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Grazing-incidence small-angle X-ray scattering (GISAXS) coupled with

computed tomography (CT) has enabled the visualization of the spatial

distribution of nanostructures in thin films. 2D GISAXS images are obtained by

scanning along the direction perpendicular to the X-ray beam at each rotation

angle. Because the intensities at the q positions contain nanostructural

information, the reconstructed CT images individually represent the spatial

distributions of this information (e.g. size, shape, surface, characteristic length).

These images are reconstructed from the intensities acquired at angular

intervals over 180�, but the total measurement time is prolonged. This increase

in the radiation dosage can cause damage to the sample. One way to reduce the

overall measurement time is to perform a scanning GISAXS measurement

along the direction perpendicular to the X-ray beam with a limited interval

angle. Using filtered back-projection (FBP), CT images are reconstructed from

sinograms with limited interval angles from 3 to 48� (FBP-CT images). However,

these images are blurred and have a low image quality. In this study, to optimize

the CT image quality, total variation (TV) regularization is introduced to

minimize sinogram image noise and artifacts. It is proposed that the TV method

can be applied to downsampling of sinograms in order to improve the CT images

in comparison with the FBP-CT images.

1. Introduction

Grazing-incidence small-angle X-ray scattering (GISAXS) is

widely used to characterize the nanostructural features of

metallic and polymer materials in thin films (Lee et al., 2005;

Liu et al., 2015; Kaune et al., 2009). Because of the high

intensity and small beam size of the incident X-rays of

synchrotron radiation (SR), GISAXS has extended to scan-

ning measurements occurring over a short time period

(Hexemer & Müller-Buschbaum, 2015; Saito et al., 2015; Lu et

al., 2013; Gann et al., 2014). Recently, GISAXS coupled with

the computed tomography (CT) method was successfully used

to visualize the spatial distribution of metallic nanoparticles

on substrates (Kuhlmann et al., 2009; Ogawa et al., 2015, 2017).

In the conventional CT method, CT images are recon-

structed from sinograms of the absorption intensities taken

from different angles through a sample (Herman, 1980;

Elbakri & Fessler, 2002; Chen et al., 2008; Nishikawa et

al., 2012). In the GISAXS-CT method, CT images are
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reconstructed from sinograms obtained by scanning GISAXS

measurements along the direction (Y) perpendicular to the

X-ray beam at each rotation angle (�). In GISAXS images,

information on the nanometre scale in reciprocal space is

contained in the scattering intensities at the q positions. Since

CT images are reconstructed from the sinograms of the scat-

tering intensities, one can obtain the spatial distributions of

structural information corresponding to the scattering inten-

sities. This technique has been applied to transmission small-

angle X-ray scattering (SAXS)-CT as well as GISAXS-CT

methods (Schroer et al., 2006; Schaff et al., 2015; Skjønsfjell et

al., 2016; Liebi et al., 2018). In these methods, CT images are

reconstructed from the sinograms using filtered back-projec-

tion (FBP). We refer to these reconstructed CT images as

FBP-CT images.

To obtain a high-quality FBP-CT image, an enormous

number of scattering images are required. In addition, the

sampling rate of the rotation angles must satisfy the Shannon/

Nyquist sampling theorem (Candès et al., 2006; Khan &

Chaudhuri, 2014). If GISAXS measurements with a step size

of 20 mm along the Y direction at each rotation angle are

performed on a target sample of size 1.0 mm, then the number

of rotation angle steps must be greater than 79. In this case,

the total number of scattering images is more than 3950. This

means that even if one can acquire GISAXS data in 1 s using

SR, the total time required for measurement is more than 1 h.

Experiments using SR need to be carried out within a limited

time period; thus, long measurement times can decrease the

number of samples that can be measured. Moreover, high-

quality FBP-CT images require sampling with high X-ray

radiation doses, but soft-material samples are sensitive to

X-ray-induced radiation damage. Thus, an approach for low

dose and high speed is indispensable for the GISAXS-CT

method.

