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a b s t r a c t

COVID-19 pandemic is severely impacting the lives of billions across the globe. Even after taking
massive protective measures like nation-wide lockdowns, discontinuation of international flight
services, rigorous testing etc., the infection spreading is still growing steadily, causing thousands of
deaths and serious socio-economic crisis. Thus, the identification of the major factors of this infection
spreading dynamics is becoming crucial to minimize impact and lifetime of COVID-19 and any future
pandemic. In this work, a probabilistic cellular automata based method has been employed to model
the infection dynamics for a significant number of different countries. This study proposes that for
an accurate data-driven modelling of this infection spread, cellular automata provides an excellent
platform, with a sequential genetic algorithm for efficiently estimating the parameters of the dynamics.
To the best of our knowledge, this is the first attempt to understand and interpret COVID-19 data using
optimized cellular automata, through genetic algorithm. It has been demonstrated that the proposed
methodology can be flexible and robust at the same time, and can be used to model the daily active
cases, total number of infected people and total death cases through systematic parameter estimation.
Elaborate analyses for COVID-19 statistics of forty countries from different continents have been
performed, with markedly divergent time evolution of the infection spreading because of demographic
and socioeconomic factors. The substantial predictive power of this model has been established with
conclusions on the key players in this pandemic dynamics.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

With its outbreak in Wuhan, China, Coronavirus disease-2019
COVID-19) has spread across the world within a few months.
ue to its explosive growth and considerable rate of fatality,
orld Health Organization (WHO) declared COVID-19 as a pan-
emic and a global health emergency [1]. According to the avail-
ble statistics in June, 2020, the total number of infections by
ARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus
), the causative agent of this disease, is approaching 19 mil-
ion around the world, causing around 700,000 deaths in 213
ountries and territories, with no effective vaccination available
n the market so far. Beyond respiratory discomforts including
neumonia, dry cough, cold and sneezing [2,3], it has been re-
orted to cause liver and gastrointestinal tract maladies, kidney
ysfunction and heart inflammation, in cases of severe infec-
ion [4–6]. This highly infectious disease transmits from person-
o-person through respiratory droplets produced by infected per-
on. Fomite-mediated and nosocomially acquired infections are
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also being identified as important sources of viral diffusion [7–
9]. A typical incubation time from exposure to symptoms has
been reported for COVID-19, while infection transmission from
asymptomatic individuals has been observed as well [10–12].

Immediately after the detection of human-to-human trans-
mission, the government agencies of various countries started im-
plementing several mitigation strategies to control the epidemic.
The measures thus taken include social distancing, restrictions on
domestic as well as international travel, cancelling social events,
shutting down of public as well as commercial activities etc.
which can effectively reduce the possibilities of physical human
contact. Moreover, contact tracing, aggressive testing as well as
hospital or home quarantine for infected individuals and sus-
pected cases have also been executed to track and prevent further
spread. However, these strategies are directly contributing to
enormous economical loss. The optimum estimation of this novel
disease dynamics is emerging out as a challenging problem in this
context. The immense disruption caused by COVID-19, resulting
into overwhelming disorder in the health, economy and lives of
billions of people around the globe, has brought the necessity for
accurate modelling of infectious diseases into the focus. The effect

and effectiveness of this complex interplay between differing
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length-scales and time-scales with the applied control strategies
can only be understood and predicted with the help of precisely
designed quantitative models.

1.1. Models for understanding COVID-19 statistics

With a tremendous effort from researchers around the world,
a spectrum of various mathematical and computational
approaches is being used to understand and predict COVID-19
statistics, addressing its different perspectives. On a rudimentary
sense, the studies being pursued can be segmented in two cate-
gories: (i) data science and machine learning approaches and (ii)
differential equation based mathematical modelling techniques.
The first group of studies trusted mostly on data mining from
national/international repositories (e.g., WHO, country specific
data centres etc.) or popular social media platforms to forecast
the active cases and mortality data [13–17]. The major goal of
these studies are to estimate and predict the time evolution of the
disease using specific computational concepts, like Monte Carlo
decision making, fuzzy rule induction, deep learning etc [18–22].
Some of these studies also explored impact of disease control
interventions, like, travel restrictions [23], patient quarantining
and isolation [24], medical facilities [25], social distancing and
administrative responsibility [15] on epidemic spreading rate.
Though these models are quite effective, being entirely dependent
on data, the efficiency of these studies can be heavily inclined
towards the data quality. As comprehensively reviewed by [26],
several data-dependent models are prone to suffer from high risk
of bias, which is very much probable for imprecise short time
series data.

With the evidence of giving effective predictions for past pan-
demics [27–29], the traditional approaches of the mathematical
theory of epidemiological dynamics also have driven several re-
searchers to study COVID-19 dynamics. Theoretical modelling
based approaches have been long associated to understand and
predict the outbreak probabilities and seriousness of a disease,
and provide key information to control the intensity [30–33].
Most of the mathematical models that are being used to inves-
tigate the COVID-19 dynamics [34–37] are based on variants of
classical deterministic model of susceptible-infectious-recovered
(SIR) that was introduced by Kermack and McKendrick [38]. Con-
stituting a set of nonlinear ordinary differential equations (ODE),
the SIR model compartmentalizes the population where suscep-
tible subpopulation declines over time, constantly getting in-
fected (by infectious subpopulation), and then recovered from
(and gaining immunity to) the disease over time. Being pow-
erful and computationally favourable tool to analyse epidemic,
variants of this methodology are common in understanding real
epidemic data [39,40]. Though these models capture the dis-
ease transmission dynamics, being deterministic, they suffer from
the assumption of homogeneous mixing, forgoing the spatial
information.

