the characteristic sequence lengths
and amino acid frequencies of known PE_PGRS proteins using the
collected dataset. We merged the training and independent test
dataset to make a more comprehensive analysis. The variation of
protein sequence length reflects the functional diversity and com-
plexity of the protein family. To identify the sequence length distri-
bution of PE_PGRS proteins, we calculated their protein-sequence
lengths and summarised the results in Fig. 2A. The histogram
shows that the proteins comprised of � 200 amino acids have
the most significant density, almost 0.2%. Of note, most PE_PGRS
proteins have less than 2000 amino acids, and there are > 86.2%
PE_PGRS proteins with length less than 1000. These results demon-
strate the distribution of protein sequence length is relatively
concentrated.

Besides, the distribution of the amino acid frequencies is also
related to the evolution and function of proteins. Therefore, we
analysed the frequency distributions of 20 natural amino acids in
all PE_PGRS proteins. The percentage value of each amino acid of
all PE_PGRS proteins is shown in the pie chart (Fig. 2B). It is appar-
ent that glycine (G) is the most frequently occurring residue in the
PE_PGRS proteins, accounting for 47.20% in all 20 amino acids. Gly-
cine is one of the proteinogenic amino acids encoded by all the
codons starting with GG (e.g., GGU, GGC, GGA, GGG). Due to its
compact form, glycine is integral to the formation of alpha-
helices in the protein secondary structures. This result is consistent
with previous research that PE_PGRS proteins are glycine-rich pro-
teins [61]. The second most abundant amino acid is alanine (A),
which accounts for precisely 16.31% of the total and threonine
(T) accounts for 6.23% ranked the third. It is also observed that leu-
cine (L), serine (S), and asparagine (N) have similar percentages,
which are 5.85%, 4.73%, and 4.48%, respectively, while the other
14 amino acids together account for � 15% in total.
3.1.2. Analysis of sequence motifs of known PE_PGRS proteins
Prior researches have reported that PE_PGRS proteins have spe-

cial N-terminal and C-terminal domains [62,63]. To better under-
stand the N-terminal and C-terminal sequence profiles of
PE_PGRS proteins, we examined the N- and C-terminal sequences
of PE_PGRS proteins with the Logolas package [64], which is an R
package to characterise and display the statistically significant
sequence motifs. In this study, we employed a window size of 50
amino acids to extract the N- and C-terminal sequences from the
curated PE_PGRS proteins, and these proteins with less than 50
amino acids were removed. The generated sequence logo diagrams
for N- and C-terminal sequences are shown in Fig. 2C and Fig. 2D,
respectively. At each position of the sequence logo plots, amino
acids are stacked together, and the total height of the stack is
related to the information content of the corresponding position.
Furthermore, the height of each amino acid is proportional to its
relative frequency, and the amino acids are ordered by their
frequencies.

Several notable amino acid preferences in N-terminal sequences
are observed in Fig. 2C. First, we can find glycine (G) has relatively
higher frequencies than any other amino acids in every position of
the N-terminal sequences except position 1, which is dominated by
methionine, the initiation codon. Alanine (A) is the second most
abundant amino acid in the N-terminal sequences, which is pre-
sent across multiple positions, including positions 6, 7, 12–16,
19, 27, 28, 30–34, 41, 42, 44, 49, and 50. In addition, a tetra-

https://github.com/Microsoft/LightGBM


Fig. 2. Sequence analysis of known PE_PGRS proteins. (A) Distribution of all collected PE_PGRS proteins according to their protein sequence lengths. (B) Frequency
distributions of 20 amino acids in all accumulated PE_PGRS proteins. (C) Sequence-logo of the N-terminal sequence of PE_PGRS proteins. (D) Sequence-logo of the C-terminal
sequence of PE_PGRS proteins.
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peptide motif DEVS at the positions 45–48 and DXXS (X represents
any amino acids) at the positions 44–47, which are consistent with
the findings in previous research [62,63]. These two motifs could
have evolved for serine phosphorylation and caspase-3 binding
recognition. The sequence logo in Fig. 2D shows that the C-
terminal sequences of PE_PGRS proteins also exhibit an enrich-
ment with glycine (G) and alanine (A) residues across all these
positions. These results are consistent with the findings in
Fig. 2B, that glycine (G) and alanine (A) are the top two most fre-
quently occurring amino acids in PE_PGRS proteins. Besides, aspar-
agine (N) and arginine (R) are also enriched in C-terminal
sequences compared with other residues, although arginine (R)
only accounts for 0.5% in total (Fig. 2B). These observations are
consistent with studies that C-terminal sequences of PE_PGRS pro-
teins bearing GGA or GGN multiple tandem repeat structure, and
glycine (G) and alanine (A) are enriched in a GGAGGX motif
[63,65].
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3.2. Unsupervised analysis

