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Abstract: Detecting and monitoring air-polluting gases such as carbon monoxide (CO), nitrogen
oxides (NOx), and sulfur oxides (SOx) are critical, as these gases are toxic and harm the ecosystem
and the human health. Therefore, it is necessary to design high-performance gas sensors for toxic
gas detection. In this sense, graphene-based materials are promising for use as toxic gas sensors.
In addition to experimental investigations, first-principle methods have enabled graphene-based
sensor design to progress by leaps and bounds. This review presents a detailed analysis of graphene-
based toxic gas sensors by using first-principle methods. The modifications made to graphene, such as
decorated, defective, and doped to improve the detection of NOx, SOx, and CO toxic gases are revised
and analyzed. In general, graphene decorated with transition metals, defective graphene, and doped
graphene have a higher sensibility toward the toxic gases than pristine graphene. This review shows
the relevance of using first-principle studies for the design of novel and efficient toxic gas sensors.
The theoretical results obtained to date can greatly help experimental groups to design novel and
efficient graphene-based toxic gas sensors.

Keywords: pristine graphene; defective graphene; doped graphene; density functional theory;
first principle studies; toxic gas sensors; adsorption energy

1. Introduction

The conversion of energy from one form to another many times affects the air com-
position in several ways. It is well-known that fossil fuels have been powering industrial
development and the amenities of modern life that we enjoy. However, the combustion
of fossil fuels contributes to a great extent to composition variations of the atmosphere,
and this is mainly due to harmful gas emissions.

Harmful gases include, for instance, aliphatic hydrocarbons, carbon monoxide (CO),
nitrogen oxides (NOx), and sulfur oxides (SOx), among others. In this context, health
expenditures have increased due to air pollution, which is mainly associated with the
rapid industrialization of many countries. Consequently, the disruption of ecological
balance and serious public health issues caused by harmful gases are raising global con-
cerns [1,2]. Table 1 illustrates some aspects about the harmful effects of toxic gases related
to human health.
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Table 1. Main toxic inhalation hazards.

Gas or Vapor Irritate Odor Signs and Symptoms Refs.

Carbon
monoxide No No

Tissue hypoxia, hypoxic cardiac
dysfunction, subtle cardiovascular,
unconsciousness, and death after
prolonged exposures or after acute
exposures to high concentrations of CO.

[3–5]

Nitrogen oxides Yes No

Nausea, headache, respiratory illness
(cough and irritation of the respiratory
tract), asthma, pneumonia, possibly
tuberculosis, and Parkinson’s disease.

[6–9]

Sulfur oxides Yes Yes
Neurological damage, bronchitis,
bronchial asthma, emphysema,
bronchoconstriction and mucus.

[3,4,10,11]

On the other hand, until today, a sizable number of countries depend on oil for
energy uses and development. Consequently, harmful effects on the environment such as
global warming, ozone depletion, acid rain and climate change may result from the gases
emanating from fossil fuel combustion. Therefore, harmful gases do not only affect human
health, but they also have an undesirable impact on the environment.

According to Springer, the greenhouse effect of the troposphere is beneficial because
it makes the earth habitable at an overall average temperature of about 15 ◦C [12] (see
Figure 1). However, higher concentrations of CO2, methane, water vapor, chlorofluoro-
carbons (CFCs), ozone, and nitrous oxide in the upper atmosphere could result in global
warming, accompanied by economic and environmental implications [12–16].
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Against this backdrop, effectively sensing and capturing these harmful gases, such
as CO, NOx, and SOx, can greatly help protect the environment and human health [9,17].
Nowadays many materials, such as metal oxide semiconductors, conducting polymers,
carbon-based materials, have been investigated and utilized as toxic gas sensors [18–20].
However, the challenges of these gas sensors can be one or more of the following: cost,
sensitivity (e.g., ppb level is rare), and poor selectivity, among others [19]. Therefore, it is
necessary to design high-performance gas sensors for detecting these toxic gases. As an
alternative, among the carbon materials, graphene, a 2D monolayer form of sp2-hybridized
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carbon atoms, could prove a key material for sensing applications due to its exceptional
thermal conductivity, high electron mobility, excellent mechanical properties, and high
specific surface area [21–24]. Due to its remarkable properties, graphene opens up a wide
range of promising applications in the sensors field, from fundamental science to industrial
applications [25–29]. However, the main issue is that gas molecules are weakly adsorbed
on graphene due to its low reactivity [30–32]. For this reason, both at the theoretical
and experimental levels, several strategies have been developed to modify the electronic
and structural properties of graphene and, consequently, improve its reactivity toward
the toxic gases. Such strategies include doped, decorated, defective, and functionalized
graphene [33–35].