For modelling real-world dynamics of a disease that spreads
from close-contacts only, the tool needs to accommodate neigh-
bourhood information. Moreover, the platform requires to take
into account of stochasticity of real dynamics, spatial infection
spread and inherent heterogeneity in population, which are some
major limitations of the mentioned works. Thus, the identification
of research gap points out in a direction of designing a methodol-
ogy that addresses the above mentioned issues to understand and
predict neighbourhood-dependent person-to-person probabilistic
transmission of COVID-19, that should be powered with extensive
computational tools for parametric optimization.
1.2. Motivation and contributions

In this study, we propose probabilistic cellular automata based
dynamical model, optimized through sequential genetic algo-
rithm for an accurate assessment of the extent of COVID-19
dynamics. The major motivation of using cellular automata (CA) is
its ability in depicting extremely complex macroscopic outcomes,
while being based on local interactions that trusts on the interac-
tion of a multitude of single individuals [41,42]. This methodology
is capable of giving a direct correspondence to the physical sys-
tem and also rectifies the major drawbacks of ODE models by
(i) tracking individual contact processes, (ii) giving room for in-
troducing probabilistic individual behaviour, and (iii) capturing
neighbourhood as well as global spatial information. Because of
these reasons, CA based approaches have been successfully used
as a competent substitute method to simulate physical, biologi-
cal, environmental and social contagion-like spreading [43–46].
For studying past epidemics as well as interpreting COVID-19,
some studies have proposed cellular automata as an alternative
method [47–50]. However, to capture and interpret the behaviour
of real data through CA needs a large-scale parameter optimiza-
tion that could be time consuming as well as sub-optimal. Thus,
though being extremely flexible and powerful, CA has not been
yet optimized to understand and interpret COVID-19 data for
countries worldwide. To explore this, in this study, genetic algo-
rithm (GA) has been employed, which is a well-known method
for generating the optimal parameter subset through stochastic
search procedures based on the principle of the survival of the
fittest [51–55]. Cross-over and mutations, two key properties of
genetic algorithm help to optimize the parameter set efficiently
in limited steps. Cellular automata coupled with genetic algo-
rithm has been used before to explore evolutionary aspects of
game theoretical problems [56], but to the best of our knowl-
edge analysing and developing understanding from real pandemic
data like COVID-19 using optimized CA platform has not been
attempted yet. The main contributions of this work are as follows:

• To build a CA model which is probabilistic, so that it can
take into account of demographic variations, neighbourhood
diversity and uncertainties of real dynamics.

• To create an easily implementable framework where opti-
mization using GA will be done sequentially for all parame-
ters associated with the transition rules of the CA model for
real data interpretation.

• To interpret and understand COVID-19 disease transmission
dynamics with an optimized CA framework, which can be
extended for prediction as well.

Through this, on one hand, one can track the individual con-
tact process through time and space; on the other hand, a self-
adapting process of evolutionary strategies has been created by
designing the chromosome with parametric genes and establish-
ing fitness function that maximizes over the generations. The
main limitations of the state-of-the-art algorithms and the major
contributions of the proposed method are listed in Table 1 for a
clear understanding. The main rationality behind this approach is
that it is extremely difficult to find the optimal parameter of the
complex spatial epidemiological model using random search or
analytical techniques. The proposed GA based framework helps
to search the parameter space more efficiently for the optimal
performance of the entire algorithm.

The rest of this article is organized as follows: Section 2
includes the proposed concepts of epidemiological model, prob-
abilistic cellular automata and the sequential genetic algorithm
used in this work. In Section 3, the results has been elaborately
discussed where the optimized CA model has been employed for
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Fig. 1. An overview of the dynamics: (a) Object process diagram of the proposed model; (b) The schematic diagram of the disease transmission dynamics in form
f a modified SEIQR model. Transition probabilities pse , pei , piq , pir and pqr are pointed out. The associated state transition delays are indicated on the timeline of the
isease dynamics. (c) Time evolution of the spatial lattice during spread of the infection in a population. The colours of the respective subpopulations, (i.e., susceptible,
xposed, infected, quarantined and removed) are same as depicted in (a).
Table 1
Comparison of the proposed method with the state-of-the-art COVID-19 models.
Basic
methodology

Differential equation models Data science approaches

References [33–37,39,40] [13–22]

Limitations a) Homogeneous Mixing
b) Most models are considered
as deterministic

(a) No way to track person
to person transmission.
(b) No neighbourhood
consideration.

Contribution Proposed method,
(a) accommodates heterogeneity in population
(b) includes stochasticity and probabilistic dynamics
(c) estimates optimum epidemic dynamics parameters.
(d) considers neighbourhood and demography explicitly.
(e) performs robust prediction with limited data.
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simultaneously understanding as well as analysing active infec-
tions, total infections and total death caused by COVID-19 for
several countries, considering the demographic and spatial pop-
ulation density variations. Section 4 is comprised of concluding
remarks.

2. Proposed methodology

An object process diagram of the proposed method has been
depicted in Fig. 1(a). The methodology starts with the infection
spreads following the SEIQR epidemiological model in a random
human population over a 2D grid, initialized on a country-specific
basis. The parameters of the epidemiological model is contin-
uously optimized using proposed sequential genetic algorithm
to match the real country-specific infection spread data. The
proposed methodology is consisted of three distinct parts− (A)
epidemiological model that governs the infection spreading, (B)
probabilistic cellular automata (PCA) to model the dynamics of
the pandemic spread and (C) optimization of the parameters
associated with PCA using genetic algorithm (GA) to fit real-world
data.

