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Background: Human serum has the potential to become the most informative source of novel 

biomarkers, but its study is very difficult due to the incredible complexity of its molecular compo-

sition. We describe a novel tool based on biodegradable nanoporous nanoparticles (NPNPs) that 

allows the harvesting of low-molecular-weight fractions of crude human serum or other biofluids. 

NPNPs with a diameter of 200 nm and pore size of a few nm were obtained by ultrasonication 

of nanoporous silicon. When incubated with a solution, the NPNPs harvest only the molecules 

small enough to be absorbed into the nanopores. Then they can be recovered by centrifugation 

and dissolved in water, making the harvested molecules available for further analyses.

Results: Fluorescence microscopy, gel electrophoresis, and mass spectrometry were used to 

show the enrichment of low-molecular-weight fraction of serum under physiological conditions, 

with a cut-off of 13 kDa and an enrichment factor .50.

Conclusion: From these findings, we conclude that ability to tune pore size, combined with the 

availability of hundreds of biomolecule cross-linkers, opens up new perspectives on complex 

biofluid analysis, discovery of biomarkers, and in situ drug delivery.

Keywords: nanoporous silicon, nanoparticle, biomarker discovery, human serum proteomics, 

harvesting

Background
The search for novel tools for early diagnosis is one of the major issues in medical 

research. The discovery of biomarkers in biological fluids and blood is especially chal-

lenging due to the tremendous number of biomolecular species, which differ by many 

orders of magnitude in their relative abundance.1,2 Of the several approaches proposed 

in the last few years, the study of the proteome seems to hold the greatest potential.2,3 

Proteomics is a quickly developing area of biochemical investigation. The basic aim of 

proteomic analysis is the identification of specific protein patterns from cells, tissues, 

and biological fluids related to physiological or pathological condition.2,4 It provides 

a different view from that of gene expression profiling, which does not evaluate post-

transcriptional and post-translational modifications, or protein compartmentalization 

and half-life changes (eg, ubiquitination and proteosome-driven degradation). All these 

characteristics make the protein profile much more complex but more informative 

than gene expression profiling. Several approaches can be used to perform proteomic 

analysis; among these, the most common are methods based on 2D-polyacrylamide 

gel electrophoresis (2D-PAGE) and mass spectrometry (MS).5–9

It is now well accepted that the low-molecular-weight (LMW), low-abundance 

fraction of biological fluids might contain the most informative source of novel 
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biomarkers. The conventional analytical methods mentioned 

above do not seem to reach a sufficient degree of resolution 

and sensitivity to reliably detect and identify LMW and 

low-abundance peptides. Therefore, research has recently 

focused on the development of innovative devices that are 

able to enrich this fraction of body fluid proteome, making 

it available for use in common analytical tools.

Harvesting and enrichment of candidate biomarkers 

from complex protein mixtures can be pursued in different 

ways. Usually, in the plasma or serum, in which albumin and 

immunoglobulin alone account for .90% of total protein 

content, these species are conventionally removed prior to 

2D-PAGE and MS by immunoaffinity depletion columns. 