Experimentally, the current conception of novel graphene sensor materials and the
required performance improvements are largely limited by lack of rapid and economical
synthesis routes and post-testing strategies to ensure their functionality. Currently, dif-
ferent synthesis techniques such as chemical vapor deposition, sputtering, drop casting,
spin coating, and inkjet printing have been used to fabricate high quality graphene for
the detection of toxic gases [36,37]. However, many of these methods are expensive and
not easily scalable for mass production. In addition, it is difficult to control the doping
concentration and the number of graphene layers. Undoubtedly, such limitations can be
overcome if sensor materials are designed, modeled, and evaluated from a theoretical
point of view (e.g., first-principle methods). The first-principle or ab initio methods are
based on the quantum mechanics theory. Specifically, the density functional theory (DFT)
is primarily a formalism of electronic ground state structure, couched in terms of the
electronic density distribution [38]. The DFT-based simulations are essential for explaining
and understanding the experimental results at the molecular level, or as a predictive tool
for the rational design of novel gas sensors [39]. The DFT calculations provide important
information, such as the adsorption mechanisms, the adsorption energy, charge transfer,
electronic modification after gas adsorption, feasible approaches to enhance adsorption
or desorption, that are critical for designing novel gas sensors [40]. Due to the critical role
that theoretical calculations have in the design of toxic gas sensors, numerous DFT studies
have been conducted to investigate novel graphene-based gas sensors. However, to date
there are no detailed and critical reviews of the current progress in theoretical design of
graphene-based toxic gas sensors; state-of-the-art reviews mainly focus on experimental
evidence [28,29,41,42]. Therefore, this review presents a detailed and critical analysis of the
progress of graphene-based toxic gas sensors by using first-principle methods. The modifi-
cations made to graphene, such as defective, doped, and decorated to improve the detection
of CO and NOx, and SOx toxic gases, are revised and analyzed in detail.

2. Pristine Graphene

Different approaches have been used for theoretical studies into pristine graphene,
such as aromatic molecules (finite system) and periodic systems (supercell) (see Figure 2).
There have been several theoretical studies conducted on the use of pristine graphene
as a toxic gas sensor [43–46]. One of the first DFT-based studies on the use of pristine
graphene as a toxic gas sensor was performed by Leenaerts et al. [43]. They investigated the
adsorption of CO, NO2, and NO on pristine graphene using a 4× 4 graphene supercell with
the generalized gradient approximation (GGA), specifically the Perdew-Burke-Ernzerhof
(PBE) functional; the adsorption energies of −14, −67, and −29 meV were found for CO,
NO2, and NO molecules, respectively [43]. At the same time, Wehling et al. conducted the
first joint experimental and theoretical investigation of the NO2 adsorption on graphene.
To this end, they used the local density approximation (LDA) and the GGA for their
calculations [44]. The computed NO2 adsorption energy with the GGA method was similar
to that reported by Leenaerts et al. [43]. However, the NO2 adsorption energy calculated
using the LDA method was higher that the computed energy that employed the GGA
method [44]. In another investigation, Lin et al. studied the CO, and NO2 adsorption
on graphene using a 4 × 4 graphene supercell with the van der Waals density functional
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(vdW-DF2) and LDA methods [45]. The CO and NO2 adsorption energies calculated by
vdW-DF2 were larger than those obtained by LDA [45]. For the adsorption mechanism of
the toxic gases on the pristine graphene, for the CO and NO molecules, the most stable
interaction occurs when the CO [43,45] and NO [43] molecules are parallel to the graphene
surface, whereas for the NO2 molecule, the most stable interaction is with the O atoms of
the N-O bonds pointing toward the graphene surface [43–45]. Although the adsorption
energies of the gases on graphene are notably affected by the methods employed [44–46],
the interaction between gases and pristine graphene is weak [43]. This could limit the
sensitivity of pristine graphene to detecting toxic gases.
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3. Pristine Graphene Decorated with Transition Metals