2.1. Epidemiological model

In the epidemiological model, the entire population is parti-
tioned in five distinct parts. At the very beginning, every person
was healthy but they are vulnerable to the infection. These people
are denoted as susceptible (S) subpopulation. At time instance
t = 0, some people in the population got exposed to the infection
from some known or unknown source. These exposed people
do not have any particular symptom of the infection, but they
can spread the infection to the susceptible people. These asymp-
tomatic people are referred as exposed (E) subpopulation. At time
instance t = 0, there were also some people who had clear symp-
toms of the infection and they also had the potential to spread
the infection among susceptible people. This symptomatic people
are considered as infected (I) subpopulation. After an incubation
period, some of the exposed people show the symptoms of the
infection and they move to subpopulation I . Because of the health
facilities and testing time, the infected people are detected with
some average delay, and put to quarantine. The people who are
quarantined cannot spread the infection to other people, though
they themselves remain in the infectious stage. These people are
denoted as quarantined (Q ) subpopulation. Both the quarantined
people and the infected (but not detected) people would come
out of the infectious stage eventually, and after that they no
longer contribute in the infection spreading dynamics. These peo-
ple are denoted as removed (R) subpopulation in the model. This
removed subpopulation contains two kinds of people− one who
have recovered from the infection completely and they neither
infect nor get infected in future, and the other kind of people
who have died due to the severity of the infection. Schematic
diagram related to the transitions, probabilities and timelines
corresponding to the dynamics of infection are shown in Fig. 1(b).
In the analysis, normalized subpopulations have been consid-
ered, and the respective normalized subpopulation is denoted
using the same lowercase character. For example, the normalized
susceptible and infected subpopulations are denoted by s and
i respectively. As shown in Fig. 1(c), this epidemiological time
evolution has been implemented on a 2D lattice using PCA as
discussed below.
 d
2.2. Probabilistic cellular automata

Let L be a finite subset of Z2 at time instance t , denoted
as L ⊏ Z2 which defines a regular 2D lattice. Every point on
this lattice x ∈ L can acquire finite number of states A. In this
particular problem, the set A can be defined as A = {0, s, e, i, q, r},
where the terms s, e, i, q and r denote the particular possible
states of infection as discussed in Section 2.1, and 0 denotes no
human occupant or an empty space. At time t = 0, n0

i points
are randomly selected on L and assign the state ai where i ∈ A.
The total initial population is defined as N =

∑
i∈A\0 n

0
i . At any

instance of time t , nt
i , i ∈ A \ 0 denotes the total number of the

people in respective state ai.
For neighbourhood criteria, modified-Moore neighbourhood

or d-neighbourhood has been used. A finite subset Ωd ⊏ Z2 is
defined, containing the origin 0 = (0, 0), and the cardinality of
Ωd is 4d(d + 1). General probabilistic cellular automata (PCA) is
a stochastic process that describes sequence of mappings Λa

t :

L → a, a ∈ A, where any particular state Λa
t (x) of x ∈ L at a

particular time instance t is dependent on the previous states of
the d-neighbourhood of x, denoted as x+Ωd = {x+ω : ∀ω ∈ Ωd}

with certain probabilities. More precisely, in COVID-19 infection
spread, ΛE

t (x) will be decided by Λt−1(x+ω), ∀ω ∈ Ωd. The other
mappings Λa

t (x), a ∈ A \ E, depends on the sequence of states
a
κ (x), 0 ≤ κ < t .

.2.1. Transitional probabilities
The transition probability ptaiaj denotes the probability of tran-

ition at time t from state ai to state aj, where ai, aj ∈ A. Without
ny loss of generality, ptaiaj is denoted as ptij and transition from
tate ai to aj as aij in the rest of the discussion for a simpler
otation. In cases, where ai ̸= aj, ptij is referred as state transi-
ional probability, and if ai = aj, ptii is called as self transitional
robability.
If a state transition aij, i ̸= j, happens in x at time t following

he transition probability ptij and the transition state aij has a
ransitional delay τij, then

t
ij =

{
0 if t < tui + τij

pij if t ≥ tui + τij

here tui is the time instance when transition aui, u ̸= i hap-
ened. In this infection diffusion model, only the state transitional
robabilities ptse, p

t
ei, p

t
iq, p

t
qr and ptir are considered to be nonzero

t certain instance of time, and for all the other transitional
robabilities, τij is set to infinity, where pij and τij are user defined
arameters. However, for the transition ase, tui and τij are set to
ero, and for x ∈ L, let us define ptse = pij = 1 − ptss and the
elf-transition probability ptss = (1 − pi)it−1 (1 − pe)et−1 where it−1
nd et−1 are the number of cells in states i and e respectively in
he Ωd neighbourhood of x at time t −1. The probabilities pe and
i are defined as ‘infection probabilities’ which can be considered
s the probabilities that a susceptible person become exposed to
he infection when that person meets an exposed or an infected
erson respectively.
An empty cell does not contribute in the infection spread, and

hus, self transitional probability pt00 = 1, ∀t . Among the total
emoved population rt at time instance t , a population fraction
βrt is considered that recover from the infection at time instance
and acquire long-term immunity towards the disease, and a
opulation fraction (1 − pβ )rt is considered to be deceased. The
emoved population rt is not considered further in the infection

t ′ ′
ynamics and it is taken that prr = 1, t > t .
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Table 2
Descriptions of the parameters used in the proposed work.
Notation Description