However, it must be emphasized that many potentially 

informative biomarkers, represented by very small peptides 

noncovalently associated with the carrier protein albumin, 

are lost following this procedure. Many commercial albu-

min removal kits based on different methods are available, 

but it has been demonstrated that they can cause loss of 

several low-abundance proteins, including albuminome.10–12 

Moreover, most of these sieving/filtering systems do not 

allow sufficient flexibility of the whole process. Therefore, 

alternative approaches are urgently needed. Nanotechnology 

methods appear to offer a promising and powerful strategy 

for overcoming these limitations.13–16

Discovered over 40 years ago, porous silicon (PSi) has 

attracted increasing attention in many fields of research for 

its interesting features. In particular, the demonstration of its 

biodegradability in physiological environments has opened 

up new perspectives for biomedical application.17 The desired 

dissolution rate can be obtained through the accurate control 

of the morphology, pore size, and pH. The typical dissolution 

rate in alkaline conditions ranges from a few minutes to up 

to a few days. Moreover, the well-known functionalization 

processes of the porous surface provide further control of 

bioreactivity and hydrophobicity.18–21 Various surface deriva-

tization has been reported in the literature and hundreds of 

different cross-linking agents are now available to selectively 

bind the target molecules.22

In this paper, we present a direct approach to harvesting 

the LMW fraction of a complex solution that relies on 

3 important properties of silicon nanoporous nanoparticles 

(NPNPs): (a) they can act as nanosponges and absorb small 

molecules depending on nanopore size; (b) they can be 

separated from solution through efficient centrifugation 

(the nanoparticle density is higher than that of the solvent); 

(c) they can be dissolved in water. This last property is 

relevant because the filtration process can be carried out 

in physiological solution, without the need for introducing 

particular solvents, which can contaminate, denaturate, or 

degrade the potential biomarkers. The whole process is 

depicted in Figure 1 (Figures 1a–c fabrication process and 

Figures 1c–h harvesting process). The starting solution is 

incubated with NPNPs which, bcause of size-exclusion, can 

absorb only the LMW fraction into the nanopore. Afterwards, 

NPNPs can easily be recovered from solution by means of 

centrifugation, and resuspended in water, or other solvents 

in which they can be dissolved. The harvested molecules 

are then available, in their native state, for further analyses. 

This easy, cheap, and fast process enables the harvesting of 

peptides ,13 kDa from raw serum.

Modern biology demands not only fast and easy tech-

niques but also full compatibility with existing protocols. 

The present approach can be mixed and matched with the 

majority of current investigation protocols.

Material and methods
NPNPs were fabricated by ultrasonication of a thin film of 

nanoporous silicon.13–24 PSi was obtained by anodization 

of a boron-doped silicon wafer (resistivity 5–10 Ωcm) of 

[100] crystal orientation, using an electrolyte binary mix-

ture of hydrofluoric acid (25%), water (25%), and ethanol 

(50%). Applied constant current density was 10 mA/cm2 for 

5 minutes at 25°C. Samples were rinsed in deionized water, 

then in ethanol and pentane. The PSi film was oxidized in an 

oven at 200°C for 2 hours. In order to obtain NPNPs, the PSi 

film was sonicated in dimethylformamide for about 60 min-

utes and then, after washes in ethanol, ultrasonicated (5 W) 

in water for 10 minutes at a constant temperature of 4°C, and 

finally filtered to eliminate impurities .500 nm.

An ad hoc protein mixture was prepared by mixing 

50% (v/v) human serum albumin (MW 66,000 Da; Sigma-

Aldrich, St. Louis, Missouri, USA); 30% (v/v) bovine 

plasma gamma globulin (heavy chain MW 45,000 Da; 

light chain MW 30,000 Da; Biorad, Berkeley, California, 

USA); and 20% (v/v) aprotinin (6,500 Da; Sigma-Aldrich). 

All proteins were dissolved at a concentration of 1 mg/

mL in 100 mM sodium phosphate buffer and 9% (w/v) 

sodium chloride pH 7.4 (PBC) to reproduce physiological  

conditions.

Human serum was obtained from a healthy anonymous 

male donor and collected in accordance with Human 

Proteome Organization (HUPO) plasma proteome project 

guidelines.25 Approximately 8 mL of blood were drawn 

by venipuncture and collected in tubes without additive 

and allowed to clot at room temperature for 40 minutes. 
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Figure 1 Pictorial description of the whole process from nanoparticles fabrication to splitting: (a) anodization of silicon wafer to produce porous silicon film; (b) porous 
silicon film on silicon substrate; (c) nanoporous nanoparticles (NPNPs) fabricated by ultrasonication; (d) incubation of the nanoparticles with biological fluid; (e) centrifuga-
tion and wash; (f) supernatant; (g) pellet (physiological solution is added to dissolve it); (h) low-molecular-weight (LMW) harvesting and enrichment is demonstrated on a gel 
electrophoresis. The middle panel shows a scanning electron microscope image of nanoparticles.
Abbreviation: hMW, high molecular weight.