Recently, Hu and co-workers proposed a technique for

generating projection images from limited-angle SAXS data,

using the ordered subset expectation maximization (OSEM)

method (Hu et al., 2017; Hudson & Larkin, 1994). These

researchers showed that the OSEM algorithm could effec-

tively eliminate streaking artifacts and improve the efficiency

of data acquisition by at least three times compared with the

FBP algorithm. To further improve the CT images, a more

effective framework is required for image reconstruction from

very limited angle (grazing-incidence) SAXS data.

In this article, we propose a new image reconstruction

framework for GISAXS-CT. Besides the FBP algorithm, many

efforts have been made to develop iterative CT algorithms,

which are all the derivatives of fitting algorithms. Those efforts

can be roughly classified into two kinds: one is to improve the

robustness of the fitting, and the other is to optimize the

calculation efficiency. This article is mainly focused on the

former issue. In the case of OSEM, the ordered subset (OS)

mainly concerns the calculation efficiency by effectively

reducing the data set (projection) in a single fitting loop. The

expectation maximization (EM) enhances the robustness of

the fitting. Our framework is realized as a nonlinear filtering

algorithm that can be used instead of existing reconstruction

methods, such as the FBP and the OSEM algorithms. The

nonlinear filter is built upon a constrained optimization

problem involving total variation (TV) regularization (Rudin

et al., 1992). TV regularization is a mathematical model that

characterizes 2D ‘piecewise-smooth’ signals and has been

shown to be a powerful technique for image denoising and

decomposition tasks (e.g. Chambolle, 2004; Ono et al., 2014).

Our framework based on TV regularization enhances the

robustness of the fitting rather efficiently by incorporating the

recent progress in the field of optimization problems. The

regularization term used in our framework enables the

reduction of the input data set while keeping the quality of the

resulting images. This approach is also expected to help

compensate for the incompleteness of the data set, for

example, the absence of particular angular regions in the

projection series, termed ‘missing wedges’, and opaque (no

transmission) regions, for example ‘metal artifacts’ (Arslan et

al., 2006; Bamberg et al., 2011). However, we think that these

matters should be discussed elsewhere. Our framework

enables high-quality reconstruction from the sinograms

obtained by scanning GISAXS measurements with limited

interval angles from 3 to 48�. We also discuss the possibility of

using our framework as a low-dose and high-speed approach

by comparing images reconstructed by our framework (here-

after called TV-CT images) and FBP-CT images.

2. Experiment

2.1. Sample

We prepared thin circular Au layers on a silicon (Si)

substrate for the GISAXS-CT measurements; these layers

were deposited using the plasma sputter-coating method.

Sputtering was accomplished using Ar ion beams and Au

targets (ESC-101, ELIONIX). To form circular layers of 1 mm

in diameter, we created circular through-holes in a 0.5 mm-

thick aluminium mask using a drilling device. Au was sput-

tered onto the substrate for 1400 s, resulting in Au-patterned

layers that were �100 nm thick. Defects were produced on a

part of the circular pattern by scratching with tweezers.

2.2. GISAXS-CT measurements and optical microscopy
observations

GISAXS measurements were performed at the first

experimental hutch of the beamline BL03XU, Advanced

Soft Matter Beamline (FSBL), at SPring-8. The hutch is

dedicated to GISAXS experiments using an intense beam

(1013 photons s�1) with very low divergence [12.3 mrad (hori-

zontal)� 1.1 mrad (vertical)]. The X-ray wavelength � and the

sample–detector distance were 0.1 nm and 2275 mm, respec-

tively (Ogawa et al., 2013). The full width at half-maximum

(FWHM) of the beam at the sample position was 28.5 mm

(horizontal) � 99.5 mm (vertical), and the beam footprint

(which could entirely cover the pattern configurations) was

extended to 11.4 mm at an incidence angle of 0.50�. The

scattering images were detected by a PILATUS 1M (Dectris

Ltd) with an exposure time of 1.0 s.
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To reconstruct the images in the lateral directions using the

CT method, we scanned the sample over a distance spanning

1.02 mm in steps of 15.0 mm, along the direction normal to the

incident beam (Y direction). The scanning steps were

comparable to the incident beam’s width (the beam’s size in

the horizontal direction). In the rotation scan (�), images were

acquired in 1.0� steps for 0.0 � � < 180.0�. A diagram of the

experimental setup is shown in Fig. 1.