L Spatial lattice
A Set of possible states on lattice
A \ 0 Set of epidemiological states
nt
i Total number of people at state ai at time t

Ωd d-neighbourhood of x ∈ L
Λa

t Mapping L → a at time t
ptij Probability at time t that x ∈ L moves from ai to aj
τij Transitional delay for x to move from ai to aj
et , it Number of exposed and infected people in the

d-neighbourhood of x at time t

pe , pi Probabilities that an exposed or an infected person spreads
the infection to a susceptible person when they meet

Θ A gene containing all the parameters of PCA method
B Binary encoded representation of Θ

G(Θ) The PCA model with parameter Θ

y Time series of an epidemiological state in a country
ŷ Time series estimate of epidemiological state from PCA
eji Estimation error of jth gene in ith generation
Ng Total number of chromosome in genepool
F Number of parents selected for mating from Ng
pβ Fraction of rt that recovers from the disease
ρ Fraction of parents F that lives in the next generation

2.3. Parameter optimization using GA

Though PCA has potential to model the probabilistic transition
f states on a spatial lattice, the main challenge to use it for mod-
lling a real-world scenario is to find out the optimal parameters
or the PCA. As the searching space for the proposed PCA model
s very large, it is practically impossible to search for the optimal
arameter setting manually to analyse the characteristics of the
nfection spread from a real data. Thus, genetic algorithm (GA)
as been applied to find out the optimal parameter set given a
eal time-series data.

Let us assume a discrete time signal y[n], 0 ≤ n ≤ (T − 1)
associated with the real world infection spread. The PCA model
is denoted by G(Θ), where Θ = [θ1, θ2 . . . θh] denotes the set of
parameters used for the PCA model. If ŷ[n], 0 ≤ n ≤ (T − 1)
is the time evolution of the desired variable in the model G(Θ),
then the objective is to find an optimal parameter set Θ∗ such
that ŷ[n] → y[n], ∀n. To apply GA, each θi, 1 ≤ i ≤ h, is
encoded as a string of binary digits bi [54,55] assuming the θi has
a bound |θi| < ζi, 1 ≤ i ≤ h. This binary string is referred as
ene, and the concatenated genes in the order of the appearance
f respective θi in Θ is called the chromosome. For example, if
is the chromosome corresponding to parameter set Θ , G(B) is
quivalent to G(Θ). A collection of Ng number of chromosomes of
stimated parameters, often referred as gene pool, are evaluated
t every time step (called as generation). In our work, the error of
ach chromosome has been evaluated using l1 norm distance. At
th generation, the error of the jth chromosome Bji is computed
as

eji = ∥y − ŷji∥1 =

T−1∑
n=0

|y[n] − ŷji[n]|

here ŷji is the estimated output of G(Bji) in the vector form and
ˆ ji[n] is the value of ŷji at time instance ‘n’. At each generation,
A finds out min(eji), ∀j and tries to make eji → 0 as i → ∞. In
he proposed framework, some of the parameters are related to
robabilities having a range 0 to 1, and some of the parameters
re associated with time (in days) which are discrete integers, and
reater than or equal to zero in our case. Thus, the parameters are
nitialized randomly keeping their domain restrictions intact.
For mating, two chromosomes, often referred as parents, are
selected from the gene pool considering their ‘fitness’. Among two
selected parents, a crossover point or a splice point is selected at
bi, 1 ≤ i ≤ h in both chromosomes and a crossover [55] happens
that produces two offsprings. In our approach, fitness fji of each
chromosome has been defined as the inverse of their respective
errors at a particular generation. At each generation, F number
of best chromosomes are selected from the gene pool having
the maximum fitness for mating. Following the idea of [52], ρF
number of parents are kept to the next generation along with the
new chromosomes to ensure that the error in the next generation
is always less than or equal to the current generation. Selecting
ρF number of chromosomes from the parents, Ng −ρF number of
children are produced from mating to keep the size of the gene
pool constant. After the offsprings are generated, in the parameter
space, s genes are randomly selected and small perturbations are
added individually to mimic mutation.

As shown by several researchers [57], the homogeneity in
the gene pool increases with the generations, and as the per-
turbations due to mutation are typically small, the reduction of
error becomes a problem after a few generations. Thus, to restrict
homogeneity in the gene pool, a small number of offsprings µ are
selected from the total Ng − ρF number of generated offsprings,
and replaced them with randomly generated chromosomes to
maintain diversity. This step is called as ‘diversification’ of gene
pool.

In our problem, the parameters Θ of the PCA model G(Θ)
are the state transitional probabilities pei, piq, pir , pqr , infection
robabilities pe and pi, state transition delays τei, τiq, τqr , τir ,
eighbourhood d, and death probability pβ as mentioned in Sec-

tion 2.2. As optimizing these many parameters simultaneously
might be challenging and require huge amount of resources, we
propose a variant of GA with sequential evolution mechanism
where instead of optimizing the solutions simultaneously, the
parameters are optimized sequentially. Let us define a set of
generations as an era. For the first era containing a small number
f generations, a traditional GA methodology is followed as dis-
ussed this far to have a set of initial parameters. From the next
ra onward, two parameters are fixed and optimized sequentially
n that era. Mutation and crossover are restricted to those two
espective genes, whereas parent selection is done based on the
erformances of the entire chromosomes. This newly proposed
equential optimization of parameters of PCA using GA is defined
s PCA-GA. The proposed approach can optimize a large number
f parameters using limited resources efficiently. All the notations
sed in PCA-GA are briefly summarized in Table 2.
Proposed PCA-GA has a complexity which can be approxi-