To date, researchers have employed different strategies for improving the reactivity of
pristine graphene toward the detection of toxic gases. One of these strategies is the use of
pristine graphene decorated with transition metals. This strategy involves the deposition
of transition metal atoms onto the pristine graphene. To date, various DFT studies on toxic
gas adsorption on pristine graphene decorated with transition metals are available in the
literature [47–51]. In the first instance, the CO, NO, and SO2 adsorption on Co-decorated
graphene was studied [47]. Lately, the NO [48] and SO2 [49] adsorption on Pt-decorated
graphene was investigated. In another study, the CO and NO adsorption on Li-decorated
graphene was calculated [50]. Finally, the NO2 adsorption on Ni-, Pd-, and Pt-decorated
graphene was computed [51]. On the interaction mechanism between the toxic gases and
graphene decorated with transition metals; for the CO and NO molecules, the most stable
interaction occurs when the CO [47,50] and NO [47,48,50] molecules are vertical to the
graphene decorated with transition metals. Furthermore, it has been reported that the atom
type used to decorate the graphene can influence on the adsorption mechanism between
the toxic gas and the graphene [51]. For instance, the mode of NO2 adsorption on the
graphene decorated with Ni is different with respect to the graphene decorated with Pd
and Pt (see Figure 3).

The adsorption energies of toxic gases on graphene decorated with transition metals is
much higher than those on pristine graphene (see Table 2). Such increments in the adsorp-
tion energy can be attributed to the modification of the electronic properties of transition
metals-decorated graphene compared to undecorated pristine graphene. For example,
a high charge transfer from metallic atoms to the graphene has been observed, which
improves the reactivity of pristine graphene [48,49]. All previous results demonstrated that
the toxic gases adsorption energies were enhanced on graphene decorated with transition
metals compared to the adsorption energies on pristine graphene. This shows that pristine
graphene decorated with transition metals is a promising material for use in toxic gas
sensors. However, to date, DFT studies on the selectivity of graphene decorated with
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transition metals toward toxic gases have scarcely been reported in literature. Therefore,
more theoretical studies on the selectivity of pristine graphene decorated with transition
metals should be carried out.
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Table 2. Adsorption energies of toxic gases on transition metals decorated graphene.

Material Gas Eads (in eV) Functional Approach Refs.

Co-decorated graphene CO −2.19 PBE Supercell [47]
Co-decorated graphene NO −4.04 PBE Supercell [47]
Co-decorated graphene SO2 −2.35 PBE Supercell [47]
Pt-decorated graphene NO −2.06 B3LYP Supercell [48]
Pt-decorated graphene NO2 −2.00 PBE Supercell [51]
Pt-decorated graphene SO2 −1.58 B3LYP Supercell [49]
Li- decorated graphene CO −0.55 B3LYP Finite system [50]
Li-decorated graphene NO −0.14 B3LYP Finite system [50]
Ni-decorated graphene NO2 −2.63 PBE Supercell [51]
Pd-decorated graphene NO2 −1.59 PBE Supercell [51]

4. Defective Graphene

Another strategy employed to modify the reactivity of pristine graphene is through
defects. As has been reported in literature, nanoscale defects bring new functionalities that
could be useful for different applications. For instance, structural defects notably modify
the mechanical, chemical, and electronic properties of graphene [52]. At the theoretical
level, structural defects have become very important to modify the graphene reactivity
because these can be introduced into graphene during synthesis by chemical treatment
or irradiation [52,53]. To date, there have been various theoretical studies conducted
on the use of defective graphene as toxic gas sensor [54–65]. For instance, Huang et al.
investigated the CO, NO, NO2 on armchair graphene nanoribbons (AGNRs) with edge
dangling bond defects using PW91 functional (see Figure 4). The CO, NO, and NO2
adsorption energies were −1.34, −2.29, and −2.70 eV, respectively. These results indicate
that the toxic gas adsorption at AGNR edges is stronger than on graphene surface [56].
To date, different defects have been introduced in the graphene surface to improve its
reactivity toward the toxic gases, see Table 3. The single-vacancy and Stone—Wales defects
have been used to modify the graphene surface. The single-vacancy has been the defect
mostly studied. The single-vacancy defects in graphene have been found to have stronger
interactions with toxic gases compared to pristine graphene. This shows that graphene
with single-vacancy defects is a promising material for use in toxic gases sensors. The good
sensitivity of graphene with single-vacancy defects is attributed to the modified electronic
properties compared to those of pristine graphene. The removed C atom produces the
three neighboring C atoms having three dangling bonds, which produce localized states at
the Fermi level [59,63]. For the adsorption mechanism of the toxic gases on the graphene
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with a single-vacancy; in the case of CO and NO molecules, the most stable adsorption
occurs when the C and N atoms of the CO [57–61] and NO [57,58,60,63] molecules are in
the vacancy of graphene, respectively, whereas for the NO2 and SO2 molecules, the most
stable interaction occurs when the NO2 [58] and SO2 [64] molecules are vertical to the
defective graphene with the N and S atoms toward the vacancy of graphene, respectively.
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Table 3. Adsorption energies of toxic gases on defective graphene.

