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1. Introduction

Flow cytometry (FC) produces multidimensional biological
information at the level of the cellular compartment, and
over very large numbers of cells. As such it is ideally
suited to a wide variety of investigations for which cellular
context and large sample observations are important. In
recent years the technology of FC has undergone appre-
ciable development [1, 2] with the introduction of digital
signal processing electronics [3], multiple lasers, increasing
numbers of fluorescence detectors, and robotic automation,
both in sample preparation [4] and in instrumental data
collection [5]. The recent development of new reagents
[6] that enable increasing assay complexity has also been
rapid and accelerating. Given the scope and pace of these
developments, the bottleneck in many FC experiments has
shifted from the wet laboratory to the computer laboratory;
that is to say, data analysis [1].

FC data are typically analyzed using graphically driven
approaches. Subsets of cells (events) are delineated usu-
ally in one- or two-dimensional histograms or “dotplots”

in a procedure termed “gating.” Gates of differing shapes
including rectangular, circular, elliptical, or arbitrary polyg-
onal contours may be specified. The gating process is
frequently applied in a sequential fashion, with the numbers
of events inside successive gates falling monotonically from
step to step. Subsets determined via gating are typically then
quantified with respect to their expression patterns in the
dimensions of multiparameter space not utilized for gating,
often by simply counting proportions of the subsets that
are positive or negative for each of the markers of interest
for that subset. Several commercially available software
packages have been extensively optimized to support this
kind of visually guided analysis workflow, for example,
FlowJo (Treestar Inc, Ashland, OR), WinList (Verity Software
House, Topsham, ME), and FCSExpress (De Novo Software,
Los Angeles, CA).

Manual gating is a highly effective means of analysis of
flow cytometry data, especially in cases where the application
of expert judgment in the visual design of gating strategies
may be able to isolate events of biological interest in
the presence of confounding experimental (or biological)
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variations that will be difficult to account for automatically.
Nevertheless, manual gating has three main drawbacks [7–
9]. First, the choice of gates is often subjective, particularly
in the not-unusual situation where the distribution is broad
and smooth. This lack of objective criteria is problematic,
especially when different samples may show different types of
“excursions” from the average/normal case. Second, because
gates are specified by manually drawing regions on a graph
using a computer mouse, the process is very labor intensive
and time consuming. Finally, because gating and regions of
interest are determined by the data analyst based on his or her
experience, there may be interesting and informative features
that exist within the full ungated multivariate distribution of
events but that nevertheless escape detection in this analysis
paradigm.

A number of automated gating procedures have been
developed with the aim of reducing tedium as well as
increasing objectivity in the gating process. Notwithstanding
this, a strong need still remains for computational tools that
transform and represent multiparameter flow cytometric
data in a form efficiently amenable to machine learning and
data mining.

We have developed a software package called flowFP
to address these limitations in conventional approaches to
the analysis of FC data. The broad aim of the package
is to directly transform raw FC list-mode data into a
representation suitable for direct input to other statistical
analysis and empirical modeling tools. Thus, it is useful
to think of flowFP as an intermediate step between the
acquisition of high-throughput FC data on the one hand,
and empirical modeling, machine learning, and knowledge
discovery on the other.

2. Materials and Methods

2.1. Algorithm Description. The software package described
herein, flowFP, implements and integrates ideas put forth
in [10, 11]. FlowFP utilizes the Probability Binning (PB)
algorithm [10] to subdivide multivariate space into hyper-
rectangular regions that contain nearly equal numbers of
events. According to the vernacular of flow cytometry,
the axes describing a multivariate space are referred to as
“parameters.” Here we will use the term “variable” so as to
avoid confusion with the nomenclature of “parameter” as
used in the statistics literature. Regions (bins) are determined
by (a) finding the variable whose variance is highest, (b)
dividing the population at the median of this variable which
results in two bins, each with half of the events, and (c)
repeating this process for each subset in turn. Thus, at the
first level of binning the population is divided into two bins.
At the second level, each of the two “parent” bins is divided
into two “daughter” bins, and so forth. The final number of
bins n is determined by the number of levels l of recursive
subdivision, such that n = 2l.