ated as O(NgTgO(f )) where Ng is the number of population, Tg
s the total generation and O(f ) is the complexity to measure
he fitness in the GA. For a large enough Ng , Tg is considered
s a comparatively smaller constant and thus, the complexity
f the entire algorithm is mainly governed by Ng and O(f ). The
omplexity of estimating the fitness can be approximated as
(f ) = O(T + 8NτT ) for Moore neighbourhood criteria, where N
s the total population on the 2D grid. The length of the original
ime series data T , and τ , the maximum of τij, are both constant,
nd thus O(f ) can be represented as O(N).
Though GA has been selected as a strategy to optimize the

arameters of the proposed PCA model, it is evident that because
f the generalized construction of the proposed framework, other
eta-heuristic methods could also be employed to search the
arameters of the spatially driven SEIQR model which is the
ain focus of this work. However, presence of mutation and
iversification in GA help to search for better solutions as the
earch space is extremely large.
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Fig. 2. Time series data for active cases (blue) of COVID-19 pandemic in different countries where the peaks of the infection spread of the first wave have been
assed, and estimated active cases (red) from proposed PCA-GA method.
. Results

To validate the effectiveness of the proposed framework, using
CA-GA, the actual statistics of COVID-19 spreads till 20th June,
020 in different countries is used. For finalizing the data-set
rom available data of 213 countries, several aspects have been
onsidered. At first, 102 countries had been dropped due to less
umber of reported cases (less than 1000 reported cases till 20th
une 2020). Out of the remaining countries, some countries, like
ran, Greece, Paraguay etc., are removed due to data inconsis-
ency, and finally 40 countries are randomly selected ensuring the
ollowing points:

• At least 2 countries from each continent got selected to
maintain demographic diversity in our data.

• Care has been taken to maintain significant variation in
population density, which we believe as a major factor
contributing in disease transmission.

• It was ensured that countries from three distinct stages of
COVID-19 infection are considered: (i) where the infection
is significantly diminished, (ii) where the peak infection has
been reached but substantial infection still persists, and (iii)
where consistent growth in infection is occurring.
With these widely variant spectrum of time series data, we pro-
ceed for quantitative calibration and interpretation through the
proposed methodology. All data samples are taken from the web-
site worldometers.info.1

To point out the major contributing factors in dynamics of
infection spread, for every country under consideration, three
available time series, namely daily active cases, total number of
infected cases and total number of deaths are accumulated. Out
of these three series, the daily active cases time series is used
for model formulation, and the rest are considered for model
validation. It is important to mention that the population qt is the
relevant observable here, as infected people as it and et remain
latent and undetected in the population. The reported daily active
case data is associated with lifetime of the infection, and are
used in this study to check the effectiveness of the proposed
framework as follows. By applying PCA-GA on the daily active
case data of a particular country, the parameters Θ∗ that gives
the minimum l1 error is extracted. For validation of the optimized
parameters and understanding the robustness of the algorithm,
results generated by using G(Θ∗) for the total infected states
and deceased states are then compared with the real-world data.

1 https://www.worldometers.info/coronavirus/.

https://www.worldometers.info/coronavirus/
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Here it must be noted that the optimal parameters Θ∗ remain
unaltered and no further optimization is performed.

3.1. Experimental setup

For all the simulations, PCA is initialized with a fixed lattice
size of 100 × 100 with ne = 50 and ni = 4. The population nq
and nr are set to zero at t = 0. The susceptible population ns has
been initiated depending on the population density of a country
as follows: among the countries considered in our study, for the
country with lowest population density (Canada), ns = 2500
as been selected, and for the country with highest population
ensity (Singapore), ns = 6000 has been fixed. For any other
ountry, ns has been assigned within this range using logarith-
ic scaling based on the population of that country. As each of

he parameters of PCA-GA has physical relevance, the sequential
earching process has been initiated by following restrictions
f ranges. It is important to note that in our problem, genes
ssociated with probabilities are initiated in the range [0,1] and
lipped during the optimization process accordingly. The state
ransition delays τei (incubation period) and τiq (testing delay)
re considered to be within the range (0,30). The transition delay
ir and τqr (corresponding recovery periods) are initialized in the
ange (20,100). All the simulations are executed in a system with
ntel Core i7 8700K processor, 64 GB RAM and 8 GB NVIDIA
eForce RTX 2080 8 GB GPU using Python and numpy packages.

.2. Estimation of parameters using active cases

The daily active cases can be defined as the ct = ct−1 +

t − rt where ct is the number of active cases at time instance
having the initialization c0 = 0. In Fig. 2, the active cases of 20
ifferent countries are shown along with the respective estimated
ctive cases using PCA-GA model. For the countries shown in
ig. 2, the first peak of the infection is already crossed and a
teady fall in the infection spread is observed. It can also be seen
hat some of the active cases of the countries like China, Israel,
witzerland, follow smooth bell-shaped curves, whereas for some
ountries, like Australia, Cyprus, Hungary etc., the times series
ata deviates from bell-shaped curves with substantial degree
f noises. In all the cases, PCA-GA has successfully captures the
rend of the time series data estimating the parameters of the
pidemiological process. To measure the goodness of the model
stimation, three different metrics has been used to measure the
uality of the estimated values. The root mean square (RMSE)
istance, correlation distance and chi-square distance [58–60],
enoted as dl, dc and dχ respectively, are computed between
he real data and the estimated values from the PCA-GA model
o evaluate the effectiveness of the optimized model. For two
ectors u and v, we define

l =

√ 1
T

T∑
i=1

(ui − vi)2, dc = 1 −
(u − ū).(v − v̄)