We employed three groups of sequence and physiochemical
features in this study to intuitively explore each feature group’s
ability and all features to distinguish PE_PGRS proteins and non-
PE_PGRS proteins. We conducted an unsupervised analysis by
employing K-means algorithm [66] and the results are presented
in Fig. 3. For each feature group, we employed K-means to conduct
a two-class clustering on all positive (PE_PGRS) and negative (non-
PE_PGRS) samples in training and independent test datasets.
Besides, the samples were mapped onto the two-dimensional fea-
ture space by using the Principal Component Analysis (PCA) algo-
rithm, which allows presenting the clusters with a two-
dimensional scatter plot and measures the differences of samples
by their mutual distances in space. As shown in Fig. 3, positive
(PE_PGRS) and negative (non-PE_PGRS) samples are represented
with different shapes, e.g., a dot means a positive sample, and a



Fig. 3. Distribution and clustering of PE_PGRS and non-PE_PGRS proteins based on three groups of features and all features. For each feature group, samples were clustered
into two groups using the K-means algorithm, different clusters are represented by different colours. The PE_PGRS and non-PE_PGRS proteins are presented in different
shapes, where dots mean PE_PGRS proteins and multiplication signs represent non-PE_PGRS proteins. The inset bar chart in each sub-figure shows the samples distribution
(PE_PGRS vs. non-PE_PGRS) in each cluster.
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multiplication sign represents a negative sample. And the cluster-
ing results are represented by different colours (e.g., green and
red). The inset bar chart in each sub-figure shows the distribution
of positive and negative samples in each cluster (the detailed
results are summarised in Supplementary Table S3). Overall, we
can see that the distribution of the positive and negative samples
represented by any of the three groups of features, or All features
is randomly scattered, and it is difficult to observe an apparent
boundary between different classes on each sub-figure.

However, when further investigating the clustering results, we
find that Group 1, Group 2, and All features achieved promising
classification performance. For Group 1 and Group 2, positive sam-
ples are dominated in Cluster 2 (99.63% for Group 1 and 99.72% for
Group 2) and Cluster 1 for All features (99.56%). These clustering
results not only show a high division of positive and negative sam-
ples but also exhibit a low mixture rate of two classes within each
cluster. For Group 1 and Group 2, positive samples are more likely
to be classified into Cluster 1, and there are 80.03% and 79.91% neg-
ative samples in Cluster 1 of Group 1 and Group 2, respectively. For
All features, 82.13% of samples in Cluster 2 are negative samples.
Although Group 3 achieved relatively lower-division performance
than the other two, it also showed promising classification ability
(90.53% negative samples in Cluster 1 and 74.95% positive samples
in Cluster 2).
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The good performances of these three groups of features
demonstrate that the sequence composition features, and physico-
chemical property encodings can provide a suitable characterisa-
tion of the differences between PE_PGRS/non-PE_PGRS proteins.
In addition, we can find that All features achieved the best balance
between the high division and low mixture rate of two classes,
which provide a high-quality discriminative ability and a reliable
feature space to build robust supervised prediction models. There-
fore, we applied All features as the initial feature set to conduct the
supervised learning analyses in the following sections.

3.3. Performance evaluation of supervised learning algorithms on the
training dataset

This section conducted a comprehensive performance and com-
putational time evaluation and compared 13 popular supervised
machine learning algorithms using 10-fold cross-validation tests
on the training dataset. As mentioned in Section 3.2, All features
achieved the best predictive performance in terms of high division
and low mixture rate of positive and negative samples. Therefore,
we used All features as the initial feature set to train and evaluate
the prediction models. The performance comparison was con-
ducted on the training dataset with 10 times 10-fold cross-
validation tests, and the average results are provided in Table 2.