This binning procedure is typically carried out for a
collection of samples (instances), called a “training set.”
The result of the process models the structure of the
multivariate space occupied by the training set by the way it
constructs bins of varying size and shape and is thus termed

a “model” of the space (not to be confused with modeling
approaches that fit data to a parameterized model or set
of models). The model is then applied to another set of
samples (which may or may not include instances from the
training set). This operation results in a feature vector of
event counts in each bin of the model for each instance in
the set. These feature vectors are, in the context of a specific
model, a unique description of the multivariate probability
distribution function for each instance in the set of samples,
and thus are aptly referred to as “fingerprints.”

Although flowFP generates bins using the PB algorithm,
the way it utilizes the resulting fingerprints is similar to the
methods described in [11]. Each element of a fingerprint
represents the number of events in a particular subregion
of the model. Although it may not be known a priori
which of these regions are informative with respect to an
experimental question, it is possible to determine this by
using appropriate statistical tests, along with corrections for
multiple comparisons, to ascertain which regions (if any) are
differentially populated in two or more groups of samples. If
we regard the number of events in a bin as one of n features
describing an instance, then the statistical determination of
informative subregions is clearly seen to be a feature selection
procedure.

Fingerprint features are useful in two distinct modes.
First, all or a selected subset of features can be used in
clustering or classification approaches to predict the class of
an instance based on its similarity to groups of instances.
Second, the events within selected, highly informative bins
can be visualized within their broader multivariate context in
order to interpret the output of the modeling process. This
step is crucial in that it provides a means to develop new
hypotheses for FC-derived biomarkers within the context of
existing reagent panels.

2.2. Software Implementation. FlowFP is implemented in
the open-source R Statistical Computing Environment [12]
and is freely available as part of Bioconductor [13]. Within
Bioconductor a framework has been created for handling
FC data known as flowCore [14, 15]. FlowFP is one of a
growing number of Bioconductor packages integrated within
this framework and thus able to interoperate with other
flowCore-compliant tools as well as with the full range of
downstream statistical analysis and machine learning tools
available in R. This integration enables flexible creation of
powerful high-throughput analysis procedures for large FC
data sets.

FlowFP uses the S4 object-oriented facility of R. Compu-
tationally intensive parts are written in the C programming
language for efficiency. FlowFP is built around a set of three
S4 classes, each with a constructor of the same name as the
class name. In addition there are a number of methods for
data accession, manipulation, and visualization.

2.2.1. FlowFPModel. FlowFPModel is the fundamental class
for the flowFP package. The flowFPModel constructor takes
a collection of one or more list-mode instances which are
represented in the flowCore framework as a flowFrame (for a
single instance) or a flowSet (for a collection of instances),
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respectively (henceforth we will refer to flowFrames and
flowSets, the original list-mode data being implied). In addi-
tion to the required argument, flowFPModel has optional
arguments that allow control over the number of levels of
recursive subdivision and the set of variables to be considered
in the binning process. By default all variables in the input
flowSet are considered, but if this argument is provided, any
variables not listed are ignored. The constructor emits an
object of type flowFPModel, which encapsulates a complete
representation of the binning process that is used later to
construct fingerprints.

2.2.2. FlowFP. The flowFP constructor takes a flowFrame or
a flowSet as its only required argument, and an optional
flowFPModel. If no flowFPModel is supplied, flowFP com-
putes a model (by calling flowFPModel internally). Regard-
less the source of the model, flowFP applies the model to
each of the instances in its input. The resulting flowFP object
extends the flowFPModel class and contains two additional
important slots to store a matrix of counts and a list of
tags. The counts matrix has dimensions m × n, where m
is the number of instances in the input flowSet (or one if
a flowFrame is provided), and n is the number of features
in the model. The tags slot is a list of m vectors, each of
which has e elements, where e is the number of events in
the corresponding frame in the input flowSet. The value for
each element of the tag vector represents the bin number into
which the corresponding event fell during the fingerprinting
procedure. This is useful for visualization or gating based on
fingerprints as will be illustrated below.

2.2.3. FlowFPPlex. The flowFPPlex is a container object
which facilitates combining, processing, and visualizing large
collections of flowFP objects which are all derived from the
same set of instances. The flowFPPlex constructor takes a
list of flowFP objects. The flowFPPlex manages the logical
association of a set of flowFP descriptions. In particular, it
extends the counts matrices of its members “horizontally” so
as to create a unified representation of the entire collection
of fingerprints. The main utility of the flowFPPlex is its
support for creating a merged representation of a set of
instances acquired using a multitube panel, with different
flowFPModels for each tube in the panel.