∥(u − ū)∥2∥(v − v̄)∥2
,

χ =

T∑
i=0

(ui − vi)2

vi

where T is the length of each vector, ui and vi are the ith elements
of u and v respectively and (.) denotes dot product of two vectors.
As shown in Fig. 3(a), the proposed model performs well in
modelling the real data. When evaluated over all the countries
considered in this work, the proposed model fits the data well,
and for only 0% −12.5% cases the fittings were poor depending
on the evaluation metric. It is important to mention that all the
distance measures are evaluated on normalized data.
In Fig. 2, an interesting point to notice is that the peak of the
active cases are located at markedly differing time instances, and
the other properties, like variance, skewness etc., of the observed
distributions are also varying drastically. The fundamental dif-
ferences between the fitted curves are quantified with the help
of boxplot of the parameters in Fig. 3(b)–(c) by analysing basic
statistical properties. The reported boxplots are specifically for
the countries selected in Fig. 2. It can be noted that pe, pi and pei
xhibit a wide variability in Fig. 3(b). During our analysis, a strong
ositive correlation with population density for pe and pi has

been also observed. This can be thus inferred that the variation
in population density in the considered countries causes the wide
range of these parameters. It can be also concluded that high den-
sity of population increases the probability of transmission of the
disease. The considerable difference in the mean magnitudes of
the infection associated probabilities (pe, pi and pei) and recovery-
related probabilities (piq, pir and pqr ) indicate the sharper rise and
slower fall of active cases curves, which results into a skewed
distribution in most of the cases (see Fig. 2). In Fig. 3(c), it is also
shown that τei, which is identified as the incubation time in the
odel, exhibits a range of 3–14 days with a mean at 7.3, which
erfectly aligns with the observed cases all around the world [61].
n this figure, a wide variability in the range of τir and τqr is
observed, which points out the substantial difference in health
infrastructure of these countries.

Here it must be mentioned that, while performing this statis-
tical analysis with all 40 countries, some countries were detected
showing consistent outliers (not included in Fig. 3(b)–(c)) in
terms of four transitional parameters: pir . pqr , τir and τqr . While
analysing the active case distributions of these outliers, it was
found out that the time series data for all these countries have
a saturating trend where the daily active cases do not show an
average descent with time. Some of such cases are shown in Fig. 4.
Even for these data which have drastically different qualitative
trend compared to countries shown in Fig. 2, the proposed PCA-
GA framework has successfully captured the trend of the real time
series data accurately.

There are also certain countries, like India, Brazil, Chile, Mex-
ico, etc., for which the infection spreading started later than the
countries like China or Italy, and the active daily cases are still
growing almost exponentially. As shown in Fig. 5, PCA-GA is
able to estimate the time series data for these countries where
the infection is spreading rapidly. Dynamics of COVID-19 spread
in these countries are of particular interest as the prediction of
the peak positions in these countries might help immensely to
understand the maximum socioeconomic impact of the disease
at a time in that geographical location.

3.3. Validation of the proposed model

While analysing a complex dynamics like the spread of a
pandemic, it is not always sufficient to model the input real data
only. It is required that the optimized model should be robust and
can provide meaningful interpretations without further retrain-
ing or parameter tuning for real-world applications. To validate
the robustness and the effectiveness of the proposed algorithm,
the optimized model is now employed for three different tasks.
At first, the robustness of the optimized model is checked by
estimating the total number of infected cases, followed by to-
tal number of death cases without any further training, tuning
or supervision. Finally, to further validate the efficiency of the
model, its performance has been evaluated for the prediction task
by training the model with partitioned data and evaluating on its
future predictions without any further optimization.
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Fig. 3. Parameter estimations and goodness of model estimation: (a) RMSE, Correlation and χ2 distance, dl , dc and dχ for all 40 countries considered in this work in
terms of goodness of agreement with model estimations shown in percentage. The colours green, orange and red signify level of agreement. Values between (0:0.05)
for dl , (0:0.01) for dc and (0:1) for dχ are considered as good (green). Values between (0.05:0.08) for dl , (0.01:0.1) for dc and (1:3) for dχ are considered as moderate
(orange). Values above moderate are considered as poor (red). For all three metrics 65− 75% countries have shown good agreement with model estimation; (b) and
(c) represent boxplot for the best-fit parameters of state transition probabilities and state transitional delays respectively, for all the 20 countries shown in Fig. 2.
The height of the boxplots represents the interquartile range (IQR). The dark line inside the box represents the median. The lower and upper whisker extend to the
lowest and highest values within 1.5 IQR of the first and third quartile, respectively.
Fig. 4. Time series data for active cases (blue) of COVID-19 pandemic in different countries where the cases are saturating, and estimated active cases (red) from
roposed PCA-GA method.
Fig. 5. Time series data for active cases (blue) of COVID-19 pandemic in different countries where the cases are increasing exponentially, and estimated active cases
(red) from proposed PCA-GA method.
3.3.1. Total number of infected
The total number of infected cases zt at time instance ‘t ’ can

defined as zt =
∑t

i=0 qi. This cumulative sum indicates the total
umber of people who suffered from the disease at any point
f time. For a country, where the first wave of the infection
has passed, e.g., Croatia, Italy, etc., zt follows a sigmoid function
approximately, whereas for the countries like India, Mexico etc.,
where the infection has not reached the peak, zt follows an
exponential function. As PCA-GA is optimized using the time
series information of daily active cases c , z is used to validate
t t