An optical microscopy (OM) image of the fabricated Au-

patterned thin layer on the substrate was acquired using a

digital microscope (VHX-5500, KEYENCE).

2.3. TV minimization

In this section, we establish a new image reconstruction

framework for GISAXS-CT. First, we introduce a measure-

ment model for GISAX-CT as follows:

v ¼ U �uuþ n; ð1Þ

where �uu is the original CT image we wish to reconstruct, v is a

sinogram image, U is a matrix representing the GISAX-CT

measurement process, possibly with limited interval angles,

and n is the measurement noise. We note that the images �uu and

v in the model are treated not as 2D matrices but as 1D vectors

for mathematical convenience. Both treatments are essentially

the same, and in our implementation the images are processed

as is (not vectorized).

Under this model, our framework is formalized as a

constrained optimization problem as follows: find ur that

minimizes TVðuÞ subject to jjUu� vjj � ", where ur is the

reconstructed CT image, the objective function TVðuÞ is the

TV regularization and the constraint jjUu� vjj � " is an L2

data-fidelity criterion. Here, the parameter " � 0 controls the

‘reliability’ of the observed sinogram v, that is, the smaller " is,

the smaller is the estimated noise contamination of the sino-

gram. Moreover, minimizing TVðuÞ means that the recon-

structed CT image ur should be ‘piecewise-smooth’; that is, the

TV regularization prefers artifact-free images. After some

reformulations, we can solve this problem by a state-of-the-art

convex optimization algorithm, called the primal-dual splitting

method (Condat, 2013), yielding an efficient algorithmic

framework for reconstructing GISAXS-CT images.

We attempt to give an intuitive explanation of our problem

formulation. For simplicity, here we assume the noiseless case,

that is, " ¼ 0, and the constraint is reduced to a linear equation

Uu ¼ v. If the interval angles are limited, then this linear

equation becomes underdetermined, meaning that there are

infinitely many solutions to the linear equation. Thus, we need

some criterion to characterize a reasonable solution (a

reconstructed image) among all possible solutions. In our

problem formulation, TV regularization plays a role. More

specifically, minimizing TVðuÞ subject to Uu ¼ v implies

picking out a piecewise-smooth image from the possible

reconstructed CT images that satisfy the linear equation. As a

result, we can reconstruct a reasonable CT image under

scenarios of GISAXS data with limited interval angles. We

refer to these reconstructed CT images as TV-CT images. The

TV regularization algorithm roughly consists of four compu-

tations: taking neighboring differences, a soft-thresholding

operation, matrix–vector multiplication with U and metric

projection onto an L2-norm ball.

3. Results and discussion

Fig. 2 shows an OM image of a thin circular Au layer on an Si

substrate. We observed impurities at parts A, B and C of the

circular pattern. In addition to these impurities, the OM image

exhibited different colors in regions D and E, indicating that

the thin Au film contained scratched areas. We acquired a

GISAXS pattern of the area free from defects by irradiating

the center position of the circle. Fig. 3(a) shows a 2D GISAXS

image from the thin Au film at an incidence angle of 0.50�. The

scattering peaks were observed at (qy, qz) = (	0.24,

0.80 nm�1), indicating that periodicity exists in the thin Au

layer. To characterize the morphology of the thin Au layer, we

adopted a truncated tetrahedron with periodicity. Fig. 3(b)

shows the 2D calculated scattering pattern. We used the

FitGISAXS software for the analysis of the GISAXS data

within the distorted-wave Born approximation (Babonneau,

2010). For modeling, we used a truncated tetrahedron form

factor and the Percus–Yevick 2D model with a Gaussian

distribution function as the structure factor. Fig. 3(c) shows

the measured and calculated in-plane intensity profiles at
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Figure 1
A schematic sketch of the experimental setup of GISAXS-CT.