2.2.4. Generic Functions. A number of other methods have
been provided to facilitate interaction with and analysis of
fingerprinting results. Chief among these are visualization
methods that aid in the understanding and interpretation of
fingerprinting results (see Figures S1–S3 in Supplementary
Material available online at doi:10.1155/2009/193947). A few
other accessor methods deserve special mention.

nRecursions(obj). This generic function returns the
number of levels of recursive subdivision of its argument.
FlowFP, flowFPPlex, and flowFPModel all implement the
method. Furthermore, the flowFP class implements the “set”
method. This enables the user to compute a model at some
fairly high resolution, and then to derive fingerprints at that
resolution or any lower resolution without recomputing the
model. This is possible because fingerprinting is recursive,

so that given any high-resolution model, all models of lower
resolution can be derived from it.

counts(obj). This generic function returns a matrix of
the number of events per instance and per bin. FlowFP
and flowFPPlex classes implement this method, facilitating
creation of fingerprint matrices suitable for processing by
downstream methods outside of the flowFP package. The
method has an optional argument “transformation” that can
take on values “raw” (returns the actual event counts for each
bin), “normalize” (normalizes by dividing raw counts by the
expected number of events), or “log2norm” (like normalize
except that it further takes the log2 of the result).

sampleNames(obj) and sampleClasses(obj). These ge-
neric functions set or get sample identifiers for objects of
class flowFP or flowFPPlex. By default, for flowFPs, sample
names are derived from the flowSet. However they can
be overridden by the set method, providing flexibility to
handle cases where the sample names in a flowSet are
not appropriate. When adding fingerprints to a flowFPPlex,
sample names (and if present, sample classes) are compared,
and the join operation is not permitted unless names and
classes among all fingerprints in the flowFPPlex are identical.

parameters(obj). This generic function returns the light
scatter and/or fluorescence variables involved in binning,
either for a flowFPModel or a flowFP. The function is able to
report both the variables that were considered for binning as
well as those that actually participating (if the global variance
of a variable is small enough it may never be selected for
division).

tags(fp). This generic function returns the tags slot of a
flowFP object, described in Section 2.2.2. This is useful for
visualization and gating operations.

binBoundary(obj). This generic function reports a list
of multivariate rectangles corresponding to the limits of the
bins. FlowFP and flowFPModel classes both implement this
method. This information is also useful for visualization and
gating operations.

2.3. Data and Characteristics. Deidentified flow cytometric
data from peripheral blood or bone marrow aspirate samples
were provided by Clarient, Inc. (Aliso Viejo, CA) along
with primary diagnoses by experienced hematopathologists.
After application of QC filters including that described in
Section 3.1.1 the data set included 42 cases diagnosed as
Acute Myeloid Leukemia (AML) and 309 cases that were
determined to be immunophenotypically normal. For the
purposes of this study physician diagnosis was regarded as
the ground truth.

Data were collected over a one-year period, using the
panel described in Table 1. Briefly, samples were lysed with
ammonium chloride, then washed with PBS, centrifuged
and resuspended. Blocking was accomplished by incubating
with RPMI-1640 supplemented with 10% rabbit serum for
30 minutes at 37◦C. Cells were then pelleted, resuspended
in RPMI-1640, and adjusted to between 4–8 × 106 cells/mL.
Antibody staining was accomplished by incubating in the
dark at room temperature for 15 ± 5 minutes 100 μL of the
adjusted cell suspension with 40 μL of pretitrated antibody
cocktail per tube. For the viability tube, 10 μL of 7AAD
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Table 1: Reagent panel used for immunophenotyping of leukemia/lymphoma samples.

Tube
FL1 FL2 FL3 FL4 FL5

P3S P4S P5S P6S P7S

1 IgG1-FITC IgG1-PE CD45-ECD IgG1-PC5 IgG1-PC7

2 (s)Kappa-FITC (s)Lambda-PE CD45-ECD CD19-PC5 CD20-PC7

3 CD7-FITC CD4-PE CD45-ECD CD8-PC5 CD2-PC7

4 CD15-FITC CD13-PE CD45-ECD CD16-PC5 CD56-PC7

5 CD14-FITC CD11c-PE CD45-ECD CD64-PC5 CD33-PC7

6 HLA DR-FITC CD117-PE CD45-ECD CD34-PC5 CD38-PC7

7 CD5-FITC CD19-PE CD45-ECD CD3-PC5 CD10-PC7

8 FL1-Log FL2-Log FL3-Log FL4-Log FL5 Log

was added in place of the antibody cocktail. After staining
each tube was washed with 3 mL PBS, vortexed, pelleted,
and resuspended in 500 μL of PBS prior to running on the
flow cytometer. Five-color immunofluorescence along with
forward and side scatter data were collected on two FC-
500 cytometers (Beckman Coulter, Miami, FL). Data were
collected for 3× 104 events for each tube.