S. Ghosh and S. Bhattacharya / Applied Soft Computing Journal 96 (2020) 106692 9

a
c
g
0

3

t

Fig. 6. Total infected cases (blue) of COVID-19 pandemic in different countries, and estimated total cases (red) from proposed PCA-GA method.
Fig. 7. Total deaths (blue) of COVID-19 pandemic in different countries, and estimated total deaths (red) from proposed PCA-GA method.
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the parameters learnt by the sequential GA framework in the
following way. Once a particular country is selected, Θ∗ is es-
timated using PCA-GA with the actual ct . Next the ẑt for G(Θ∗) is
calculated without any further fine-tuning of the parameters, and
compared ẑt with actual zt . In Fig. 6, the total cases (blue) of six
such countries are shown along with the best-fit results obtained
from PCA-GA (red) which depict an excellent agreement with the
data. It must be mentioned that for all three dynamical stages
of infection spreading as discussed in Section 3.2, i.e., where
the first wave of infection has passed, where the active cases
are almost saturated currently or where the active cases are
increasing rapidly, our estimated ẑt closely matches zt without
ny further parameter optimization. When evaluated over all 40
ountries for the number of infected people, the proposed method
ives average dl, average dc and average dχ as 0.037,0.006 and
.53 respectively, which exhibits the robustness of the model.

.3.2. Total death cases
To further validate the ‘goodness’ of the estimated parameters,

he parameter set Θ∗ optimized over the daily active cases of
a particular country is taken and the identical parameter values
are used to compare the estimated total deaths with the actual
total deaths of that country. Death in the population is the prime
concern in case of the COVID-19 pandemic, and as mentioned
in Section 2.2.1, daily deceased population is a fraction of rt in
ur model. So, the total estimated death cases can be defined as

ˆ t = (1 − pβ )
∑t

i=0 ri where pβ and ri for 0 ≤ i ≤ t are given by
∗ and G(Θ∗) respectively. Fig. 7 demonstrates the comparison
f the actual total death cases dt with estimated total death cases

d̂t for Θ∗, the identical set of parameters used for estimating
active cases as well as total cases previously. The same countries
shown in Fig. 6 have been selected to show the robustness of the
estimated parameter Θ∗ using the proposed technique. Excellent
greement with data has been found for this case as well; when
valuated over all 40 countries for the total number of death
ases, the proposed method gives average dl, average dc and
average d as 0.041,0.006 and 0.48 respectively.
χ
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Fig. 8. Prediction of daily active cases from truncated data. For Israel and Switzerland, real data up to 54 and 43 days has been used to predict the daily active
cases for 100 days. For prediction, the average of 50 independent PCA-GA simulations are considered.
t
r

3.3.3. Prediction related to infection spread
Prediction of future events is always challenging in data mod-

lling [62]. For the final stage of validation of the methodology,
he predictive power of the model has been tested. As the impacts
f this pandemic becomes far reaching as the socioeconomic con-
exts vary, a considerably accurate prediction about the dynamics
f the infection spread can be crucial and useful in many ways.
s PCA-GA successfully estimates the optimal parameter Θ∗, the
et of parameters can also be utilized to predict the future course
f the infection in that country.
To validate the capacity of the prediction strategy, the daily

ctive cases of a country ct is truncated to cP keeping the first
P ’ values. PCA-GA is applied on cP to estimate the parameters
P . Then ΘP is used to predict the daily active cases ĉt . As shown

n Fig. 8, for two countries Israel and Switzerland, the daily active
ase information up to 54 and 43 days respectively are considered
or an attempt to predict the daily active cases up to 100 days.
n the figure, the estimated curve (shown in red) is optimized
sing all the real data points available, whereas the predicted
urve (shown in black) is optimized using the truncated real
ata. It can be observed that the predictive estimation closely
ollows the real active case data, even though only ∼ 50% data
oints are used for parameter estimation. For Israel and Switzer-
and, 100 days prediction of the algorithm produces (dl, dc, dχ )
s (0.056, 0.008, 0.95) and (0.028, 0.005, 0.43) respectively. As
rediction of the spread of the infection is one of the most
hallenging tasks, the predictive ability of proposed algorithm is
ompared with different baseline methods to better understands
ts performance. As only a very few data points were available
n the truncated data, fast decision tree learning algorithm [63]
nd Random forest regression perform poorly and give (dl, dc, dχ )

as (0.43, 0.49, 243.82) and (0.439, 0.51, 252.6) respectively for
he truncated time series of Switzerland. SVM regression with
BF kernel performs satisfactorily on the same truncated data
nd produces (dl, dc, dχ ) as (0.09, 0.02, 27.8). However, the pro-

posed PCA-GA algorithm significantly outperforms the baseline
algorithms and produces (dl, dc, dχ ) as (0.028, 0.005, 0.43).

