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Abstract: The unique features of millimeter waves (mmWaves) motivate its leveraging to future,
beyond-fifth-generation/sixth-generation (B5G/6G)-based device-to-device (D2D) communications.
However, the neighborhood discovery and selection (NDS) problem still needs intelligent solutions
due to the trade-off of investigating adjacent devices for the optimum device choice against the
crucial beamform training (BT) overhead. In this paper, by making use of multiband (µW/mmWave)
standard devices, the mmWave NDS problem is addressed using machine-learning-based contextual
multi-armed bandit (CMAB) algorithms. This is done by leveraging the context information of
Wi-Fi signal characteristics, i.e., received signal strength (RSS), mean, and variance, to further
improve the NDS method. In this setup, the transmitting device acts as the player, the arms are
the candidate mmWave D2D links between that device and its neighbors, while the reward is the
average throughput. We examine the NDS’s primary trade-off and the impacts of the contextual
information on the total performance. Furthermore, modified energy-aware linear upper confidence
bound (EA-LinUCB) and contextual Thomson sampling (EA-CTS) algorithms are proposed to handle
the problem through reflecting the nearby devices’ withstanding battery levels, which simulate real
scenarios. Simulation results ensure the superior efficiency of the proposed algorithms over the single
band (mmWave) energy-aware noncontextual MAB algorithms (EA-UCB and EA-TS) and traditional
schemes regarding energy efficiency and average throughput with a reasonable convergence rate.

Keywords: millimeter-wave; machine learning; multi-armed bandit (MAB); contextual MAB; NDS;
EA-LinUCB; EA-CTS

1. Introduction

The drastically exponential growth of wireless traffic sparks future communication
standards (beyond fifth generation, B5G, and sixth generation, 6G) to shift their operating
bands from the crowdy sub 6 GHz band into the abandoned millimeter wave (mmWave),
i.e., 30–300 GHz, band. Although mmWave has excellent positives such as huge available
spectrum, large capacity, and the ability to support high data rates and bandwidth-intensive
applications, it suffers from several negatives that represent the main obstacle to deal with.
Millimeter-wave signals experience harsh path loss, blockage sensitivity, and absorption
from the wireless environment due to their short wavelengths [1]. Consequently, directional
communication usage by employing high gain antennas and beamforming training (BT)
is advocated to overcome the significant attenuation at a considerable overhead expense.
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The short-range transmission of a mmWave enables device-to-device (D2D) communica-
tion, making it a hopeful future B5G/6G policy via relaxing the large traffic load on the
cellular networks [2]. The small-distance D2D communication is well appropriate for the
low-coverage mmWave transmission, while the out-band huge data rates given by the
mmWave links can be beneficial for D2D. However, efficient and reliable mmWave D2D
network constructions suffer from several fundamental problems, including the neighbor
discovery and selection (NDS) [3–5]. Typically, direct mmWave NDS is used in mmWave
D2D communications [6]—where a device first explores its adjacent devices by performing
BT with them all, then selects the most suitable one for establishing the D2D linkage. Ac-
cordingly, this will consume a significant overhead, affecting the mmWave D2D networks’
throughput and energy consumptions. Besides, it neglects the adjacent devices’ remaining
energies, which are generally crucial to apply D2D communication. That is, the selected
device may not have sufficient energy for establishing the mmWave D2D link. However,
direct NDS should be recurrently made to keep updating the environmental change like
shadowing and instantaneous path blockage, which further hardens the problem.

Machine learning (ML) is a remarkable approach to deal with inevitable mmWave
difficulties through its self-learning capability and effective decision-making [7,8]. Accord-
ingly, this will mitigate the challenges of repeatedly investigating the surroundings by
BT usage. Reinforcement learning (RL) is a vital ML branch, where the player explores
the surroundings and tries to maximize its long-term rewards with no prior information
about the environment. Hence, RL techniques are more promising solutions for mmWave
communication systems than other ML methods like deep learning (DL). In DL, the learn-
ing process consumes a considerable amount of data, energy, time, and repetition times
according to the changes in the scenario [9]. RL’s key challenge is the trade-off between
holding the current choice and learning novel ones, officially recognized as the exploitation-
exploration dilemma. Multi-armed bandits (MABs), firstly suggested by Auer [10], can
efficiently deal with such trade-off. In MAB, a player interacts with several slot machines
(arms) to increase her accumulated award. There are several MAB techniques; specifically,
a valuable version is the contextual MAB (CMAB) type [11]. In CMABs, at every round t,
an agent selects only one action from K ones, stated as K arms. Before deciding the arm to
take, the agent looks at d-dimensional feature vectors, named “context”, related to each
arm k. The agent utilizes this context information besides the arms’ pre-obtained rewards
to decide the current round playing arm.

Academic and industrial researchers extensively examined the integration between
the Wi-Fi and mmWave bands via exploiting their related properties to overcome the
mmWave communication difficulties. Hence, IEEE 802.11 ad, ay standard [12] adapted
the first dual-band (Wi-Fi /mmWave) technology. Different technology companies like
QUALCOMM [13], Intel [14], and TP-Link [15] have created 2.4/5/60 GHz tri-band Wi-Fi
demo chipsets products. Moreover, academically, many related research works investigated
Wi-Fi/mmWave integrations [3,16–19]. In this paper, the mmWave D2D NDS is devised
using CMAB schemes where the arms are mmWave D2D links constructed by the nearby
devices. The reward, represented by the throughput of each mmWave D2D link, is drawn
independently according to its line-of-sight (LOS) blockage probability. The context of each
D2D linkage is its available Wi-Fi signal information, such as the received signal strength
(RSS), mean, and variance of the Wi-Fi signal.