The sample was centrifuged within 2 hours of collection at 

1300 × g for 10 minutes, aliquoted into silicon tubes, and 

stored at −80°C.

Results and discussion
The fabricated NPNPs were deposited onto a glass substrate 

and characterized using scanning electron microscopy 

(SEM) and fluorescence microscopy. The results are reported 

in Figure 2. The pores of the particles are too small to be 

shown by SEM (Figures 2 A and B), but the typical emission 

spectrum peak at around 620 nm (Figures 2C and D) indicates 

a pore size of about 2–3 nm (excitation wavelength 408 nm). 

The nanoparticle diameter is about 200 nm, and it can be 

adjusted by changing the power and duration of the sonica-

tion process.

We studied the interactions of the nanoparticles with 

complex biological fluids in different environmental 

conditions. Here we report 3 experiments with fluids of 

increasing complexity in order to show the splitting capability 

of the NPNPs:

1. Experiment 1. Interaction with 1 component solution: 

small dyes of different MWs.

2. Experiment 2. Interaction of a complex mixture of pro-

teins with a wide range of MWs simulating a biological 

fluid.

3. Experiment 3. Interaction with crude human serum.

In the first experiment, NPNPs were incubated with 

2 solutions of fluorescent polymer of different MWs 

(6 kDa and 14 kDa dextran-fluorescein isothiocyanate 

[FITC] 10 mg, NPNP 5 mg, water 10 mL, 1 hour). After 

incubation, the NPNPs were separated from supernatant 

(centrifugation), dropped on a slide, dried, and analyzed 

with fluorescence microscopy. The results are summarized 

in Figure 3. Optical and fluorescence images collected 

on the NPNPs incubated with polymers of 14 and 6 kDa 

are reported in upper and lower panels, respectively; for 

higher MW polymer there is no trace of absorption, and 

only a weak blue fluorescence coming from salt residue is 

visible. In contrast, green fluorescence emitted by NPNPs 

incubated with the lower MW polymer indicates good  

absorption.

After incubation and centrifugation, the recovered 

NPNPs can be dissolved in water at a rate depending on the 

temperature and acidity of the medium. At pH 8 and 90°C, 
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the dissolution takes a few minutes, but it can be also carried 

out at room temperature in a few hours, if nondenaturing 

conditions are needed. At pH ,5, the NPNPs do not dissolve, 

allowing their long-term storage in water at or above room 

temperature.

In experiment 1, the amount of harvested fraction of 

dextran-FITC (MW 6 kDa) can be evaluated by comparing 

the total fluorescence intensity of 2 solutions (harvested vs 

supernatant). The 2 solutions show very similar fluorescence 

intensity values, indicating that, under the experimental 

conditions described above, 50% of the molecules were 

harvested, whereas the remaining 50% were left in solution. 

This result shows that the loading capacity is very high, about 

1 mg of harvested molecules for each mg of NPNPs.

In the second experiment, the ability of NPNPs to enrich 

the LMW fraction of a complex mixture was tested with an 

ad hoc protein mixture (see Materials and methods). For 

this purpose, the effects of several parameters such as pH, 

osmolarity, temperature, and incubation time were studied, 

and conditions were optimized, and, finally, a volume of 

200 mL of protein mixture was incubated with 5 mg of 

NPNPs (about 1015 particles) at room temperature for 1 hour. 