.4. Prediction for exponentially rising active cases

As the PCA-GA methodology has been elaborately validated in
ection 3.3, now, in this section, it is employed for the purpose
f prediction of consistently rising real epidemic data. Though the
arameter estimation works well even when the minimum infor-
ation about the peak position in ct is available, the prediction

ask becomes really challenging when ct is exponential in nature.
or a particular country where ct is almost exponentially rising,
roceeding with prediction, first the best set of parameters Θ∗

s detected by PCA-GA with fitness f ∗ and error e∗. As the drop
f the infection heavily depends on the transitional probabilities
Fig. 9. Prediction of the course of the disease: Exponentially rising daily active
cases for India (blue) till 20th July, 2020 are used for parameters estimation and
the predictions.

pir , pqr and state transitional delays τir and τqr , this parameters
are tuned to find a region of predictions bounded by the possible
best case and the worst case scenarios. While estimating the
best case scenario, pir and pqr is chosen equal to the maximum
and minimum pir and pqr observed in the continent from which
the country belongs. The reason behind this strategy is that the
parameters related to the infection spreading are different in each
continent which is also observed by [64]. In the best case scenario,
transitional delays τ ∗

ir and τ ∗
qr are reduced to obtain best case

ransitional delays τ⊖

ir and τ⊖
qr respectively such that the fitness

emain within 90% of f ∗, where τ ∗

ir and τ ∗
qr are the corresponding

optimized delays available in Θ∗. For the worst case scenario, we
consider τ⊕

ir = τ ∗

ir + αir and τ⊕
qr = τ ∗

qr + αqr , where αir = τ ∗

ir − τ⊖

ir
and αqr = τ ∗

qr − τ⊖
qr .

Fig. 9 depicts the prediction of the daily active cases using the
method discussed so far. In Fig. 9, the black dotted line indicates
the prediction using the optimal parameters Θ∗ estimated using
PCA-GA. The orange line indicates the best case scenario, where
the maximum daily active cases would be minimized given the
real data. The red line indicates the worst case scenario based on
the specific conditions mentioned above. The best case and the
worst case scenarios act as limiting cases of an area (shaded in
pink colour) of probable future state. Any curve inside the pink
region that contains the real data could be the evolution of the
daily active cases in future given the real time series data, that
is in exponentially rising state currently. This indicates that for
India, which is now one of the biggest epicentres of COVID-19
in South-eastern Asia, the disease can start decline very soon if
vigorous measures from government and complete support from
the public could be achieved. It also shows that the maximum
active cases on a day, that puts a direct burden on the health
infrastructure of the country can be restricted below 750,000 if

people participate to government indicated mitigation strategies,
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and recovery rate remains at its current value. In that case, the
peak of the disease is expected to pass during mid-September to
mid-October, and the disease can be over with its first wave by
March 2021. But these predictions also imply that the range of
future states, that are possible for exponentially rising daily active
cases, not only depend on the evolution of the epidemic so far, but
also gets highly affected by the consistency and implementation
efficiency of mitigation strategies.

4. Conclusion

COVID-19 outbreak has created a massive impact all across
the globe. Even after nation-wide lockdowns, extensive testing
strategies and medical supports, the spread of the virus has
overwhelmed several countries. Thus, it is becoming more and
more important to understand the nature of the infection spread
and the key parameters that are controlling the spread. In this
work, we proposed a probabilistic cellular automata model to
understand and depict COVID-19 spread using appropriate choice
of loss functions and evolutionary optimization framework. The
parameters of this cellular automata model are optimized using
sequential evolutionary genetic algorithm. It has been shown that
this self-adapting methodology can be highly flexible and has the
power to accurately estimate time trajectories of epidemics. This
model works with physically interpretable parameters, which are
accessible for analysis, data collection and further experiment,
and can be readily identified with ground reality. This model has
been successfully employed for optimizing all these parameters
simultaneously for the daily active cases, total infected cases
and total deaths with extreme robustness. The performance of
the model has been exhibited for a large number of countries
with huge diversity in population density, continents and avail-
able healthcare infrastructures. The predictive strength of the
model has also been validated extensively, and demonstrated to
estimate the course of the pandemic for the countries where in-
fection peak has not been reached yet. It is important to mention
that the motivation of the work was to develop a data driven, gen-
eralized, spatial framework that can be used to estimate relevant
epidemiological parameters. This methodology is so powerful and
flexible that physical interpretations of the results obtained from
these analyses can have a wide range implications. Once the data
is properly interpreted with the proposed methodology, inter-
esting realistic features can be identified for specific countries.
For example, in a pandemic situation, easily relatable factors like
population clusters, variable population density, variable health
facilities at different places of a country etc, can be studied to
understand and predict emergence of new hotspots which can
be used to design selective area containment strategies. While we
propose and establish the applicability and strength of this frame-
work in this work, we wish address these application perspectives
in a study in our upcoming research studies.

With this proposed platform, the impact of individuality on
contagion process can be explicitly studied, which might be di-
rectly related to the questions like lockdown behavioural dif-
ferences, influence of rumours, vaccination opinion differences
etc. As the effects of more complex dynamical factors like peri-
odic lockdown or population clusters are not considered in this
present model, the prediction capability of the proposed model
is not satisfactory for time series data with abrupt discontinu-
ities in the present form. The proposed framework could be
enhanced with other lp norm distances and different optimiza-
tion techniques like multi-objective genetic algorithm or strength
pareto evolutionary algorithm. Other swarm-based optimization
techniques can also be explored for further refinement of the
model. The potential of the proposed approach can be utilized to
better understand the disease spreading and controlling, beyond
this pandemic the world is facing currently, by keeping track of
the spatial information of the dynamics, incorporating realistic
behavioural aspects, and optimizing in terms of demographic as
well as socioeconomic features.
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