The motivation behind taking Wi-Fi information as a context of the mmWave D2D
links is its ease of accessibility in multiband devices [3,16,17], which does not require extra
processes. Furthermore, the authors in [3,16–19] proved the direct relationship between Wi-
Fi and mmWave link statistics for multiband devices. The Wi-Fi signal statistics can predict
mmWave link blockage’s probability and the likelihood of the mmWave RSS [3,16–19].
The main target of the modeled CMAB problem is to optimize the average throughput
while considering the devices’ remaining energy. Therefore, energy-aware linear upper
confidence bound (EA-LinUCB) and contextual Thomson sampling (EA-CTS) EA-CMAB
algorithms are proposed by appending the remaining energy constraints to the original
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LinUCB [20] and CTS [21] CMAB algorithms. In the proposed EA-CMAB algorithms, the
devices having residual energies above a specified limit will play the game, and the full
game is finished when the whole devices reach the energy limit. Numerical investigations
verify the outstanding performance of the EA-CMAB-based mmWave D2D NDS over both
noncontextual EA-MAB proposed in [4] and traditional techniques. To the best of our
knowledge, the current work is the first that proposes a ML-based context-aware bandit
algorithm for mmWave D2D NDS.

The key contributions of this paper are highlighted as follows. Motivated by the stan-
dardized multiband devices, the mmWave D2D NDS optimization problem is modeled as
budget constrained CMAB. The central device is the player, the arms are the nearby devices,
the budget is the adjacent devices’ residual energies for constructing the D2D linkages, and
the reward is the obtained throughput from the selected nearby device. Finally, the context
is the nearby devices’ (arms) Wi-Fi information. We named the algorithms as EA-CMAB.

We examine the effect of Wi-Fi contextual information on the overall system perfor-
mance by leveraging LinUCB [20] and CTS [21] algorithms and compare them with their
noncontextual versions, i.e., UCB [22] and TS [23].

We propose EA-CMAB algorithms, e.g., EA-LinUCB and EA-CTS, for addressing the
problem. In the proposed algorithms, the adjacent devices’ lasting energies are considered
while performing online learning for selecting the best device for creating the mmWave
D2D link.

Widespread numerical investigations are done to evaluate the proposed EA-CMAB-
based algorithms at diverse situations and to examine their performances against two
standard schemes named conventional direct NDS and random selection. Moreover, the
proposed algorithms are compared with the noncontextual EA-MAB (EA-UCB and EA-TS)
ones presented in [4].

The remainder of this paper is organized as follows. Section 2 reviews the related
works. Section 3 introduces the mmWave D2D system model plus the utilized Wi-Fi
and mmWave linkage models besides mmWave D2D NDS problem formulation, and the
general concept of the CMAB algorithms. Section 4 discusses the proposed EA-CMAB
algorithms. Section 5 gives the numerical investigations followed by the concluded remarks
in Section 6. The following table shows the nomenclature used throughout this paper.

2. Literature Review

MmWave D2D communications carry great hopes to afford the capacity and the spec-
trum efficiency requirements of B5G/6G systems. A comprehensive study on mmWave
and D2D related aspects like NDS, interference management, and network security are
provided in [2,5,24], respectively. Furthermore, a comprehensive survey on D2D device
discovery is provided in [25]. Designing an efficient NDS algorithm for mmWave D2D
networks is more challenging due to high gain directional antenna usage and BT over-
head. In [26], a novel D2D neighbor discovery algorithm that practices necklaces’ idea to
mitigate the worst-case discovery latency compared with former methods is presented.
Specifically, they leveraged Po’lya’s enumeration theorem and Fredricksen, Kessler and
Maiorana (FKM) algorithm to discover briefer and effective scanning sequences for the
nodes. However, the paper focused on the delay time only and neglected to maximize the
accumulated reward.

A novel distributed algorithm using stochastic geometry tools that enable the devices
to choose between the mmWave and µW bands for transmitting data by discovering
unblocked mmWave LOS links was proposed in [27]. However, our proposed ML-based
algorithms depend on mmWave band communications with side information from Wi-
Fi and utilize mmWave for the whole data communications, not like [27] that switches
between Wi-Fi and mmWaves. A novel cross-technology communication-based technique
for neighbor discovery called NewBee that made use of coordination of Wi-Fi nodes to
help neighbor discovery (ND) of Zigbee nodes is suggested in [28]. However, the authors
did not consider mmWaves nor ML solutions in their proposal. In [29], a compressed-
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sensing related FastND algorithm that speeds up the ND process by dynamically learning
the spatial channel characteristics is discussed. Although the authors made a successful
practical experimental setup, their algorithm still does direct NDS with nearby devices
and does not choose the best nearby device as in our case. In [30], the authors proposed
a clustering scheme that splits the network nodes into clusters. Each cluster assigns one
separate control channel and a particular mmWave channel for beamforming only. In [31],
the authors suggested exploiting the context info associated with user position, handled by
a separate control channel to advance the cell discovery process with minimizing its time
delay. The schemes in [30] and [31] need an extra control channel, which increases the ND
overhead, unlike our proposal that does not require any extra control channel. Employing
linear programming, the authors of [32] proposed a distributed random mmWave-based
discovery algorithm, where each device finds the relevant algorithm parameters, i.e.,
transmission and beam steering probabilities, using the information provided from the
microwave band. However, they did not consider best neighbor selection besides the high
complexity of linear programming especially for numerous adjacent devices. Another
context-aware approach is provided in [33], where new cell discovery supported by the
context information obtained from geo-located databases in heterogeneous mmWave
networks was proposed. However, they did not consider mmWave D2D scenario, plus
their method requires access to a previously established database, which might not be
updatable, plus the labor work needed for constructing this database. A hunting-based
directional neighbor discovery (HDND) technique for mmWave-based ad hoc networks is
presented in [34]. However, it does not consider the D2D scenario nor applies advanced
ML techniques.