Table 2
Performance comparison results of 13 popular machine learning algorithms on the training dataset (the classifiers are ranked according to the accuracy, and the best values are
marked in bold).

Classifier Accuracy AUC Recall Precision F1 MCC TT (Sec)

CatBoost 0.9559 0.9850 0.9168 0.9873 0.9506 0.9131 286.863
XGBoost 0.9557 0.9848 0.9186 0.9849 0.9505 0.9125 19.777
lightGBM 0.9533 0.9861 0.9168 0.9814 0.9478 0.9076 8.471
GBDT 0.9520 0.9816 0.9154 0.9799 0.9464 0.9050 52.49
Random Forest 0.9511 0.9802 0.9116 0.9819 0.9453 0.9035 2.905
Extra Trees 0.9483 0.9804 0.9051 0.9822 0.9419 0.8981 4.696
AdaBoost 0.9420 0.9735 0.9182 0.9554 0.9362 0.8839 10.669
Logistic Regression 0.9333 0.9621 0.8953 0.9586 0.9256 0.8673 5.558
Decision Tree 0.9187 0.9182 0.9102 0.9152 0.9123 0.8373 2.951
Naïve Bayes 0.9057 0.9160 0.8621 0.9299 0.8945 0.8117 0.1
SVM 0.8657 0.8535 0.7118 0.9923 0.8289 0.7503 0.825
KNN 0.8553 0.8971 0.7274 0.9495 0.8232 0.7229 6.25
LDA 0.8040 0.8260 0.8139 0.7757 0.7942 0.6083 11.757
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We can make several important observations from Table 2.
First, tree-based classifiers achieved overall better predictive per-
formance compared with other algorithms and the top seven clas-
sifiers in terms of accuracy were all tree-based algorithms. Second,
we can find that CatBoost achieved the best performance in terms
of accuracy, precision, F1 and MCC, while XGBoost secured the best
recall and lightGBM was the best-performing classifier in terms of
AUC. Third, in terms of the time-usage of model training, Naïve
Bayes was the most time-saving algorithm for model training,
and lightGBM was the most time-saving method among the four
best gradient boosting tree algorithms. While CatBoost required
considerable time for model training, which was � 34 times longer
than lightGBM. Finally, we selected the top five classifiers in terms
of accuracy, including CatBoost, XGBoost, lightGBM, GBDT and RF,
to do the further tests.
3.4. Performance evaluation and comparison with state-of-the-art
alignment-based approaches and remote homology detection tools on
the independent test dataset

This section further evaluated and compared the predictive per-
formance of the top 5 classifiers selected in Section 3.3 with two
state-of-the-art alignment-based approaches, including BLASTP
[15] and PHMMER [16], and three remote homology detection
tools, including HHsuite [18], ProtDec-BLSTM [19], and ProtDet-
CCH [20], based on the independent test dataset. The independent
test dataset searched against the training dataset by alignment-
based approaches and remote homology detection tools. For each
protein sequence in the independent test dataset, the predicted
label was assigned as the same top-matched protein label with
the lowest E-value in the training dataset. For example, if a pro-
tein’s top matched protein belongs to the positive samples in the
training dataset, we marked the predicted label as positive and vice
versa. Therefore, we compared the top five machine learning-based
predictors, including CatBoost, XGBoost, lightGBM, GBDT and RF,
with two alignment-based approaches and three remote homology
detection tools using the same independent test dataset. The per-
formance comparison results are summarised in Fig. 4A, and the
detailed results are provided in Table 3.

We can find that, in general, the five machine learning models
achieved the best performance, followed by the three remote
homology detection tools, and two alignment-based approaches
performed worst. More specifically, lightGBM and XGBoost
achieved overall better predictive performance compared with
others, where lightGBM achieved the best predictive performance
in terms of accuracy, AUC, precision, and MCC, while XGBoost per-
formed best in terms of recall and F1. In contrast, BLASTP and
PHMMER performed worse than the machine learning algorithms,
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with the only exception that PHMMER achieved 0.9830 in terms of
precision, which ranked 4th in these ten compared methods. How-
ever, the line chart in Fig. 4A demonstrates the machine learning
predictors had an overwhelming advantage over alignment-based
approaches and remote homology detection tools in terms of other
performance evaluation metrics. The reason is that we employed
both sequence profiles and physicochemical properties in training
the machine learning predictors, while alignment-based
approaches are only focused on sequence homology patterns.
Therefore, machine learning-based predictors can explore more
valuable patterns and enable more reliable prediction results.