Material Gas Eads (in eV) Functional Approach Refs.

Single vacancy CO −6.05 GGA Supercell [57]
Single vacancy CO −2.33 CA-PZ Supercell [58]

Single vacancy CO −5.06 a,
−5.15 PBE Supercell [59]

Single vacancy CO −0.07 PBE Supercell [60]
Single vacancy CO −1.86 PBE Supercell [61]
Single vacancy CO −0.18 PBE Supercell [62]
Single vacancy NO −6.64 GGA Supercell [57]
Single vacancy NO −3.04 CA-PZ Supercell [58]
Single vacancy NO −1.20 PBE Supercell [60]
Single vacancy NO −8.25 PBE Supercell [63]
Single vacancy NO2 −3.04 CA-PZ Supercell [58]
Single vacancy NO2 −6.41 b PBE Supercell [63]
Single vacancy SO2 −2.38 PBE Supercell [64]
Stone—Wales CO −1.30 a Supercell [59]
Stone—Wales SO2 −0.19 PBE Supercell [65]

a Results obtained using self-consistent-charge density-functional tight-binding method. b The NO2 dissociation
into O and NO was observed.

It has also been shown that an extra electric field serves as a good strategy to enhance
the reactivity of defective graphene toward the toxic gases, as it positively affects the
material′s electronic properties [61]. Recently, the CO adsorption on a graphene sheet with
single-vacancy defects under different electric fields was investigated [61]. The calculated
adsorption energies of CO on the single-vacancy defective graphene under an applied
electric field of −0.016 a.u. was 62.6% higher than without the electric field [61], which
shows that an external electric field offers a good way to enhance the reactivity of defective
graphene toward the toxic gases.

When toxic gas sensors are exposed to aerobic environments, interference from other
gases will cause false alarms [57]. Therefore, it is essential to explore the selectivity of
the graphene-based sensors toward the toxic gases. In this direction, Ma et al. demon-
strated that CO and O2 molecules are chemisorbed on graphene with single-vacancy
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defects. This limits selectively toward the CO since O2 chemisorption would lead to a
false alarm [57]. In another study, the selectivity of graphene with a single-vacancy defect
toward the various gases was investigated (e.g., H2, N2, O2, CO, CO2, H2O, H2S, and NH3).
Five gases (H2, O2, CO, CO2, and NH3) exhibited chemisorption, whereas the remaining
gases showed physisorption (N2, H2O, and H2S). For the H2, O2, CO2, and NH3 chemisorp-
tion involves the dissociation of the molecules; namely, O2 → O + O. It is remarkable
that only the CO molecule remains without dissociation. Therefore, the graphene with
a single-vacancy would be more selective toward the CO detection. For instance, it is
observed that the O2 molecule requires about 5.11 eV to get dissociated and then bind
to the vacancy. Whereas the CO molecule avoids paying that huge dissociation energy.
This fact shows that graphene with a single-vacancy defect has a higher selectivity toward
the CO detection [59].

5. Doped Graphene

Another approach widely used to modify the reactivity of pristine graphene is through
doping. Doping atoms proved to substantially modify the electronic, chemical, and struc-
tural properties of pristine graphene [66,67]. At the theoretical level, there are various
routes to dope the graphene sheet. A widely used method is to replace a carbon atom with
the doping atom in the graphene sheet. Currently, different doped-graphene sheets have
been explored as toxic gas sensors, replacing a carbon atom by a dopant atom [55,68–100].
Around 30 elements of the periodic table have been explored for use as doping materials,
with N being the most studied element dopant due to its similar atomic radii with C (see
Table 4). Among the toxic gases reviewed, CO gas is the most investigated due its high
toxicity in humans [101]. It is also observed that the GGA (specifically PBE) method and
supercell approach are the most widely approaches used for studying doped graphene
for use in toxic gas sensors. Interestingly, several studies consider dispersion corrections
in the calculations to better describe the interaction between the toxic gases and doped
graphene. According to adsorption energies of the toxic gases, in most cases, it is ob-
served that the toxic gases were adsorbed stronger on doped graphene than on pristine
graphene. This shows that the doped-graphene sheets are good candidates as toxic gas
sensors. The increase in the adsorption energy can be attributed to the modification of
the structural and electronic properties of doped graphene compared to pristine graphene.
For instance, a high charge transfer from metallic atoms to the graphene has been ob-
served, which improves the reactivity of doped graphene toward the toxic gases [71,85,99].
However, in some cases, the interaction between the toxic gases and the doped-graphene
sheet has been reported to be low, as in the case of the interaction of CO on the N-doped
graphene. For the adsorption mechanism of the toxic gases on the doped graphene, it has
been reported that the atom type used to dope the graphene can influence on the adsorp-
tion mechanism between the toxic gas and the graphene [69,71]. Finally, although all
calculations are conducted at the DFT level, there are discrepancies between the results
reported (e.g., NO2 adsorption energies on the N-doped graphene) in Table 4. These can be
attributed to various factors, such as the functional and dispersion corrections employed in
the calculations, the type and site of gas adsorption on which the adsorption energy was
calculated, among others.