Recently, MABs attracted significant attention in numerous sequential decision-making-
based applications, especially in wireless networks [5,35–38]. In [5], we surveyed the
applications of ML algorithms in different D2D communication challenges including NDS,
resource allocation, power control, etc. To confirm the efficiency of ML in addressing these
problems, we presented a case study of applying UCB and minimax optimal stochastic
strategy (MOSS) algorithms in mmWave NDS problem. However, both applied algorithms
were neither contextual nor energy aware ones. The authors of [4] leveraged stochastic
bandit algorithms to solve similar problem by accounting the nearby devices’ battery levels.
E-UCB1, energy aware Kullback libeler UCB (E-KLUCB), and E-TS were proposed with
improved system performance. Moreover, in [38] we extended the problem solution using
E-MOSS algorithm. Different from our previous works given in [4,5,38] handling mmWave
NDS using noncontextual MABs, we reformulate the problem using contextual MABs
while leveraging the Wi-Fi information as context in the current work. We will prove the
potency of the proposed contextual-based algorithms over the noncontextual ones due to
the valuable Wi-Fi contextual information. The authors of [39] proposed an adaptive TS
(ATS) algorithm for beam alignment of mmWaves. ATS can precisely evaluate the best
beam/rate pair without assuming any channel settings and user mobility. However, their
main contribution was in beam alignment, not D2D NDS.

Contextual bandits have been applied for fundamental areas in wireless communica-
tions [40] like machine type communications (MTC) [41], cooperative communications [42],
link adaptation [43], and wireless handover optimization [44]. This motivates us to leverage
CMAB to solve D2D NDS critical problem, especially with the challenging difficulties of
mmWaves. Although some related work contained context-aware algorithms, this paper is
inspired by Wi-Fi signal’s merits, such as ease of obtainability with low latency and relative
relation to mmWave signal strength.

3. System Model

This section presents the considered system model plus the utilized Wi-Fi and mmWave
link models, including the mmWave blockage model. Moreover, the optimization prob-
lem of mmWave D2D NDS will be formulated followed by a brief discussion about the
CMAB concept.
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3.1. Multiband D2D Network Architecture

Figure 1 shows the network planning of the multiband (mmWave/Wi-Fi) D2D com-
munication network, where multiband devices, like QUALCOMM and Intel triband de-
vices [13,14], are uniformly located within the 4G/5G LTE-based base station (BS) (e.g.,
femtocell) allocated zone. Multiband D2D connections can enhance the BS coverage and its
traffic offloading. The 4G/5G LTE BS will deliver the necessary signaling to supervise the
mmWave D2D communication operation, including the devices remaining energies and
transmission characteristics. Moreover, it handles D2D broadcasting demands, changing
between cellular and D2D modes, movement supervision, and network caching. Therefore,
the processing of separate D2D links, including NDS, are completed using the spread
devices. In a conventional direct NDS scheme, the central device attempts careful adjacent
devices exploration by recurrently doing exhaustive search BT with all the surrounding
devices to attain the finest transmit/receive (TX/RX) beam pairs for reliable linking. This
is performed by accounting both LOS and non-LOS (NLOS) routes originated from ob-
structions, see Figure 1. Subsequently, the nearby device that owns the highest data rate in
Gigabit per second (Gbps) is chosen for the mmWave D2D linkage setup. Conventional
NDS scheme requires a considerable BT overhead, profoundly influencing the mmWave
D2D network performance.
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Furthermore, most exiting NDS schemes neglected the lasting energies of the adja-
cent devices while carrying out NDS. That is, the selected device may not have enough
energy for conducting the D2D functionality. Instead, in this paper, we will make use of
the Wi-Fi information in initializing mmWave D2D NDS procedure. The solid relative
relationship between Wi-Fi and mmWaves link statistics, as given in [3,14–18], along with
the previous works of [45–47] that efficiently made use of Wi-Fi information to efficiently
handle mmWave challenges inspired us to use Wi-Fi information as context. Thus, CMAB
is best fitted to this problem besides reflecting the residual energies of the nearby devices.
In our scenario, the mmWave devices are usually stationary or slow motion close to the
individual’s speed. Hence, device mobility is left for future studies.
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3.2. Wi-Fi Linkage Model

Regarding the Wi-Fi model, we will utilize the linkage model provided in [3,16,17],
where the Wi-Fi received power Pw

r at a reference distance r between two devices function-
ing at 5.25 GHz (Wi-Fi band) is formulated as [3]:

Pw
r [dBm] = Pw

t [dBm]− 47.2− 10ηw log10(r)− χw, (1)

where Pw
t and Pw

r are the transmitting and receiving Wi-Fi powers in dBm, respectively.
Path loss exponent is ηw= 2.32, and χw v N (0, σw) is the Wi-Fi log-normal shadowing with
zero mean and 6 dB standard deviation, i.e., σw = 6 dB [3].

3.3. mmWave Linkage and Blockage Models

For the mmWave model, the mmWave received power, Pm
r , bearing in mind beam-

forming gain and blockage effects, from an adjacent device located at a distance r can be
expressed as [3,4]:

Pm
r = Pm

t ΛTX(ϑ)ΛRX(ϕ)

(
η(PLOS(r))

LLOS
m (r)

+
β(PNLOS(r))

LNLOS
m (r)

)
(2)

where η(PLOS(r)), β(PNLOS(r)) are Bernoulli random variables (RVs) that reflect the block-
age effect with parameters PLOS(r), PNLOS(r) that indicate the distance-dependent LOS
and NLOS probabilities; where PNLOS(r) = 1−PLOS(r). Pm

t is the mmWave TX power and
ΛTX(ϑ) and ΛRX(ϕ) are the transmitting and receiving beamforming gains as functions of
the angle of departures (AoD), i.e., ϑ, and the angle of arrival (AoA), i.e., ϕ. Lv

m(r); where
v ∈ {LOS, NLOS} is the distance-dependent path loss formulated in dB as [3,4]:

10 log10(Lv
m(r)) = βv

m + 10ηv
m log10(r) + χv

m, (3)

where βv
m = 82.02 − 10ηv

m log10(r0) is the reference path loss at the reference distance
r0 = 5 m. ηv

m identifies path loss exponent, and χv
m v N (0, σv

m) indicates the log-normal
shadowing with zero mean and standard deviation of σv

m.
Regarding ΛTX(ϑ), the 2D steerable antenna formula with Gaussian main loop shape

provided in [3,4,6] is utilized, which is modeled as:

ΛTX(ϑ) = Λ0e
−4 ln (2)( ϑ

ϑ−3dB
)

2

, Λ0 =

 1.6162

sin
(

ϑ−3dB
2

)
2

(4)

where ϑ, ϑ−3dB and Λ0 represent the azimuth angle, −3 dB beamwidth, and maximum
antenna gain, respectively. The same equation is applied for evaluating ΛRX(ϕ) except
that RX and ϕ are used instead of TX and ϑ, respectively.

For mmWave blockage, we utilize the blockage scenario presented in [48], which is
appropriate for both indoors and outdoors. In this scenario, mmWave obstructions are
represented as cylinders that follow 2D homogenous Poisson point process (PPP) in its
spatial distribution. Hence, PLOS(r) is expressed as [6]:

PLOS(r) = ge−ωr, (5)

where g = e−π∆λE[Ω2] and ω = 2∆λE[Ω], λ represents the obstacles density, ∆, Ω are the
cylinder’s thinning factor and radius, respectively. E[.] is the mean operator.
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3.4. mmWave D2D NDS Problem Modeling

The main aim of the mmWave D2D NDS process is to maximize the D2D link’s
long-term average throughput/reward by considering the remaining battery levels of the
distributed nearby devices. Such maximization problem is outlined as:

max
1≤i≤N

E(Ψi,t)

s.t.
Ξi,t > Ξlimit given Xi,t for each device i (6)

where N specifies the number of the adjacent devices. Ψi,t reflects the D2D linkage through-
put in Gbps with adjacent device i at round t. Here, t points to the time instance of the
mmWave D2D linkage request. In NDS process, the next round comes when new frames
need to be sent. More precisely, the central device data is fragmented into frames and at
every frame duration an NDS decision is taken to select the most appropriate nearby device
to transmit its data. Ξi,t reflects the remaining energy of the adjacent device i at instant t
in joule, and Ξlimit defines the limited energy threshold within the device for keeping its
primary activities. Xi,t is the Wi-Fi context information vector of length d for device i at a
time t. Ψi(t) formula is given as:

Ψi,t = WmYi,t

(
TD

VtTBT + TD

)
, (7)

where Wm designates the utilized mmWave bandwidth, TD is the required time for data
transmission, TBT represents the BT time consumed by the central device to explore only
one of its adjacent devices. Vt reflects the number of adjacent devices performing BT with
the center device at instant t. Hence, Vt always equals N in the conventional direct NDS
scheme. Yi,t represents the D2D linkage’s SE in bps/Hz related to adjacent device i at
instant t, formulated as:

Yi,t = log2

(
1 +

Pm
ri,t

N0

)
, (8)

where Pm
ri,t

is the mmWave power received by nearby device i at instant t, and N0 reflects
the receiver’s noise power. Assume that each arm has a feature vector Xi,t ∈ Rd, which is
the Wi-Fi information in our case, expressed as:

Xi,t =
[

x1i,t , x2i,t , x3i,t

]T

x1i,t = Pw
ri,t

, x2i,t = E
[

Pw
ri,t

]
, x3i,t = var

[
Pw

ri,t

] (9)

where []T means transpose, and Pw
ri,t

is the instantaneous received Wi-Fi power at nearby

device i from the central device at time t. E
[

Pw
ri,t

]
and var

[
Pw

ri,t

]
are its average value and

variance up to instant t. CMAB adopts the concept that the predictable reward of an arm
i is linear with respect to its feature vector. Thus, to implement the proposed algorithm,
the expected reward of arm/device i is proposed to be linear in its d dimensional context
feature vector Xi,t with unknown coefficient vector θ∗i for all t, which is given as [20,21]:

E[rwi,t|Xi,t] =Xi,t
Tθ∗i , (10)

The CMAB game aims to estimate θ∗i given Xi,t
T through successive online training.
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3.5. CMAB Concept

To solve the optimization problem in (6), we leverage a proper type of bandits called
CMAB. where, the player accumulates her rewards from taking actions (selecting arms)
over a sequence of trials. During each round, the player takes action upon both contexts
(feature vector) for the current round and the previously collected rewards obtained in the
previous trials. The player notices the reward only for the chosen arm. CMAB exists in
several vital applications like online recommendations, mobile health applications, and
clinical trials [43]. The feature utilization to encode context is acquired from supervised
ML, while exploration is vital for improving the learning performance like RL technique.
Hence, CMABs is the usual halfway argument between supervised learning and RL [49].
Usually, the CMAB problem is solved via proposing a linear relationship between the
produced reward and its related contexts as given in (10) and addressed by LinUCB [20]
and CTS [21] algorithms.