NPNPs were subsequently separated from supernatant by 

centrifugation, and washed once with PBC buffer. The 

sodium dodecyl sulfate-PAGE (SDS-PAGE) in Figure 4 

(panel A) clearly shows that nanoparticles selectively retain 

small molecules as aprotinin (MW 6,500 Da), whereas 

proteins with higher MW are completely excluded from 

the nanopores. We noted that during the incubation a small 

fraction of the nanoparticles dissolve releasing silicic acid 

into the solution (about 8% of NPNP volume under our 

conditions).26 This amount can be decreased by lowering 
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Figure 2 Nanoporous nanoparticles characterization. Scanning electron microscope images of nanoporous nanoparticles dried on a slide (panels A and B). The pores of the 
particles are too small to be shown, but the typical emission spectrum in red-orange band (panels C and D) indicates a pore size of about 2–3 nm (excitation wavelength 
408 nm).
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Figure 3 Optical and fluorescence images of the nanoporous nanoparticles (NPNPs) after incubation with 2 fluorescent polymers of different molecular weights (MWs): 
dextran-FITC 14 kDa (panels A and B), and dextran-FITC 6 kDa (panels C and D). The adsorption of the lighter polymer is clearly indicated by the green fluorescence 
emitted from the nanoparticles (panel D). In contrast, no green fluorescence can be observed being emitted from the heavier polymer (the blue fluorescence comes from 
salt residues), confirming the MW cut-off.

the incubation temperature, pH, or incubation time when  

possible.

In the third experiment, the same protocol for experiment 

2 was applied to raw human serum to demonstrate that 

NPNPs are able to selectively enrich LMW serum proteome 

(LMWP). After 1 hour of incubation (100 mL of serum 

sample diluted 1:2 with PBC buffer, 5 mg of NPNPs), the 

LMW fraction was recovered by dissolving the nanoparticles 

in PBC buffer for 12 hours at 37°C. We noted that the 

dissolution process can be hastened by heating the solution 

and adding a base (to increase pH) or other solvent. 

An aliquot of serum, before and after incubation, was 

analyzed by SDS-PAGE using a 16.5% ready prepared 

tris-tricine/peptide gel. The efficiency of NPNPs to 

selectively enrich the LMWP is clearly demonstrated in 

the SDS-PAGE analysis shown in Figure 4 (panel B): in 

lines 2 and 3, crude human serum and supernatant are 

represented. In line 4, the LMW fraction of human serum 

extracted from NPNPs is visible: no molecules .12 kDa are 

still present, except for a very small trace of albumin. From 

densitometric analysis of lane 4, it was estimated that .50% 

of total pixel volume was from LMW species, whereas in 

A B

C

20 µm

D

NPNPs & 14 kDa dextran-FITC

NPNPs & 6 kDa dextran-FITC
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lane 2 (unprocessed serum) the same area represented ,1% 

of the total pixel volume. The enrichment factor was thus 

estimated to be .50.

In order to characterize the LMW protein species 

extracted by incubation with NPNPs, gel bands from 

SDS-PAGE-separated extracts (Figure 4b, lane 4) were 

cut and processed for tryptic digestion according to 

the protocol shown in the Supplementary Information, 

section 1. Based on MW marker information, the 3 

processed gel bands corresponded to MW intervals of 

15–20 kDa, 10–15 kDa and ,10 kDa. Tryptic peptides 

were analyzed by nanoscale liquid chromatography inter-

faced with tandem MS (nanoLC-MS/MS, Supplementary 

Information, section 2).27,28 In an alternative approach, 

proteins extracted by incubation with NPNPs were 

directly digested in solution by trypsin and analyzed 

by nanoLC-MS/MS. Validated protein identifications 

are reported in 2 tables (Supplementary Information, 

section 3). Besides abundant LMW serum proteins, such 

as apolipoprotein A-II and transthyretin, a database search 

identified a number of LMW serum proteins that are not 

considered abundant, such as tetranectin, platelet basic 

protein, and dermcidin. Furthermore, LC-MS/MS analysis  

identified several high-MW proteins in the in-gel-digested 

SDS-PAGE protein bands. Such identifications confirm 

that the LMW proteome is also populated with fragments 

of abundant high-MW serum proteins.29

A comparison of the results of these experiments with 

those reported in the literature shows many remarkable 

characteristics of the NPNPs:

1. easy and cheap production.

2. controllable pore size and well known surface 

chemistry.