Figure 2
Optical microscopy image of the measured sample. A circular pattern was
deposited by Au sputtering.



qz = 0.80 nm�1. The in-plane profile from modeling was in

good agreement with the measured in-plane profile. Fig. 3(d)

shows a cartoon illustrating the structural model. The calcu-

lated result demonstrated that the mean triangle length was

13.8 nm and the height was 13.2 nm, and the angle between

the triangle face and the height was 53.5�. Additionally, the

mean particle distance between the truncated tetrahedra was

18.0 nm. The appearance of a broad peak at qy = 0.24 nm�1

reflected the interparticle distance between the Au nano-

particles. We note that our model did not perfectly match with

the vertical profile for the higher qz region above qz =

0.92 nm�1. This may be the effect of inhomogeneous surface

roughness or the film thickness in the irradiated part of the

sample.

Fig. 4(a) shows the FBP-CT image reconstructed from the

sinograms using the intensities at the qy position of 0.24 nm�1

[as indicated by A in Fig. 3(c)]. We note that all intensity

values in the CT image were divided by the maximum intensity

to obtain the normalized intensities. When we selected the

intensities for the first scattering peak at qy = 0.24 nm�1, the

FBP-CT image exhibited a circular pattern. Inside the pattern,

we observed lower intensities around regions A–C in Fig. 4(a).

The OM image showed impurities in the corresponding areas.

We also observed scratched areas as weak-intensity areas in

regions D and E. This result indicated that there is a lower

density of Au nanoparticles in these scratched areas. The

resolution of the obtained images of the impurities and

scratched areas is lower than that of the corresponding OM

image. For example, three lines can be observed in region D in

Fig. 2, while only smeared images of the lines are observed in

the FBP-CT image. This is because the spatial resolution of the

reconstructed image was limited to FWHM = 28.5 mm by the

incident beam’s width.

For the data acquisition process, we scanned a distance

spanning 1.02 mm with steps of 15.0 mm along the Y direction.

According to the Shannon/Nyquist sampling theorem, the

number of angle views to perfectly reconstruct images must be

over 40 points. In this reconstruction process, angular views of

180 points satisfied this theorem. Hence, we assumed that the

FBP-CT image acquired with an interval angle (��) of 1.0�

step for 0.0 � � < 180.0� in Fig. 4(a) was the ‘true image’. In

Figs. 4(b)–4( f), we show the changes in the FBP-CT images

with ��. In the case of �� = 3.0� shown in Fig. 4(b), we could

identify both the impurities and scratched parts (as indicated

by F–J). In the FBP-CT image of the �� = 6.0� step in Fig. 4(c),

although impurities were visible at K, L and M, it was difficult

to identify the scratched areas. When �� was increased to

12.0�, the higher noise made it difficult to determine the

impurities and scratched areas, as shown in Fig. 4(d). As

shown in Figs. 4(e) and 4( f), the FBP-CT images with �� =

24.0� and �� = 48.0�, respectively,

suffered significantly from the higher

noise, and it was difficult to identify the

circle pattern and the defect areas.