The standard CMAB problem can be formulated as follows. Let A = {1, . . . , N} be
the set of N existing independent devices/arms. Let X ⊆ Rd be a set of d-dimensional
context vectors that depict players/devices and their surroundings, i.e., each member is a
binary vector encoding features such as arm locations, decisions, pursuits, etc. For each
round t ∈ [1, T] and each arm i ∈ A, the context vector, Xi,t ∈ X , is given to the algorithm
from the environment to select an arm. Assume that rwt = (rwi,t, . . . rwN,t) is the reward
vector at trial t, where rwi,t is the collected reward via selecting arm/device i at round t
that follows some unknown Gaussian distribution in our case. θi is an unknown coefficient
vector (to be learned) related to arm i at round t. An assumption is made that the expected
rewards of an arm/device i at trial t is linearly related to the d-dimensional context vector
Xi,t as given in (10). The general CMAB protocol is summarized in Figure 2.
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4. Proposed EA-CMAB Algorithms

Herein, we will discuss two proposed EA- CMAB algorithms that handle mmWave
D2D NDS proficiently. In our setting, single-player CMAB is concerned, and multiplayer
CMAB scenario will be left for future investigations. First, we will explain the device’s
battery update equation followed by the proposed EA-LinUCB and EA-CTS algorithms.
At every round t, the proposed CMAB algorithm will select a nearby device, i∗CMAB, where
its updated residual energy, Ξi∗CMAB ,t, is given by: -

Ξi∗CMAB ,t = Ξi∗CMAB , t−1 −
Pm

t LD

Wm Yi∗CMAB ,t
(11)

where Ξi∗CMAB , t−1 is its remaining energy at instant t− 1. The expression Pm
t LD/Wm Yi∗CMAB ,t

reflects the consumed energy to fetch the necessary LD data bits with Wm Yi∗CMAB ,t bps data
rate by the selected nearby device i∗CMAB. An assumption is made that all devices have
equal transmit powers to fetch data.
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The modified algorithms take into account the remaining energy levels of the nearby
devices during their arm selection. This is done by appending the energy term, ρ

ri,t
Ξi,t

, in
the main exploration part of each algorithm to reflect the real scenario where some devices
may run out of their energy and be excluded from the game. The added term compromises
between the obtained throughput and consumed energy of each selected device. Hence,
the EA-CMAB algorithms will choose the highest energy and largest throughput device
among others. Therefore, the algorithms will not be stuck to the lowest energy or the
highest throughput device.

4.1. Proposed EA-LinUCB Algorithm

LinUCB [20] extends the Auer’s UCB algorithm in [10,22] to the contextual concept.
Its main clue is to figure out each arm’s probable reward by finding a linear relationship
between the previous rewards of the arm and its current context vector as given in (10).
LinUCB interprets the features vector of the existing round into a linear combination
of features vectors seen on former rounds and utilizes the calculated coefficients and
rewards on earlier rounds to calculate the anticipated reward on the present round. Let
Gi be an m× d matrix at trial t, whose rows represent m contexts noticed previously for
arm/device i. Applying ridge regression to the training data (Gi, bi) gives an estimate of
the coefficients:

θ̂i =
(

GT
i Gi + Id

)−1
bi (12)

where bi = GT
i ci, where ci is the m-dimensional vector whose components are past observed

rewards of arm i. When the ci components are independently conditioned on corresponding
rows in Gi, it can be shown that [20]∣∣∣Xi,t

T θ̂i,t − E[Yi,t

∣∣∣Xi,t]
∣∣∣ ≤ αLinUCB

√
Xi,t

T Bi
−1Xi,t (13)

where Bi = GT
i Gi + Id and αLinUCB = 1 +

√
ln(2/δLinUCB) for δLinUCB > 0. Yi,t is the

SE/reward of drawing arm/device i at round t calculated from (8). The above inequality
provides a reasonable strong UCB for the expected reward of device i. Similar to UCB arm
selection strategy, at each trial t, the best arm i∗t is selected as follows:

i∗t = arg max
i∈A

( ji,t),

where
ji,t = Xi,t

T θ̂i,t + αLinUCB

√
Xi,t

T Bi
−1Xi,t − ρ

ri,t

Ξi,t
(14)

where ri,t is the distance of device i from central device at instant t. The new term ρ
ri,t

Ξi,t
is

added to the standard LinUCB equation to mirror the remaining energies of the spread
devices upon their locations from the central device. That is, for a constant data length
LD in (11), higher remaining energy is required by a faraway device to establish the D2D
linkage owing to the reduction of its attainable data rate and vice versa. Algorithm 1
provides the detailed explanations of the proposed EA-LinUCB algorithm. The inputs are
the threshold energy limit, Ξlimit, and the energy of the adjacent devices at t = 1 plus the
parameter αLinUCB. The arms having higher remaining energies than Ξlimit will be involved
in the game. After applying the EA-LinUCB, the parameters are updated for the next round
when new data frames need to be sent by the central device, as given in Algorithm 1.
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Algorithm 1: EA-LinUCB NDS

Input: Ξlimit and Ξi.1 for ∀ i ∈ A, αLinUCB ∈ R+

For t =1, 2, . . . , T
Notice features of ∀ i ∈ A : Xi,t ∈ X ⊆ Rd

For ∀ i ∈ A do
While Ξi.t > Ξlimit

If arm i is new then
Bi = Id (identity matrix)
bi = 0d×1 (zero vector)

End If
θ̂i = B−1

i bi

ji,t = Xi,t
T θ̂i,t + αLinUCB

√
Xi,t

T Bi
−1Xi,t − ρ

ri,t
Ξi,t

End While
End For

Choose arm i∗t = argmax
i

(
ji,t
)

and observe its reward Yi∗,t from (8)

1. Bi∗t = Bi∗t + Xi∗t ,t Xi∗t ,t
T

2. bi∗t = bi∗t + Yi∗t Xi∗t ,t

3. Ξi∗ ,t+1 = Ξi∗ ,t −
(

Pm
t LD

Wm Yi∗t

)
End For

4.2. Proposed EA-CTS Algorithm

TS [23] fundamental policy applies Bayesian strategy because the rewards are sup-
posed to be pulled upon a known probabilistic model. A simple former distribution is
suggested for the rewards of each arm based on parameter initialization. Then, within
the learning process, the TS strategy updates the rewards’ posterior distribution using
the collected data to draw the optimal probable arm. Precisely, at every round t, random
samples are drawn from the rewards’ posterior distributions, then the arm having the
highest sample value is chosen. Afterward, the chosen arm’s posterior distribution is
updated for the upcoming round of arm choice. For CTS, we assume a slightly simpler
model on the CMAB protocol given in Figure 2, where the main difference is that we
assume that there exists θ s.t. θi = θ for all arms i ∈ A. The global construction of CTS for
the CMAB problem includes the subsequent fundamentals [21]:

1. A set θ of parameters θ̃.
2. A former distribution P(θ̃) which is Gaussian in our case.
3. Former observations, D, containing (context X, reward Y) for the previous time steps.