Considering the results of both training and independent tests,
we determined that CatBoost, XGBoost and lightGBM were the top
three performed algorithms. CatBoost achieved overall better
results on the training dataset, while lightGBM and XGBoost
obtained better independent test results. Besides, lightGBM also
earned the best AUC on the training dataset and was the most
time-saving algorithm compared with XGBoost and CatBoost.
Therefore, we finally selected to optimise lightGBM to develop
our prediction tool PEPPER because lightGBM can make the predic-
tion fast and accurately.
3.5. Feature selection further improved the performance

As mentioned before, we used three groups of features to train
the machine learning models. However, it is likely that the initial
feature sets probably have some redundant and noisy features,
which have negative impacts on model training. Therefore, to fur-
ther improve the predictive performance of lightGBM, we
employed feature selection to identify the informative feature sub-
sets. In this section, we compared two two-step feature selection
strategies, Strategy 1 and Strategy 2, to find the optimal feature
subset. Strategy 1 combines mRMR (minimum redundancy maxi-
mum relevance) [67] and incremental feature selection (IFS) algo-
rithms, which is widely used in many bioinformatics tasks [38,56-
58]. In contrast, Strategy 2 combines feature importance of
lightGBM and the IFS algorithm. The only difference between these
two strategies is the first step, e.g., Strategy 1 ranked all the initial
features according to the mRMR algorithm. However, we used the
feature importance score calculated by lightGBM to rank the fea-
tures in Strategy 2. Then, in the second step, the IFS algorithm com-
bined with lightGBM to find the optimal feature subsets on the
training dataset. For the ranked feature set F ¼ ðf 1; f 2; � � � f n�1; f nÞ
resulted in the first step (n represents the number of features),
IFS constructs n feature subsets by adding one feature by adding
one feature from F. For example, the i-th feature subset is defined
as Fi ¼ ðf 1; f 2; � � � f iÞ. Then, n lightGBM classifiers were trained by 10
times 10-fold cross-validation tests and the feature set Fi that



Fig. 4. (A) Performance evaluation and comparison of top five machine learning-based predictors with BLASTP and PHMMER. (B) Performance comparison results of two
feature selection strategies on the training dataset. (C) Performance comparison results of two feature selection strategies on the independent test dataset. (D) Heatmap plot
of the SHAP values for the top 20 important features on the independent test dataset.

Table 3
Performance comparison results of top five machine learning models, two popular alignment-based approaches (BLASTP and PHMMER), and three remote homology detection
tools (ProDec-BLSTM, ProDet-CCH, and HHsuite) on the testing dataset.

Algorithm Accuracy AUC Recall Precision F1 MCC

lightGBM 0.9620 0.9893 0.9302 0.9859 0.9572 0.9243
XGBoost 0.9620 0.9884 0.9357 0.9803 0.9575 0.9240
CatBoost 0.9615 0.9882 0.9302 0.9847 0.9567 0.9233
GBDT 0.9554 0.9849 0.9313 0.9700 0.9502 0.9105
RF 0.9584 0.9845 0.9246 0.9835 0.9531 0.9173
BLASTP 0.8770 0.8699 0.7874 0.9333 0.8540 0.7573
PHMMER 0.8875 0.8780 0.7672 0.9830 0.8618 0.7861
ProDec-BLSTM 0.9225 0.9167 0.8492 0.9783 0.9092 0.8485
ProDet-CCH 0.9392 0.9357 0.8947 0.9700 0.9308 0.8790
HHsuite 0.9356 0.9345 0.9213 0.9369 0.9290 0.8702
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achieved the highest AUC was selected as the optimal feature set.
The feature selection results of Strategy 1 and Strategy 2 compared
with the original model on training and independent test dataset
are shown in Fig. 4B and 4C (detailed results provided in Supple-
mentary Table S4), respectively.