3. small molecules can be absorbed with a tuneable MW 

cut-off.

4. biocompatibility and biodegradability in physiological 

solution.

5. easy recovery by centrifugation,

6. long-term storage wet (water solution of pH ,5) or dry.

We note that such properties are very attractive also for 

drug delivery applications, for which the use of nanocarriers 

is attracting a lot of interest.

Conclusion
We report a straightforward tool relying on water-soluble 

silicon NPNPs used to harvest the LMW molecules in their 

native state from a complex fluid. The method is based on 

the porosity of the nanoparticles, which act as a molecular 

sieve, and their solubility in a physiological environment. The 

proposed approach can be mixed and matched with currently 

available techniques and protocols, and does not require high 

temperature, denaturing solvents, or other contaminants. 

A cut-off of about 13 kDa was demonstrated for crude human 

serum. The ability to tune pore size, combined with the 

A) Protein mixture B) Human serum

1 2 3 4 1 2 3 4

75 kDa

37 kDa

25 kDa

20 kDa

15 kDa

10 kDa

75 kDa

37 kDa

25 kDa

20 kDa

15 kDa
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Figure 4 (A) The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAge) analysis of protein mixture before and after incubation with nanoporous silicon 
particles. 100 mL of protein mixture (see text for details) was subjected to incubation with nanoparticles. Aliquots of the mixture before and after incubation were subjected 
to tris-tricine SDS-PAge and stained with Coomassie Brilliant Blue. Lane 1 A: molecular weight markers; lane 2 A: protein mixture before incubation; lane 3 A: protein 
mixture following nanoparticle incubation (supernatant); lane 4 A, low-molecular-weight (LMW) protein fraction enriched (pellet). (B) SDS-PAge analysis of human serum 
before and after incubation with nanoporous silicon particles. Serum was diluted to 1:2 with 100 mM sodium phosphate buffer, 9% (p/v) sodium chloride, ph 7.4, and 
incubated with nanoparticles. Aliquots of serum before and after incubation were subjected to tristricine SDS-PAge and stained with Coomassie Brilliant Blue. Lane 1B, 
molecular weight markers; lane 2B, crude human serum; lane 3B, human serum following nanoparticle incubation (supernatant); lane 4B, LMW serum fraction enriched using 
(nondenaturing conditions) nanoporous silicon particles (pellet).
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availability of hundreds of biomolecule cross-linkers, opens 

up new perspectives on complex biofluid analysis, discovery 

of biomarkers, and in situ drug delivery.
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Supplementary information
In-gel digestion
Gel bands below 25 kDa were excised and digested by 

trypsin incubation; selected bands were punched out manu-

ally and placed in a silicon Eppendorf tube. Gel pieces 

were washed once with 150 mL of deionized water and 

then destained by 3 washes of 150 mL 35% acetonitrile 

in 25 mM NH4HCO
3
 buffer. After destaining, trypsin 

digestion was performed overnight at 37°C with modified 

trypsin (Sigma-Aldrich, St Louis, MO, USA) 0.2 mg/mL. 

The resulting tryptic peptides were acidified, purified 

by Ziptips C18  (Millipore, Billerica, MA) according to 

the manufacturer’s procedure and eluted with 2 µL of a 

1:1 mixture of acetonitrile and 0.1% trifluoro acetic acid 

(v/v). 28 µL of loading pump solvent (see below) were 

added, and 10 µL were injected for nanoLC-MS/MS 

analysis.

In-solution digestion
Protein extracts were reduced by 2 mM DTT (1 hour 

at 37°C). 500 ng of sequencing grade modified trypsin 

(Sigma-Aldrich) were added, and digestion was allowed 

to proceed for 16 h. The resulting tryptic peptides were 

fractionated by Off-Gel eletrophoresis before nanoscale 

LC-MS/MS analysis, in order to achieve a 2-dimensional 

fractionation of the peptide mixture. An Agilent 3100 

Off-Gel fractionator (Agilent Technologies, Santa Clara, 

CA) was used. Off-Gel isoelectric focusing was essentially 

peformed according to the manufacturer’s instructions. 