4. P(Y
∣∣∣X, θ̃), the probability of reward Y given a context X and a parameter θ̃.

5. Posterior distribution P(θ̃|D) ∝ P(D|θ̃)P(θ̃).

At each round t, CTS pulls an arm upon its posterior probability. This simply can
be done by taking a sample from each arm via the posterior distributions and selecting
the arm with the best sample. Because the reward distribution is Gaussian due to the
Gaussian noise, we utilize the Gaussian likelihood function and Gaussian prior for our
EA-CTS. Expressly, assume that the likelihood of reward Yi,t at time t, given context Xi,t are

provided from the normal distribution (XT
i,t θ̃, ∂2

CTS), where ∂CTS = R
√

24
ε d ln( 1

δCTS
) with

ε ∈ (0, 1). Let

Bt = Id +
t−1

∑
h=1

Xih ,hXT
ih ,h (15)

θ́t = B−1
t

t−1

∑
h=1

Xih ,hY ih ,h (16)
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Then, if the prior distribution of θ at time t is known as N
(

θ́t, ∂2
CTSB−1

t

)
, then the

posterior distribution at time t + 1 is given as N
(

θ́t+1, ∂2
CTS B−1

t+1

)
[21]. Our modified

algorithm produces a sample θ̃t from N
(

θ́t, ∂2
CTSB−1

t

)
distribution and selects the arm

maximizing XT
t,i θ̃t − ρ

ri,t
Ξi,t

. Herein, we utilize Gaussian-based EA-CTS because of Gaussian
distribution of the reward as shown in [4]. Algorithm 2 summarizes the EA-CTS main steps,
where the first step is to select the devices with high remaining energies inside the selection
range. Then the algorithm produces a d-dimensional sample θ̃t, from a multivariate Gaus-
sian distribution, and attempts to solve the maximization problem argmax

i∈A

(
XT

t,i θ̃t − ρ
ri,t

Ξi,t

)
.

As given in EA-LinUCB, the newly added term, ρ
ri,t

Ξi,t
, reflects the remaining energies of

the surrounding devices. The parameters B, f , θ̃, Ξi∗ are updated for next round selection
to send new data frames as given in Algorithm 2.

Algorithm 2: EA-CTS NDS

Let B = Id , θ̃ = 0d, f = 0d
For t = 1, 2, ....T

While Ξi.t > Ξlimit

Sample θ̃t, from normal distributions N
(

θ́t, ∂2
CTSB−1

t

)
Play arm i∗i,t ∈ argmax

i∈A

(
XT

t,i θ̃t − ρ
ri,t

Ξi,t

)
and notice

the reward Yi∗t , i.e., SE obtained from (8)
Update

1. B = B + Xt,it X
T
t,it

2. f = f + Xt,it Yi∗t
3. θ̃ = B−1 f

4. Ξi∗ ,t+1 = Ξi∗ ,t −
(

Pm
t LD

Wm Yi∗t

)
End While

END For

5. Numerical Results

This section presents the conducted numerical simulations that confirm the superior
performance of the proposed EA-CMAB-based algorithms using 10,000 rounds of Monte
Carlo (MC) simulations throughout MATLAB environment. Every MC round includes
randomized device locations, randomized channel properties (mmWave and Wi-Fi related
shadowing terms), randomized mmWave blocking patterns coming from the tested block-
ing probability, and randomized battery initialization of each distributed nearby device. To
approve that, the proposed algorithms are compared with mostly related noncontextual
solutions [4,5], besides the famous traditional selection techniques, named conventional
and random selection schemes. The conventional NDS scheme searches all devices before
deciding the best one, which consumes a considerable time and achieves a significant BT
overhead. However, in random NDS, the adjacent device is picked randomly from the
surrounding devices at every round t to establish the mmWave D2D link. The total average
throughput is evaluated by averaging (7) over the game’s time horizon T. Hence, Vt = N
for conventional selection scheme, while for CMAB proposed algorithms and random
scheme Vt = 1. The EE is formulated as:

EE =
1
N

N

∑
i=1

Ψi(T)/(Ξi,1 − Ξi,T) (17)

where Ξi,1is the device i’s starting energy and Ξi,T reflects its final energy when the game
is terminated. Table 1 summarizes the related simulation parameters, where around 20
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to 100 devices are uniformly diffused in a region of 125 × 125 m2. Moreover, ideal beam
alignment is considered within the D2D devices, i.e., ΛTX(ϑ) = ΛRX(ϕ) = Λ0.

Table 1. Simulation Parameters.

Parameter Value

Pw
t and Pm

t 20 and 10 dBm
Wm, TBT , and LD 2.16 GHZ [1], 0.28 msec [1], and 1 Gbit.