The results showed that Strategy 2 performed best in terms of
accuracy, AUC, recall, F1 and MCC compared with Strategy 1 and
the original model on both training and independent test datasets.
In addition, the optimal feature subset selected by Strategy 2 only
has 111 features, which significantly reduced the feature dimen-
sional compared with the original feature set and the optimal fea-
ture set selected by Strategy 1. Therefore, the feature selection
conducted by Strategy 2 further enhances the accuracy of the pre-
diction model and reduces the computational complexity for
model training. Finally, these 111 optimal features were used to
train the lightGBM model and build our predictor, PEPPER, for
PE_PGRS protein prediction. The learning curves of PEPPER with
10-fold cross-validation tests on the training dataset are provided
in Supplementary Figure S1. From the learning curves we can find
the training score is always around the maximum, and the valida-
tion score could be little increased with more training samples, but
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from a larger perspective, it is basically maintained in a stable
range. The corresponding ROC curves and confusion matrix of PEP-
PER are provided in Supplementary Figure S2. The statistic sum-
marises of the optimal feature subset are provided in
Supplementary Table S5. We can find that there are 62 CKSAAP fea-
tures in the optimal feature subset, which account for 2.58% fea-
tures of all CKSAAP features. In addition, there are also 15 CTDD,
12 CTDC, 6 ACC and CKSAAGP, 5 CTDT and CTriad features in the
optimal feature subset. Overall, CTDC and ACC features were more
informative and more proportional features were selected as the
optimal features. The selected CTDC features account for 30.77%
(12 of 39) of all CTDC features, and 30% (6/20) of AAC features were
selected in the optimal feature subset. In comparison, CTriad and
CKSAAP were relatively sparse, as only 1.46% (5/343) and 2.58%
(62/2400) of all CTriad and CKSAAP features were selected in the
optimal feature subset.

3.6. Model interpretation

PEPPER trained on the optimal feature subset selected by the
two-step feature selection achieved very competitive performance
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in predicting PE_PGRS proteins. However, the contribution and
directionality of the optimal features for the lightGBM model are
still unknown. Therefore, we conducted the model interpretation
analyses by leveraging the Shapley Additive explanation (SHAP)
algorithm [68] to identify the most contributed features and their
relationships with the prediction results of PEPPER. The direction-
ality of a feature means how a feature value relates to the predic-
tion results of the predictor. Fig. 4D and Supplementary Figure S2
show the heatmap matrices of the top 20 critical features ranked
based on the SHAP value for PEPPER on the independent test data-
set and training dataset, respectively. In the heatmaps, the samples
on the x-axis, the model’s inputs on the y-axis, and the SHAP val-
ues are represented on a colour scale. The samples are ordered
based on hierarchical clustering in SHAP by their explanation sim-
ilarity; therefore, the samples with the same prediction results
were grouped together, such as proteins with a high impact from
the CKSAAP feature GG.gap2 shown in Fig. 4D and Supplementary
Figure S3. The prediction results of PEPPER are shown in the line
chart above the heatmap matrix (namely f(x)), the global impor-
tance of each feature is represented in the bar plot on the right-
hand side of the heatmap, and the top 20 important features are
sorted according to the global importance. In addition, we also plot
the beeswarm plot of the top 20 features’ SHAP value in Supple-
mentary Figure S4, which displays an information-dense sum-
mary of how the top features in training and independent test
datasets impact the PEPPER’s output. Each sample is represented
by a single dot on each feature row, and the � position is deter-
mined by the SHAP value of the feature, while colour in beeswarm
plots shows the original value of the feature. We can explore the
directionality of each feature from the beeswarm plots. For exam-
ple, we can find that when ‘GG.gap20 takes a higher value, PEPPER
is more likely to predict the sample as PE_PGRS protein, while
when ACC feature ‘I’ takes a higher value, the prediction result is
less likely to be positive.