The peptide mixture was diluted with carrier ampholyte 

mixture (3.6 mL final volume, 10% carrier ampholyte 

concentration). The sample was then loaded on separate 

ImmobilineTM DryStrip, linear pH range 3.0–10, 18 cm 

long, purchased from GE Healthcare (Chalfont St. Giles, 

UK). Peptides were focused at a constant temperature 

of 20°C, and at constant current intensity of 50 µA. 

After focusing was complete, fractions were collected. 

In order to improve peptide recovery, sample wells were 

washed with 100 µL of a water/methanol/formic acid 

mixture, 49:50:1 (v/v/v). The wash solution was added 

to each well and allowed to incubate for 90 minutes 

before being collected and pooled with the correspond-

ing fraction supernatant. Pooled supernatants were 

reduced to a volume of approximately 10 µL in a vacuum  

centrifuge. 

A 1:4 mixture of concentrated eluates and loading pump 

solvent of the nanoLC-MS/MS system (see below) was 

injected for nanoLC-MS/MS analysis. Considering the 

injection volume of 10 µL, approximately 1/5 of each 

OGE fractions was injected for nanoLC-MS/MS.

Nanoscale LC-MS/MS analysis
Chromatography was performed on an Ultimate nanoLC 

system from Dionex (Sunnyvale, CA, USA), using a valve-

less setup.1,2 The peptide extracts were redissolved in 30 µL 

of loading pump solvent (see below) and 10 µL were loaded 

onto an in-house packed 100 µm i.d., Integra FritTM (New 

Objective, Cambridge, MA) trapping column (packing 

bed length 1.5 cm) at 10 µL/min of loading pump solvent, 

consisting of H
2
O/acetonitrile/trifluoroacetic acid (TFA) 

97.95:2:0.05 (v/v/v). After 4 minutes of column washing, 

the trapping column was switched on-line to the analytical 

column: an in-house packed 50 µm i.d., Pico FritTM column 

(New Objective), filled with the same stationary phase used 

for the trapping column packing: 3 µm C
18

 silica particles 

(Dr Maisch, Entringen, Germany). Peptide separation started 

at 100 nL/min using a binary gradient. Mobile phase A was 

H
2
O/acetonitrile/formic acid/TFA 97.9:2:0.09:0.01 (v/v/v/v); 

mobile phase B was H
2
O/acetonitrile/formic acid/TFA 

29.9:70:0.09:0.01 (v/v/v/v). Gradient was from 5 to 45% B 

in 40 minutes. After 10 minutes at 95% B, the column was 

re-equilibrated at 5% B for 20 minutes before the following 

injection.

MS detection was performed on a QSTAR XL hybrid 

LC-MS/MS from Applied Biosystems (Foster City, CA, 

USA) operating in positive ion mode, with nESI poten-

tial at 1300 V, curtain gas at 15 units, CAD gas at 3 units. 

Information-dependent acquisition (IDA) was performed by 

selecting the 2 most abundant peaks for MS/MS analysis after 

a full TOF-MS scan from 400 to 1600 m/z lasting 4  seconds. 

Both MS/MS analyses were performed in enhanced mode 

(3 seconds/scan). Threshold value for peak selection for 

MS/MS was 30 counts.

Data analysis
MS/MS data were converted to Mascot Generic Format 

(mgf) by the Analyst software 1.1 (Applied  Biosystems). 

Data were searched on the Mascot search engine 

(www.matrixscience.com), version 1.9, against the 

 International Protein Index database (IPI version 3_38) 
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using the following parameters: MS tolerance 30 ppm; MS/

MS tolerance 0.2 Da; variable modifications methionine 

oxidized; enzyme trypsin; max. missed cleavages 1. MS/

MS identifications were validated by using the trans- 

proteomics pipeline.3 Peptide identifications with a 

minimum probability score of 0.7 were retained (4% false 

discovery rate). Proteins identified with a minimum of 2 

peptides were retained (protein probability score .0.9). 