ϑ−3dB, T 20◦, 1000
αLOS, and αNLOS 2.22 [3] and 3.88 [3]
σLOS

m and σNLOS
m 10.3 [3], and 14.6 [3]

∆ and Ω 1 and uniform [0.3–0.6] m [6]
Ξi,1 and Ξlimit Uniform random in the range of [0.1 . . . 1] J and 0.1 J

N0, ρ −174 + 10log10(W) + 10, 1
αLinUCB, R, ε, δCTS 0.4, 10−7,

1
Lin T

, 10−8

5.1. Without Battery Consideration

Herein, we will figure out the merits of CMAB algorithms over noncontextual ones in
mmWave NDS. Figure 3 shows the average throughput versus the number of distributed
devices at no blocking (λ = 0) for UCB, TS, LinUCB, and CTS algorithms. The two CMAB
algorithms’ performance is close to each other due to the utilized stationary scenario shown
in [50,51] and the Wi-Fi context vector, not the mmWave-based one. The noncontextual
MAB algorithms (UCB and TS) show improved performances over conventional and
random selection methods. The CMAB algorithms (LinUCB and CTS) have a superior
performance that is close to the optimum, where the optimal NDS performance comes
via selecting the best device having the maximum SE from the first time, i.e., Vt = 1. In
conventional direct NDS scheme, the throughput is reversely related to the number of
surrounding devices because the exhaustive BT produces considerable overhead. The other
compared schemes (optimal, LinUCB, CTS, TS, UCB, and Random) have small BT overhead
due to performing BT with a single device every round. However, the random scheme
experiences the worst performance due to the adjacent device randomization selection
policy. It is interesting to notice that the throughputs of the LinUCB and CTS schemes
are improved relatively with increasing the number of devices because of the valuable
context vector that maximizes long-term throughput with small BT overhead. CMAB
performance is higher than TS and UCB, which indicates the effectiveness of the contextual
information. At 40 (80) devices, about 96.3% (97.4%), 94.7% (91%), 82.6% (67.24%), 80.5%
(43.1%), and 59.3% (48.3%) of the optimal performance are obtained using LinUCB/CTS,
TS, UCB, conventional and the random schemes, respectively.
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Figure 3. Average throughput versus the number of devices at no blocking for UCB, TS, LinUCB,
and CTS algorithms.
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Figure 4 presents the average throughput performances of the examined methods
using 60 devices versus various blocking densities, i.e., changing values of λ. As blocking is
enlarged, the average throughput of all methods decreases because of the increased NLOS
probability (blockage) that decreases the received power and hence, the attainable data
rate. The random scheme also yields the most defective throughput performance due to
the randomized device selection policy that may experience abrupt blocking. However,
the CMAB-based NDS displays near optimal performance. At λ of 0 (0.15) about 96.9%
(95.6%), 92.8% (90.8%), 81.6% (80.8%), 56.2% (54.2%), and 51.3% (20%) of the optimal
performance are obtained using LinUCB/CTS, TS, UCB, conventional and the random
schemes, respectively.
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Figure 4. Average throughput versus blocking density λ for UCB, TS, LinUCB, and CTS algorithms
using 60 devices.

Figure 5 shows the convergence rate of the LinUCB, CTS, UCB, and CTS algorithms
against optimal and random performances. It is worth noting that the convergence of TS
is faster than UCB due to the Bayesian policy of TS. At t = 100, both LinUCB and CTS
converge to around 98% of the optimal throughput, while noncontextual bandits own
slower convergence, where TS converges to 91% while UCB converges to 73%.
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5.2. With Battery Consideration

Figure 6 shows the average throughput performances against the number of dis-
tributed devices at no blocking (λ = 0). The proposed EA-CMAB algorithms (i.e., EA-
LinUCB and EA-CTS) show better performance than not only similar noncontextual ones
(i.e., EA-UCB and EA-TS [4]) but also conventional and random selection schemes too. Both
EA-CMAB schemes have close performance due to the close performance of both LinUCB
and CTS as previously explained, plus the newly added energy term [50,51]. The average
throughput performance of EA-LinUCB and EA-CTS schemes are increased proportionally
with the number of devices due to the effective Wi-Fi context vector that increases the long-
term reward and reduces the BT cost. At 20 (100) devices, both EA-CMAB algorithms have
1.3 (5.5) and 2.8 (5) throughput improvement against conventional and random selections,
correspondingly. The two modified EA-CMAB algorithms display similar performance,
showing small throughput fluctuations affected by the lately appended remaining energy
expression, i.e., ri

Ξi,t
. This expression affects the typical CMAB algorithms’ estimation

by prioritizing closer devices, reaching more excellent realizable data rates with lower
consumed energies. Moreover, EA-CMAB shows higher performance than noncontextual
EA-MAB algorithms.
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Figure 6. Average throughput versus the number of devices at no blocking for EA-UCB, EA-TS,
EA-LinUCB, and EA-CTS algorithms.

Figure 7 shows the throughput evaluation of the related methods versus different
blocking values via 60 devices. All schemes’ throughput is inversely related to the blocking
density values. Moreover, the random selection also displays the most deficient perfor-
mance. However, the proposed EA-CMAB-based NDS exhibits near-optimal performance
because of the optimized chosen device with the help of Wi-Fi information. At blocking
densities of 0 (0.15), the EA-CMAB (EA-LinUCB and EA-CTS)-based NDS has 0.5 (0.5),
4 (3.8) and 4.2 (8) throughput performance increments over EA-MAB (EA-UCB and EA-
TS), conventional and random schemes, respectively. Moreover, EA-CMAB outperforms
EA-MAB algorithms.
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Figure 7. Average throughput versus blocking density λ for EA-UCB, EA-TS, EA-LinUCB, and
EA-CTS using 60 devices.