3. Results

3.1. Gating Quality Control

3.1.1. Tube Data. FlowFP was used to assess the consistency
of event distributions in variables common to a multiple-
tube panel. Using the panel described in Table 1, note that
CD45 is common to all tubes except the viability tube.
Frequently [16–22], the distribution of events in the Side
Scatter versus CD45 projection (referenced as parameters 2
and 5 in the code below) from a single tube is used to gate an
entire collection of tubes in order to save time. If the CD45
versus SSC distribution differs among the tubes, errors due
to incorrect subsetting will occur, but may not be readily
apparent without careful study of the gating plots.

Using flowFP, in order to rapidly detect consistency of
CD45 versus SSC distributions without the need to look at
dotplots, we (1) create a flowSet comprising tubes 1–7 of
a sample, (2) create a model, using the common variables
CD45 and SSC, from the flowSet, (3) create fingerprints of
the same samples with respect to this model, and (4) display
the result. The R commands to accomplish this using flowFP
are as shown in Algorithm 1 (Code Fragment 1).

Figure 1(a) shows the resulting plot. Each tube is repre-
sented by one of the colored plots, with the CD45 versus SSC
fingerprint shown as a line. The standard deviation of the
fingerprint values around their mean is shown for each tube
to provide a quantitative measure of the degree to which a
tube deviates from the norm of all tubes combined. The same
value is mapped to colors, shown in the color legend above
the plots, to provide a quick visual representation of the
consistency of the distributions. For comparison, Figure 1(b)
shows a similar result for a sample that displayed poor CD45
versus SSC consistency. Note that Tube 5 in that sample
differed markedly from the other tubes in the panel, as did
Tube 4, but to a lesser extent.

3.1.2. 96-Well Plate Data. High-throughput FC data are
flexibly accommodated in the FlowFP package. For data
derived from 96-well plates, a plot method of type “plate” can
be used to display a qc-style plot in a layout that reflects the
structure of the plate. Figure 2 shows such a result. Data were
obtained [23, 24] in which SSC, CD3, and CD4 (parameters
2, 5, and 7) were used to gate the entire plate of data. The R
commands shown in Algorithm 2 (Code Fragment 2) were
used to produce the plot in Figure 2.

Note that in this case we illustrate the use of an implicit
model by omitting the model from the flowFP constructor.
The utility of such a rapid and straightforward quality
assurance tool is most apparent in the case of this sort of
high-throughput data.

3.2. Automated Classification of Acute Myeloid Leukemia. We
now turn to the application of flowFP to support a machine
learning workflow. The aim here is to illustrate the utility
of fingerprint-based approaches in general, and flowFP in
particular, by automatically categorizing samples into one
of two a priori known classes, AML or Normal. The dataset
described in Section 2.3 was used. Tube 1 (isotype control)
and Tube 8 (viability) were ignored for the purpose of this
analysis, leaving 6 tubes, numbered 2–7.

We divided the samples randomly into a balanced
training set comprising 21 of 42 AML cases and 21 of
309 Normal cases. We elected to balance the training set
so as not to bias the classifier towards the more heavily
represented Normal case. The remaining 21 AML cases and
288 Normal cases were assigned to the test set. Modeling and
fingerprinting were done on a per-tube basis. Models were
computed from training data only, in order to avoid biasing
the prediction of the test set. We also employed a “differential
modeling” procedure by creating two separate models, one
for the AML training instances and one for the Normal
training instances. Then, fingerprints from each tube and for
each model were computed and aggregated into a flowFPPlex
for further analysis. Fingerprinting was performed on all
variables. The R code fragment implementing this procedure
is shown in Algorithm 3 (Code Fragment 3).