Overall, several important observations can be explored from
Fig. 4D, S2, and S3. First, we can find three CKSAAP features (‘GG.-
gap20, ‘GG.gap40, and ‘GG.gap50) and two AAC features (‘G’ and ‘I’)
in the top five important features. The three CKSAAP features are
all for amino acid (AA) pair GG, and ‘gap20, ‘gap40, and ‘gap50 repre-
sent the AA pair separated by 2, 4, and 5 residues, respectively.
These results are consistent with the findings of sequence analysis
that PE_PGRS proteins are glycine (G)-rich proteins, and several
sequence motifs contained glycines (G), such as GGA, GGN, and
GGAGGX. Second, the physicochemical property features, such as
hydrophobicity, charge, and solvent accessibility from the CTD fea-
ture group are also very important for PEPPER. Third, most fea-
tures’ higher value is more likely to predict the sample as a
positive one, while several features are opposite. Altogether, these
results demonstrate that both sequence profiles and physicochem-
ical properties contributed to the outstanding predictive perfor-
mance of PEPPER.

3.7. Case studies

To further illustrate the capacity of PEPPER, we performed case
studies of two PE_PGRS proteins from the independent test data-
set. PEPPER can successfully predict these two proteins as PE_PGRS
proteins while BLASTP and PHMMER cannot with default parame-
ters. The first protein is PE-PGRS family protein PE_PGRS26 (Gene:
PE_PGRS26; UniProt ID: PG26_MYCTU; UniProt Accession:
Q79FP3), and the second protein is PE-PGRS family protein
PE_PGRS34 (Gene: PE_PGRS34; UniProt ID: PG34_MYCTU; UniProt
Accession: P9WIF3). We predicted the protein 3D structure of
these two case study proteins using AlphaFold2 and visualised
them in Fig. 5A and 5B. We can find that the structures of these
two proteins are very similar, and they are primarily composed
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of alpha-helices. This is because glycine is integral to form alpha-
helices and PE_PGRS proteins are glycine enriched. The domain
and disordered regions of these two proteins are presented in
Fig. 5C, and we can find they both have a PE domain at the N-
terminal and ended with a disorder region at the C-terminal.

3.8. Proteome-wide prediction and gene ontology enrichment analysis

In this section, we applied PEPPER to pre-compute a compre-
hensive proteome-wide prediction of PE_PGRS proteins for
Mycobacterium. We collected 190,061 Mycobacterium proteins
from the TrEMBL database, which is the automatically annotated
and not reviewed database in the UniProt database. To obtain
high-confidence prediction results, we also applied the probability
threshold at 99.99%, 99%, and 80% to conduct the prediction. The
statistical summary of the predicted PE_PGRS proteins with the
probability thresholds 50%, 80%, 99%, and 99.99% is provided in
Table 4. A complete list of the predicted PE_PGRS proteins at these
four thresholds are freely available at the download webpage of
the PEPPER webserver.

3.9. Webserver/software development

In order to facilitate community-wide efforts in performing
high-throughput analysis and prediction of novel PE_PGRS pro-
teins, we developed a local stand-alone tool and an online web-
server for PEPPER, which are freely available at http://web.
unimelb-bioinfortools.cloud.edu.au/PEPPER/. The local stand-
alone tool was developed with Python, and the web page of PEPPER
was developed based on PHP and managed by Apache HTTP Server
and configured in an 8-core Linux server machine with 32 GB RAM
and 500 GB hard disk supported by the Melbourne Research Cloud
of The University of Melbourne. Users can input their amino acid
sequences of interest or upload an input sequence file in the FASTA
format, then the task will be submitted to the server-side to make
the prediction, and the results will return to the webpage or email
to the user’s optionally provided email address. A detailed step-by-
step user manual for using the PEPPER web server can be found on
the help page of the webserver. Besides, the local stand-alone tool
is provided on the website, and users can download it to conduct
large-scale high-throughput predictions.

In addition, to demonstrate the computational efficiency of PEP-
PER, we conducted a performance comparison of PEPPER with
BLASTP and PHMMER by using the independent test dataset on
the server machine of PEPPER webserver (8-core Linux server
machine with 32 GB RAM and 500 GB hard disk). We conducted
10 times experiments and reported the average time used for pre-
dicting PE_PGRS proteins. The time-usage comparison results are
provided in Table 5. The results show that BLASTP and PHMMER
required considerable computational times compared with PEP-
PER, which is 350 times and 400 times longer than PEPPER, respec-
tively. Therefore, PEPPER significantly reduces the calculation time
compared with two alignment-based approaches and three remote
homology detection tools, and provides a high-throughput predic-
tion ability for PE_PGRS proteins.