Figs. 4(g)–4(k) show the CT images

obtained by our framework (TV-CT

images). Compared with the FBP-CT

images, the TV-CT images are much

improved. In the TV-CT image with

�� = 3.0� step, the noise in the circular

pattern and the artifacts in the back-

ground area were suppressed by TV

regularization, and the impurities

(indicated by A–C) and scratched

regions (indicated by D and E) were

preserved in Fig. 4(g), in contrast to the

FBP-CT images with the same �� = 3.0�

step shown in Fig. 4(b). For the �� =

6.0� step, the intensities of the noise in

the circular pattern and the artifacts

were suppressed, and the intensities in

the circular patterned area were

enhanced. Hence, we could confirm that

the impurities at F–H and scratched

regions at I and J were preserved, as

shown in Fig. 4(h). In the case of �� =

12.0�, although it was difficult to identify

the impurities and scratched parts in the

FBP-CT image in Fig. 4(d), the image

quality was improved. In the TV-CT

image in Fig. 4(i), the impurities became

visible at K–M. Moreover, it was
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Figure 3
(a) Measured and (b) calculated 2D GISAXS images from a circular pattern of Au nanoparticles on
an Si substrate at an incidence angle of 0.50�. (c) The in-plane profile obtained from the measured
2D pattern at qz = 0.80 nm�1 (red circles) and the calculated profile (black solid line). The arrow
indicates the position at which the CT image was reconstructed from the intensities. (d) A cartoon of
the structural model obtained from the calculation result.



surprising that the scratched parts appeared around the region

indicated by N and O in Fig. 4(i). The apparent artifacts were

also clearly suppressed by TV regularization. For the �� =

24.0� step, since the FBP-CT image showed significantly

increased noise and artifacts, the circular pattern was blurred,

as shown in Fig. 4(e). By using TV regularization, the

denoising and edge preservation effects led to the recovery of

the circular pattern in Fig. 4( j). Moreover, impurities were

visible (as indicated by P–R). For the �� = 48.0� step, owing to

the apparent artifacts, we could not identify the shape of the

circle in the FBP-CT image [Fig. 4( f)]. In Fig. 4(k), the TV-CT

image showed the shape of the circle, although the edges were

blurred. Because of the larger interval angle, the artifacts were

more pronounced in the circular pattern. When TV regular-

ization removed the apparent noise, the algorithm overly
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Figure 4
(Left) Reconstructed CT images as a function of ��. (a) �� = 1.0�; (b)
�� = 3.0�; (c) �� = 6.0�; (d) �� = 12.0�; (e) �� = 24.0�; and ( f ) �� = 48.0�.
The CT images were obtained from projections at the qy positions of
0.24 nm�1 in the in-plane profiles at qz = 0.80 nm�1. (Right) Recovered
CT images using TV regularization for downsampling CT images: (g) �� =
3.0�; (h) �� = 6.0�; (i) �� = 12.0�; ( j) �� = 24.0�; and (k) �� = 48.0�.

Figure 5
(Left) Cross-sectional normalized intensity profiles at y = 0.69 mm and y =
1.15 mm (along � and �) in Figs. 4(a)–4( f ): (a) �� = 1.0�; (b) �� = 3.0�;
(c) �� = 6.0�; (d) �� = 12.0�; (e) �� = 24.0�; and ( f ) �� = 48.0�. (Right)
Cross-sectional normalized intensity profiles at y = 0.81 mm through A, F,
K, N, O and P in Figs. 4(a)–4( f ). (g) �� = 1.0�; (h) �� = 3.0�; (i) �� = 6.0�;
(j) �� = 12.0�; (k) �� = 24.0�; and (l) �� = 48.0�.



smoothed the circular pattern so that the impurities were not

visible (as indicated by S).

The increase in noise with �� can be clearly observed in the

intensity profile of the FBP-CT images. The cross-sectional

normalized intensity profiles for y = 0.69 mm in Figs. 4(a)–4( f)

[as indicated by the dotted line � in Figs. 4(a)–4( f)] are plotted

as a function of x in Figs. 5(a)–5( f), respectively. The inten-

sities for the circle pattern decreased as �� increased, and the

noise increased. We also plotted the profiles for y = 1.15 mm,

corresponding to the background area, in Figs. 5(a)–5( f) [as

indicated by the dotted line � in Figs. 4(a)–4( f)]. The inten-

sities of the artifacts in the background areas also increased

with ��. In Figs. 5(g)–5(l), we plotted the profiles for y =

0.81 mm as a function of x at the location of the impurity [as

indicated by A, F, K, N, O and P in Figs. 4(a)–4( f), respec-

tively]. We were able to confirm the presence of impurities for

�� � 6.0� in Figs. 5(g)–5(i). When �� increased to 12.0�, the

noise increased around the impurities [Fig. 5( j)]. For the

profiles of �� = 24.0� and �� = 48.0�, the higher noise made it

difficult to identify the impurities in Figs. 5(k) and 5(l),

respectively.