Models were computed at a resolution level l = 11,
producing n = 2048 bins. This resolution was determined
using the default automatic setting of flowFPModel which
implements the heuristic that the typical (median) number
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> fs <- read.flowSet (path=“lo gate dev”, transformation=FALSE)

> mod <- flowFPModel (fs, parameters=c(2,5))

> fp <- flowFP (fs, mod)

> plot (fp, type=“qc”)

Algorithm 1: (Code Fragment 1).

0

Fingerprint deviation plot

Method = sd
Vertical scale factor = 3 1

Tube 4
0.120.140.110.13

Tube 3Tube 2Tube 1

0.130.090.12

Tube 7Tube 6Tube 5

(a)

Tube 4

0.550.290.270.31

Tube 3Tube 2Tube 1

0.350.310.35

Tube 7Tube 6Tube 5

0

Fingerprint deviation plot

Method = sd
Vertical scale factor = 3 1

(b)

Tube 4
0.160.230.160

Tube 3Tube 2Tube 1

0.210.20.19

Tube 7Tube 6Tube 5

0

Fingerprint deviation plot

Method = sd
Vertical scale factor = 3 1

(c)

Tube 4
0.610.20.180

Tube 3Tube 2Tube 1

0.120.211.11

Tube 7Tube 6Tube 5

0

Fingerprint deviation plot

Method = sd
Vertical scale factor = 3 1

(d)

Figure 1: FlowFP plot method to display gating data consistency. Fingerprints were computed using CD45 and SSC which are common
variables in all tubes. Fingerprint similarity is indicated by color and in the similarity metric shown in each panel. The color wedge shows
mapping of colors to values of the similarity metric (values above the maximum indicated on the wedge all map to red). The x-axis for each
subplot is fingerprint index, and the y-axis is the log2 transformed fingerprint value plotted with zero at the center and scaled to ± “vertical
scale factor” (in this case 3.0). (a) Sample FI05 000942, an example of a sample with good gating consistency. (b) Sample FI05 000599, an
example of a sample with poor gating consistency. (c) and (d) as in (a) and (b), except that models were computed from Tube 1 only, rather
than the aggregate of Tubes 1–7 for each sample. Note that the fingerprint for Tube 1 in both cases has zero deviation, as expected. Note also
the qualitative similarity between (a) and (c) and between (b) and (d).
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> fs <- read.flowSet (path=“96 well”, transformation=F)

> fp <- flowFP (fs, parameters=c(2,5,7))

> plot (fp, type=“plate”)

Algorithm 2: (Code Fragment 2).

0

Fingerprint deviation plot

Method = sd
Vertical scale factor = 3 1
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Figure 2: QC plot method for high-throughput data. Data were fingerprinted on variables common to all wells in a 96-well plate. The
display maps into colors the degree to which gating data conform to the plate-wide norm.

of events in each instance of the training set is binned such
that the number of events per bin is not less than 8. The
resulting flowFPPlex therefore had 6 tubes × 2 models ×
2048 bins = 24 576 features.

We extracted feature values from the flowFPPlex using
the accessor function counts(plex, transformation=
“log2norm”) which performs a logarithmic transformation
on the normalized counts matrix.

Using only the instances in the training set, we performed
a Mann-Whitney test on each feature independently (there
are many methods of feature selection, a discussion of
which is beyond the scope of this report). We selected those
features which had a 99.9% likelihood of being differentially
distributed between the two classes, after performing the

Benjamini-Hochberg correction for multiple comparisons
[25, 26]. This led to the selection of 1681 informative features
out the original 24 576 features. Using the reduced feature
set we trained a Support Vector Machine (SVM) classifier
[27, 28] using a radial basis function kernel. We then
blindly predicted the class of the test set using this classifier
by assigning the predicted class probabilities into three
equal ranges. The results are shown in Figure 3. Sensitivity
and specificity are 90.5% (19/21) and 99.3% (278/288),
respectively, with 9.5% (2) of AML instances and 2.8% (8)
of Normal instances falling into the Uncertain group. No
cross validation was performed here for clarity and brevity of
presentation. For a better assessment of model performance
this would be required. Interestingly, repeating the analysis
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trainSets <- list(aml=train aml, norm=train norm)

plex <- flowFPPlex () # create an empty plex
for (tube in 2:7) { # loop over tubes 2–7

fs <- read tubes (tube) # create a flowSet
for (trainSet in trainSets) { # differential modeling

mod <- flowFPModel (fs[trainSet]) # training set only
fp <- flowFP (fs, mod) # create fingerprints
plex <- append (plex, fp) # add fingerprints to plex