Figure 8 displays EE performances in Gbps/mJ against the number of distributed
devices at no blocking (λ = 0). The EEs of all compared schemes are increased relatively
with increasing the number of nearby devices because of the large number of devices having
higher SE values available for setting up the mmWave D2D linkage. This intensely reduces
the spent energy of the chosen device in accordance. Furthermore, random selection
reveals the worst performance, while the two EA-CMAB-based NDS algorithms display
better performance than EA-MAB algorithms. Due to the additional energy-constraint
to the formulated CMAB problem, the EA-CMAB-based NDS maximizes the long-term
throughput while conserving the adjacent devices’ remaining energies when constructing
the D2D links through making use of Wi-Fi contexts. This improves EE performances over
both noncontextual EA-MAB and the conventional and random NDS. At 20 (100) devices,
the EA-CMAB-based NDS has 0.1 (0.5), 1.3 (2.5) and 2 (3.5) increase in EE over EA-MAB,
conventional and random schemes, respectively.
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Figure 8. EE versus the number of devices for EA-UCB, EA-TS, EA-LinUCB, and EA-CTS at no blocking.

Figure 9 demonstrates the EE evaluations versus different blocking λ values using
60 devices. Generally, as λ is increased, the EE of all algorithms is decreased. This is due
to the significant blockage effect, which reduces the available data rate extending data
transmission time resulting in more considerable energy dissipation as given in (9). Still,
the proposed EA-CMAB algorithms show the best EE performances within whole λ values
because of the context vector’s influence and the energy constraint. However, the random
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scheme demonstrates the most defective EE values at different values of λ. At blocking
densities of 0 (0.15), the EA-CMAB-based NDS has 1.5 (1.7) and 2.9 (29) increments in EE
over conventional and random schemes, accordingly.
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Figure 9. EE versus blocking density for EA-UCB, EA-TS, EA-LinUCB, and EA-CTS using 60 devices.

Figure 10 illustrates the convergence comparisons of EA-LinUCB and EA-CTS algo-
rithms versus EA-MAB (EA-UCB and EA-TS), random, and optimal schemes. For the sake
of comparison, the optimal scheme is by considering device’s infinite energy. EA-CMAB
converges faster than EA-MAB algorithms, resulting in faster learning process. Nearly
at 100 rounds, the two proposed EA-CMAB algorithms converge to 99% of the optimum
average throughput, while EA-MAB convergence equals 96%. EA-CMAB algorithms have
slight faster convergence than EA-MAB schemes, which ensures its appropriate selection
for the problem solution.
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Figure 10. Convergence rate of energy aware algorithms using 60 devices.

For complexity analysis, the time consumed by the compared schemes comes from
algorithm execution time and nearby device probing time. The execution time of the
proposed CMAB algorithms is of order O

(
d2N

)
[20,21], which greatly depends on the

number of the probed devices and size of the context vector d. Regards of d, it is fixed
to three as previously explained, and N is a small value because we only consider the
scenario of a small cell with a few numbers of surrounding users. Moreover, according
to our proposed algorithms policy, N decreases with the trials increment because of the
battery condition. Hence, our algorithm’s processing time can be considered as constant,
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especially at small nearby devices case. In Table 2, we measured the MATLAB R2020
b execution time of the proposed algorithms against the number of devices compared
to the conventional scheme. The specifications of the used machine are i7-8565U CPU
@ 1.80 GHz 1.99 GHz and 8 GB RAM. From Table 2, the execution time of the proposed
algorithms are in the range of milliseconds which fit the 5G/6G requirements of millisecond
latency. Moreover, typically, MATLAB software consumes large execution time because of
its complier. Hence, we expect much lower execution time compared to these values when
implemented in real hardware platforms. The second source is the BT time of one device
probing which is about 0.28 msec [1]. This ensures the near optimal performance of the
proposed CMAB/EA-CMAB schemes as given in Figures 3–10.

Table 2. Execution times of the compared algorithms.

No of Devices

Algorithm
EA-UCB EA-TS EA-LinUCB EA-CTS Conventional

20 0.1 msec 0.2 msec 0.3 msec 0.31 msec 5.6 msec

60 0.1 msec 0.5 msec 0.6 msec 0.66 msec 16.8 msec

80 0.2 msec 0.6 msec 0.8 msec 0.9 msec 22.4 msec

100 0.2 msec 0.7 msec 0.9 msec 1 msec 28 msec

6. Conclusions

This paper discussed resolving the NDS problem in mmWave D2D communications
using ML-based CMABs. It advanced a CMAB-based online learning technique that
effectively solves the NDS problem for future talented applications. This is done by
making use of Wi-Fi information of the nearby multiband standardized devices as context
information. Hence, LinUCB and CTS schemes were leveraged for NDS solution and their
performance was investigated against UCB and TS algorithms. Afterward, we proposed
EA-LinUCB and EA-CTS to accelerate the discovery process and take full advantage of the
long-term average throughput while bearing in mind the remaining energies of the adjacent
devices. The suggested algorithms confirmed their superior performances, which are higher
than noncontextual MAB algorithms plus traditional mmWave D2D NDS approaches. EA-
CMABs achieved larger EE than other schemes with faster convergence rates. Future
research directions will be directed towards practical experimental implementations and
multiplayer scenarios using CMABs in centralized and decentralized settings. Moreover,
implementing deep CMABs looks a promising approach.
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Nomenclature

Symbol Meaning
Pw

t , Pw
r , Pm

t , Pm
r Wi-Fi and mmWave Transmitted and received powers

ηw,ηv
m Wi-Fi and mmWave path loss exponent, v ∈ {LOS, NLOS}
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χw, χv
m Wi-Fi and mmWave log-normal shadowing

ΛTX(ϑ), ΛRX(ϕ) Transmitting and receiving beamforming gains angle of departures
ϑ, ϕ (AoD) and the angle of arrival (AoA)
Wm, TD, TBT mmWave bandwidth, Data transmission and BT times
rwt,ai Collected reward via selecting arm/device ai at round t
N0, ϑ−3dB, Λ0 Noise power of receiver, −3dB beamwidth, maximum antenna gain
λ, ∆, Ω Obstacles density, cylinder’s thinning factor and radius
Ξi(t), Ξlimit Remaining energy of the adjacent device i, threshold energy

Ψi(t) D2D linkage throughput in Gbps with adjacent device i at round t
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