To evaluate the image quality for the circular pattern and

background regions, we plotted the mean squared error

(MSE) as a function of �� in Figs. 6(a) and 6(b). The MSE is

written as

MSE ¼
1

n

Xn

i¼1

Ii;�� � Iaverage

� �2
; ð2Þ

where i represents several data points for the circular pattern

or background regions along the x direction. Ii;�� denotes the

normalized intensity of a point i at each interval angle ��. We

used the intensity values for the circular pattern region

between x = 0.54 mm and x = 1.10 mm and the background

region between x = 0.00 mm and x = 1.36 mm, which are

shown in Figs. 5(a)–5( f). Iaverage represents the averaged

intensities of the circular pattern or background regions.

For the true image, the MSE of the circular pattern was

estimated to be 0.00172 in Fig. 6(a). For the �� = 12.0� step,

this value was drastically increased to 0.00881. For �� � 12.0�,

the MSE values were almost constant, although �� increased

(as indicated by red circles). The errors are determined by the

noise in the CT images. Since the noise increased with

increasing values of ��, the errors increased as a function of

��. However, the ramp filter in the FBP process may reduce

higher noise in the signal for � � 12.0�, resulting in saturation

of the MSE value for �� � 12.0�.

In Fig. 6(b), we show the MSE of the background area as a

function of �� (as indicated by red squares). For the lowest

intensities of the artifacts in the true FBP-CT image, the MSE

of the area was estimated to be 0.00046. As the interval angles

increased, an increase in the intensities of artifacts led to an

increase in the MSE values until �� = 12.0�. The value from

the �� = 12.0� step was approximately 14 times larger than

that from the �� = 1.0� step. As described above, the MSE

values for the background area were almost constant for �� �
12.0�.

Figs. 7(a)–7(e) show the cross-sectional normalized intensity

profiles for y = 0.69 mm (�) and y = 1.15 mm (�) in Figs. 4(g)–

4(k) as a function of x. Compared with the results shown in

Fig. 5, TV regularization enhanced the signal intensities in the

circular pattern and suppressed the noise in the background
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Figure 7
(Left) Cross-sectional normalized intensity profiles at y = 0.69 mm and y =
1.15 mm (along � and �) in Figs. 4(g)–4(k): (a) �� = 3.0�; (b) �� = 6.0�;
(c) �� = 12.0�; (d) �� = 24.0�; and (e) �� = 48.0�. (Right) Cross-sectional
normalized intensity profiles at y = 0.81 mm through A, F, K, P and S in
Figs. 4(g)–4(k). ( f ) �� = 3.0�; (g) �� = 6.0�; (h) �� = 12.0�; (i) �� = 24.0�;
and ( j) �� = 48.0�.

Figure 6
MSE values as a function of �� in (a) the circular patterned and (b)
background areas obtained from Figs. 4 and 7. Open circles and squares
were estimated from the line profiles of FBP-CT images with various ��
angles. Filled circles and squares were estimated from the line profiles of
the TV-CT images using TV regularization.



area. For interval angles of �� = 24.0� and �� = 48.0�, Iaverage

for the circular pattern drastically increased to 0.8. These

profiles also indicated that the effect of smoothing for the

noise and artifacts increased on the TV-CT image with larger

interval angles. The profiles for y = 0.81 mm as a function of x

indicated that the impurity was observable even at �� = 24.0�

in Figs. 7( f)–7(i) [as indicated by A, F, K and P in Figs. 4(g)–

4( j), respectively]. In the �� = 48.0� step, a flattened profile

was obtained in the region of the impurity in Fig. 7( j) [as

indicated by S in Fig. 4(k)], so it was difficult to identify this

part.