}
}

Algorithm 3: (Code Fragment 3).
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Figure 3: Support Vector Machine classification of AML versus
Normal. The classifier was trained with 21 AML and 21 Normal
Instances (left-most two regions). The classifier was then used to
blindly predict class probabilities for the test set of 21 AML and
288 Normal instances (the right-most region). Ground-truth class
assignments are indicated by color, red for AML and blue for
Normal. The probability range 0-1 was divided into three equal
regions. Instances falling into the lower third were classified as AML,
in the upper third as Normal, and in the middle as Uncertain “?”.

without the “differential modeling” method described above
(i.e., using AML and Normal combined training instances
to compute the models for each tube) resulted in a similar
result, but with a slightly poorer sensitivity of 85.7% (data
not shown).

The time required to compute the fingerprints was 1.8
seconds per sample, requiring 5.2 GB of memory on a
machine running the Linux 2.6 SMP 64-bit kernel with
a 2.83 GHz processor. Recall that this represents, for each
sample, the construction of 2 fingerprints for each of 6
tubes, each of which has 3 × 104 events. Compared with
mixture modeling approaches that are used for analysis of FC
data (e.g., [8, 29]) flowFP is a computationally inexpensive
method of analysis of FC data.

Figure 4(d) shows the distribution of informative fea-
tures selected as described above with respect to tube
number. Tubes 7 and 4 appear to be the most informative
for distinguishing AML from Normal. Figures 4(a)–4(c)
display the informative subset of features (bins) that fell
in Tube 7 and which had higher likelihood, on average,
in the AML group compared with the Normal group.
Informative features characteristic of AML can be described

as low-intermediate SSC, CD45 dim, and negative for CD3,
CD19, and CD10. The CD45 versus SSC distribution of the
informative bins corresponds to a region containing blasts
and monocytes.

A more comprehensive although less detailed picture
of information distribution in the panel is illustrated in
Figure 5. This parallel coordinate view enables the appre-
ciation of expression patterns across the entire panel of
tubes. Notice that the AML pattern in Tube 7 displayed in
Figure 5 indicates the same CD45(dim), CD3(−), CD10(−)
blast phenotype shown in Figure 4. In Tube 4 the phe-
notype of AML-informative bins is consistent with blasts
expressing CD15(dim to −), CD13(dim to +), CD16(−),
CD56(−) (see also Figure S4 in Supplementary Material).
Separation of the bundles of trajectories corresponding to
AML and Normal events is the widest in Tubes 4, 6, and
7, consistent with the distribution of information across
the tubes shown in Figure 4(a). By contrast, Tube 5 has
intertwined bundles, apparently in keeping with the fact
that Tube 5 held the fewest informative fingerprinting
features.

4. Discussion

With recent technological advances, FC is now capable
of operating as a true high-throughput technique. A key
enabling requirement however is the need to automate
data analysis for speed, much as automation in sample
preparation and data acquisition have accelerated the rate
of generation of data and thereby enabled high-throughput
FC. This requirement inevitably drives movement away from
human-drawn, visually-based gating which is the single most
significant obstacle preventing a true high-throughput FC
workflow.

We have shown that fingerprint-based analysis of FC
data represents an effective bridge between large amounts of
FC data and the world of machine learning and knowledge
discovery techniques. It effectively captures informative
features of a multivariate probability distribution function
and does so in a computationally efficient way. As such it
represents one of the tools that may help to bring FC into
a new era of application to problems previously not feasible
due to limitations in data analysis techniques.
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Figure 4: Visualization of informative features. (a)–(c) dotplots for Tube 7. Black dots are aggregated data from 5 AML and 5 Normal
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versus Forward Scatter. (b) CD45 versus Side Scatter. (c) Pairwise dotplots of fluorescence’s CD5, CD19, CD3, and CD10. (d) Histogram of
the frequency with which informative features occur in Tubes 2–7.