Protein identifications based on a single peptide were 

 manually validated.

Table 1 Proteins identified by in-gel digestion and nanoLC-MS/MS of SDS-PAGE-isolated bands

Accession 
number

Protein description Theoretical 
Mw

No. unique 
peptides

Probability Mascot  
score*

Sequence 
coverage

IPI00022434 ALB Uncharacterized protein 71.6 45 1 – 67.5
IPI00021841 ALB apoliprotein a1 30.8 25 1 – 72.0
IPI00021885 FgA Isoform 1 of Fibrinogen

alpha chain precursor
94.9 15 1 – 19.7

IPI00304273 APOA4 Apolipoprotein A-IV
precursor

45.3 13 1 – 34.1

IPI00022371 hRg histidine-rich  
glycoprotein precursor

59.5 11 1 – 24.8

IPI00553177 Isoform 1 of Alpha-1-
Antitrypsin

46.7 10 1 – 24.2

IPI00021842 APOe Apolipoprotein e
precursor

36.1 10 1 – 36.0

IPI00783987 C3 Complement 187.0 9 1 – 4.5
IPI00399007 Ighg2 Putative uncharacterized

protein DKFZp686I04196
(Fragment)

46.0 5 1 – 14.1

IPI00419424 IgKV1-5 IgKV1-5 protein 26.2 5 1 – 32.5
IPI00855916 Transthyretin 15.9 4 1 – 48.0
IPI00021855 APOC1 Apolipoprotein C1 9.3 3 0.996 – 24.0
IPI00032258 Complement c4 192.6 3 1 – 2.5
IPI00061977 IghV3OR16-13;IghA1 IghA1

protein
54.1 2 0.999 – 5.0

IPI00022488 hPX hemopexin 
precursor

51.6 2 0.983 – 4.1

IPI00154742 IgL@ IgL@ protein 24.7 2 0.999 – 10.7
IPI00019399 SAA4 Serum amyloid A-4

protein precursor
14.8 2 0.998 – 8.5

IPI00298971 VTN Vitronectin  
precursor

54.2 2 0.995 – 5.4

IPI00021857 APOC3 Apolipoprotein C3 12.8 1 123 16.0
IPI00021856 APOC2 Apolipoprotein C-II

precursor
11.3 1 42 10.0

IPI00431645 hP protein 31.6 1 30 9.0
IPI00019038 LyZ Lysozyme C precursor 16.9 1 73 8.0
IPI00026314 gSN Isoform 1 of gelsolin

precursor
86.0 1 27 1.0

IPI00298497 FgB Fibrinogen beta chain
precursor

56.5 1 43 3.0

IPI00032328 KNg1 Isoform hMW  
of Kininogen-1 
precursor

72.3 1 34 1.0

Notes: In gray, protein identification obtained with a single hit. Those hits were validated by visual inspection. MS/MS data are reported in Supplementary Information. 
Mascot score (*) is reported for identifications which have not passed TPP validation, but were above Mascot threshold of 29 and for which manual validation was 
undertaken.
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Table 2 Additional proteins identified by direct in-solution digestion of silicon nanopraticle extracts

Accession  
number

Protein description Theoretical  
Mw

No. unique  
peptides

Probability Mascot  
score*

Sequence 
coverage

IPI00472610 IghM IghM protein 52633 16 1 – 18
IPI00022229 Apolipoprotein B-100 515.2 16 1 – 3.6
IPI00448925 Ighg1 Ighg1 protein 60064 15 1 – 15
IPI00478003 A2M Alpha-2-macroglobulin 163175 13 1 – 10
IPI00022463 TF Serotransferrin precursor 77.0 13 1 – 24.5
IPI00426051 Putative uncharacterized

protein DKFZp686C15213
51066 10 1 – 13

IPI00639937 CFB B-factor, properdin 85.4 9 1 – 9.7
IPI00021891 Fgg Isoform gamma-B of