To show how TV regularization improved the image quality

for the signal and background areas quantitatively, MSE

values as a function of �� were also plotted in Figs. 6(a) and

6(b) (as indicated by filled circles and squares). The results in

Fig. 6(a) indicate that the estimated MSE values in the TV-CT

images linearly increased as a function of ��. From Fig. 6(a),

the MSE value of the circular pattern in the TV-CT image for

the �� = 3.0� step was estimated to be 0.0014. In comparison

with the FBP-CT image for the �� = 3.0� step, the value was

approximately reduced by 46% in Fig. 6(a). For the case of

�� = 6.0�, the MSE value increased to 0.0015; however, this

value was lower than that derived from the true image of the

�� = 1.0� step. In the case of �� = 12.0�, we achieved a

reduction of 80% in the estimated MSE value. Notably, the

estimated MSE value of 0.0017 was close to that from the

FBP-CT image for �� = 3.0�. When the value of �� increased

for 12.0 < �� � 48.0�, the estimated MSE values continued to

increase. As the interval angle increased, the smoothing effect

on TV regularization depended on the magnitude of noise. On

the other hand, the estimated MSE value from the FBP-CT

images was almost constant for �� > 12.0�. As a result, in

comparison with the MSE value from the FBP-CT image, the

reduction in the MSE value from the TV-CT images decreased

from 74 to 61% for 24.0 � �� � 48.0�. These results indicate

that TV regularization provided the highest improvement in

the downsampling images for �� = 12.0�. However, for the

overall recovered images, the signal intensities were enhanced

and the edges were preserved using TV regularization. This

method also provided smoothing or signals with low noise.

In Fig. 6(b), we describe the results of using TV regular-

ization for denoising in background areas. In the FBP-CT

image, since the noise increased for higher interval angles, the

estimated MSE value linearly increased for 3.0 � �� � 12.0�.

For �� > 12.0�, the effect of ramp filtering could reduce noise;

hence, the MSE values were almost constant for �� > 12.0�.

When we estimated the MSE values from the TV-CT images,

these values were more highly suppressed than those for the

circular part in the FBP-CT images. For the MSE value of the

�� = 3.0� step, the value decreased by approximately 21%

from 0.0013 to 2.7 � 10�4. Compared with the MSE value

from the FBP-CT image for the �� = 12.0� step, the value from

the TV-CT images was reduced approximately by an order of

magnitude. Overall for the TV-CT images, we obtained the

result that the estimated MSE values from the TV-CT images

were lower than those from the highest spatial resolution of

the �� = 1.0� step from the FBP-CT images. This result

indicated that the regularization parameter demonstrated a

smoothing effect and was remarkably effective in the back-

ground areas.

4. Conclusions

We investigated how TV regularization improves GISAXS-

CT images with sparse �� values from 3 to 48�. GISAXS-CT

measurements were performed to visualize the spatial distri-

bution of nanostructures in circular patterned Au thin films. In

comparison with the FBP-CT images, the image quality

improved in the TV-CT images for all interval angles. In

particular, the MSE values of the signal areas in the TV-CT

images for �� < 12.0� were equal to or less than the value in

the FBP-CT image for �� = 1.0�. Using TV regularization, we

succeeded in improving the efficiency of data acquisition by at

least a factor of 12 (�� < 12.0�). However, the MSE values in

the TV-CT images for �� > 12.0� were higher than those for

�� = 1.0� in the FBP-CT image because the circular pattern

was blurred with higher noise in the signal areas. For the

background areas, this algorithm significantly suppressed

noise for all interval angles. The MSE values of the back-

ground areas in the TV-CT images were less than those in the

FBP-CT image for �� = 1.0�.
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