It is important to note that fingerprinting of FC data is
not without limitations. First, we note that fingerprinting
approaches are sensitive to differences in multivariate proba-
bility distributions no matter their origin. Thus, instrumen-
tal, reagent or other systematic variations may cause spurious

signals as large or larger than true biological effects. For this
reason it is important to measure and control for these effects
[1]. In fact, fingerprinting itself can be used to assess and
to help control for systematic effects, as was illustrated in
Section 3.1.
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Second, because fingerprinting is, in essence, the creation
of a multivariate histogram, it responds to factors that
might artificially emphasize certain bins in preference to
others. In particular, events may pile up on either the zero
or full-scale axis for one or more variables. This situation
frequently results from values that would be negative due to
compensation or background subtraction (causing pileup on
the zero axis) or at the other end of the scale, values that
exceed the dynamic range of the signal detection apparatus
causing pileup at full scale. At either end this results falsely
in an apparent high density of events. Fingerprinting bins are
thus “attracted” to these locations, causing a distortion in the
proper characterization of the true multivariate probability

distribution function. One might be tempted to simply
remove these values. However this is problematic since they
can be very important. For example, values piling up at full
scale are the brightest of all. A better solution is to adjust
detector gains to minimize or eliminate full-scale pileup,
to use high-dynamic-range detectors and electronics and to
use modified data transformations such as the biexponential
transform to smoothly distribute values at or below zero.

Just as scaling and transformation of data are important
for visualization of multivariable distributions [30–32], so
they are also important for fingerprinting. Data acquired
using linear amplifiers such as exist in some modern instru-
ments, or data that have been “linearized” from instruments



10 Advances in Bioinformatics

with logarithmic amplifiers, tend to be heavily skewed to
the left, since in most cases data distributions are quasi-log-
normally distributed. Bins determined from such data thus
have extreme variations in size. A good rule of thumb is to
use a data transformation that produces the most spread-
out distribution, which also is often the transformation
most effective for clear visualization of the distribution. For
example, Forward Scatter data are almost always displayed on
a linear scale, whereas fluorescence data are usually displayed
on a logarithmic or biexponential scale. For a good review
of scaling and transformation of flow cytometric data, the
reader is referred to [32].

A key limitation for fingerprinting approaches, including
flowFP, relates to the number of events available for analysis.
Since the objective of probability binning is to find bins
containing equal numbers of events, it follows that once the
number of bins is on the order of the number of events in
an instance, the expected number of events per bin will be
of order unity. In this case differences in bin counts will
not be statistically significant. On the other hand, if the
dimensionality of the data set is high, the average number of
times any variable will be divided in the binning process will
be small. For example, in a dataset with 18 variables, if we
demand at least, say, 10 events per bin for statistical accuracy,
about 2.6 × 106 events would be required in order that each
variable is divided on average into at least two bins. Thus,
the spatial resolution of binning is limited by the number of
events collected, and as the number of variables increases, the
number of events needed to maintain resolution increases
geometrically.

FlowFP has been peer reviewed and accepted for inclu-
sion in the next release of Bioconductor scheduled for
October 2009. Prior to that date the development version
may be downloaded from http://www.bioconductor.org/.
The package is currently available for all architectures
supported by Bioconductor. In addition to the functionality
illustrated here, the authors plan to improve some of the
visualization methods, specifically to enable better use of
color, for example to represent statistical significance of
bins. One of the advantages of integration with other flow
cytometry Bioconductor packages is the ease of comparing
and combining analysis methodologies. For example, it will
be of interest to compare the performance of fingerprint-
ing with other methods such as clustering and mixture
modeling (flowClust). By the same token, such methods
might be used in concert. For example, it is possible that
clustering could be used to define major cell categories
(e.g., B cells, T cells, granulocytes, etc.), within which
fingerprinting may efficiently parse subsets correlated with
function.

In summary, flowFP provides the flow cytometry com-
munity with a new tool that transforms FC data such
that a wide range of other data analysis algorithms may
be brought to bear. It creates a representation of FC data
that preserves information embedded in the multivariate
probability distribution function while at the same time
presenting the information in a way that can be utilized easily
by other software tools. Because it is tightly integrated in Bio-
conductor with several other FC-related packages and also

exists in the broader R statistical computing environment,
flowFP can interoperate with a very wide range of open-
source analysis techniques. This power and flexibility enables
a broad range of new computational analysis approaches that
have potential in two distinct areas. First, it will facilitate the
retrospective mining of FC data, seeking novel biomarkers
that may be lurking in existing data. Second, it breaks the
data analysis bottleneck that has up until now limited the full
exploitation of FC in clinical applications.
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