Fibrinogen gamma chain
51479 8 1 – 11

IPI00166866 IghV3OR16-13; IghA1 IghA1
protein

53342 8 1 – 10

IPI00021857 APOC3 Apolipoprotein C-III 10846 8 1 – 30
IPI00382938 IgLV4-3 IgLV4-3 protein 25961 6 1 – 20
IPI00022229 APOB Apolipoprotein B-100 515241 5 1 – 1
IPI00291262 CLU Clusterin precursor 52.4 4 1 – 13.8
IPI00550640 Ighg4 Ighg4 protein 51953 4 1 – 5
IPI00328103 KRT27 Keratin, type I

cytoskeletal 27
49793 3 1 – 5

IPI00022418 FN1 Isoform 1 of Fibronectin 262442 3 1 – 2
IPI00549291 IghM IghM protein 66143 3 1 – 7
IPI00217963 KRT16 Keratin, type I

cytoskeletal 16
51236 3 1 – 4

IPI00022431 AhSg cDNA FLJ55606, highly
similar to Alpha-2-hS-
glycoprotein

46597 3 1 – 4

IPI00555872 IghV3-48 Myosin-reactive
immunoglobulin heavy chain
variable region (Fragment)

12835 3 1 – 25

IPI00021854 APOA2 Apolipoprotein A-II
precursor

11.1 3 1 – 21.0

IPI00022445 PPBP Platelet basic protein
precursor

13.8 2 0.999 – 19.5

IPI00009028 CLeC3B Tetranectin 22.5 2 0.999 – 10.4
IPI00029061 SePP1 Selenoprotein P 42.6 2 0.999 – 4.7
IPI00019581 Coagulation

factor XII precursor
67.7 2 1 – 4.4

IPI00022420 RBP4 Plasma retinol binding
protein

22.9 2 0.999 – 10.1

IPI00027547 DCD Dermcidin precursor 11.3 2 0.999 – 20
IPI00017601 CP Ceruloplasmin 122128 2 0.999 – 1
IPI00027718 eVC ellis-van Creveld

syndrome protein
111920 2 0.999 – 1

IPI00009867 KRT5 Keratin, type II
cytoskeletal 5

62340 2 0.999 – 1

IPI00382488 Ig heavy chain V-III region
hIL

13557 2 0.999 – 13

IPI00816799 Rheumatoid factor D5 light
chain (Fragment)

12758 2 0.999 – 22

IPI00029739 CFh Isoform 1 of Complement
factor h precur

139.0 1 0.992 – 0.9

IPI00019568 Prothrombin 69.9 1 0.986 – 1.6

(Continued)
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Table 2 (Continued)

Accession  
number

Protein description Theoretical  
Mw

No. unique  
peptides

Probability Mascot  
score*

Sequence 
coverage

IPI00009920 C6 Co (Complement
Component 6
Precursor)

105.6 1 0.972 – 1.9

IPI00298828 APOh Beta-2-glycoprotein 1
precursor

38.3 1 0.907 – 2.6

IPI00019591 cDNA FLJ55673, highly
similar to Complement factor B

140853 1 – 45 1

IPI00008603 ACTA2 Actin, aortic smooth
muscle

41982 1 – 41 2

IPI00411626 Fgg Putative uncharacterized
protein DKFZp779N0926

13979 1 – 42 6

IPI00382895 UORF 3952 1 – 43 29
IPI00022395 C9 Complement component C9 63133 1 – 50 1
IPI00166729 AZgP1 alpha-2-glycoprotein 1,

zinc
34237 1 – 65 3

IPI00382478 Ig heavy chain V-III region
TIL

12348 1 – 86 16

IPI00384401 Myosin-reactive
immunoglobulin kappa chain
variable region (Fragment)

11754 1 – 110 16

IPI00385252 Ig kappa chain V-III region
gOL

11823 1 – 125 16

Notes: In gray, protein identification obtained with a single hit.
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