3.10. Limitations and future work

Despite the performance of PEPPER for predicting PE_PGRS pro-
teins in Mycobacterium, it has the following limitations.

The first limitation is that PEPPER is a machine learning-based
approach trained on multiple manually designed sequence-
derived features. As is widely known, the effectiveness of machine
learning models depends largely on the feature representations
used for training. This study only considered sequence profile
and amino acid physicochemical property features. However, fea-
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Fig. 5. (A) Protein 3D structure of PE_PGRS26 (UniProt Accession: Q79FP3) predicted by AlphaFold2. (B) Protein 3D structure of PE_PGRS34 (UniProt Accession: P9WIF3)
predicted by AlphaFold2. (C) Domain and disorder regions of two case study proteins. (D) Visualisation of the enriched Gene Ontology terms for the predicted PE_PGRS
proteins.

Table 4
Statistical summary of the proteome-wide prediction of PE_PGRS proteins at 50%,
80%, 99%, and 99.99%

Probability threshold Number of predicted PE_PGRS proteins

99.99% 1,939
99% 6,584
80% 10,216
50% 13,596

Table 5
Time usage comparison results between PEP-
PER, BLASTP, PHHMER, ProDec-BLSTM, Pro-
Det-CCH, and HHsuite for PE_PGRS protein
prediction on the independent test dataset.

Approaches Average time usage

PEPPER 0 min 24.777 s
BLASTP 145 min 13.675 s
PHMMER 167 min 7.273 s
ProDec-BLSTM 115 min 31.8 s
ProDet-CCH 251 min 50.2 s
HHsuite 248 min 13.8 s
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tures from other perspectives, such as protein 3D structural fea-
tures, can help further improve the prediction performance and
enhance the understanding of the 3D structural preferences of
PE_PGRS proteins. Therefore, in the future, we plan to map the pro-
tein sequence to the 3D structures and explore the 3D structural
preference of PE_PGRS proteins.

The second limitation is that PEPPER just focused on PE_PGRS
proteins, which is a subfamily of the PE family. PEPPER can only
be used as a touchstone to help explore the properties of a small
part of this complex protein family. Consequently, we plan to
develop a comprehensive database and machine learning-based
model to systematically explore the characteristics of the whole
PE family proteins in the future.
4. Conclusion

This study developed the first machine learning-based predic-
tor, PEPPER, which can identify PE_PGRS proteins rapidly and accu-
rately compared with conventional alignment-based approaches
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BLASTP and PHMMER. To find the optimal machine learning algo-
rithm to build the classifier, we conducted a comprehensive perfor-
mance evaluation of 13 popular machine learning algorithms
combined with three groups of sequence and physicochemical fea-
tures for predicting PE_PGRS proteins. In addition, two types of fea-
ture selection strategies were evaluated and employed to select the
optimal features to further improve the predictive performance.
Consequently, PEPPER was constructed based on an optimised
lightGBM model. The empirical studies illustrate PEPPER achieved
superior predictive performance and significantly reduces the
computational cost compared with two state-of-the-art
alignment-based approaches BLASTP and PHMMER. The successful
performance of PEPPER can be attributed to four major factors: i) A
comprehensive database collected from NCBI and Swiss-Prot data-
bases provides up-to-date knowledge of PE_PGRS proteins; ii) A
variety of sequence and physicochemical features provide a better
characterisation of PE_PGRS proteins than that of alignment-based
approaches; iii) The boost-based ensemble algorithm lightGBM not
only reduced the training time but also provided a robust predic-
tive power; iv) The two-step feature selection strategy further
improved the model performance and reduced the computational
complexity, and the selected features’ importance and contribution
were examined by SHAP algorithm. Furthermore, we developed
the PEPPER webserver and local stand-alone tool and made them
freely available at http://web.unimelb-bioinfortools.cloud.edu.au/
PEPPER/. We anticipate PEPPER will serve as a valuable tool for
facilitating the community-wide efforts for PE_PGRS data analysis.
We intend to apply machine learning techniques to develop a pre-
diction system for the whole PE family proteins.
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