An extra electric field could be a good strategy to enhance the reactivity of graphene-
based gas sensors [61]. In this sense, the CO adsorption on Al-doped graphene under
different electric fields was investigated [83]. The calculated adsorption energies of CO
on the Al-doped graphene under an applied electric field of −0.03 a.u. were higher than
those without the electric field [83]. This indicates that an external electric field is a good
way to enhance the reactivity of doped graphene toward the toxic gases [83,95]. It can
also be used for the desorption of toxic gases on the sensor surface, only modifying the
direction of the electric field. In this context, the NO and NO2 adsorption on Fe-doped
graphene under different electric fields (0.01–0.05 a.u.) was investigated [79]. Electric fields
above 0.03 a.u. have been found to cause NO and NO2 desorption from the surface of
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Fe-doped graphene [79]. CO desorption from the Al-doped-graphene surface has also
been demonstrated under the application of an electric field ≥0.03 a.u. [83]. Therefore,
an electric field can be employed to reactivate the doped-graphene toxic gas sensors for
repetitious applications.

Table 4. Adsorption energies of toxic gases on doped graphene.

Material Gas Eads (in eV) Functional Approach Refs.

N-doped CO −0.14 CA-PZ Supercell [58]
N-doped CO −0.03 PBE Supercell [68]
N-doped CO −0.13 PBE Finite system [69]
N-doped CO −0.01 PBE Supercell [70]
N-doped NO −0.40 CA-PZ Supercell [58]
N-doped NO −0.08 PBE Supercell [68]
N-doped NO −0.09 PBE Supercell [70]
N-doped NO 0.16 PBE Supercell [71]
N-doped NO2 −0.98 CA-PZ Supercell [58]
N-doped NO2 −0.26 PBE Supercell [70]
N-doped NO2 −0.44 PBE Supercell [71]
N-doped SO2 −0.29 PBE Supercell [68]
N-doped SO2 −0.19 PBE Supercell [70]
N-doped SO2 −0.17 PW91 Supercell [72]
N-doped SO2 −0.29 B3LYP Finite system [73]
N-doped SO3 −0.68 B3LYP Finite system [73]
Fe-doped CO −1.71 PBE Supercell [74]
Fe-doped CO −1.45 PBE Supercell [75]
Fe-doped CO −1.46 B3LYP Finite system [76]
Fe-doped CO −1.60 PBE Finite system [77]
Fe-doped CO −1.50 B3LYP Finite system [78]
Fe-doped NO −2.40 PBE Supercell [74]
Fe-doped NO −2.24 PBE Supercell [75]
Fe-doped NO −2.23 PBE Finite system [79]
Fe-doped NO2 −2.19 PBE Finite system [79]
Fe-doped NO2 −2.20 PBE Supercell [80]
Fe-doped SO2 −1.68 PBE Supercell [74]
Fe-doped SO2 −1.80 PBE Finite system [77]
Fe-doped SO3 −1.81 PBE Supercell [80]
B-doped CO −0.14 CA-PZ Supercell [58]
B-doped CO −0.13 PBE Finite system [69]
B-doped CO −0.02 PBE Supercell [70]
B-doped NO −1.07 CA-PZ Supercell [58]
B-doped NO −0.34 PBE Supercell [70]
B-doped NO2 −1.37 CA-PZ Supercell [58]
B-doped NO2 −0.33 PBE Supercell [70]
B-doped SO2 −0.03 PBE Supercell [70]
B-doped SO2 −0.21 PW91 Supercell [72]
B-doped SO2 −0.12 B3LYP Finite system [81]
B-doped SO3 −0.18 B3LYP Finite system [81]
Al-doped CO −0.77 PBE Finite system [69]
Al-doped CO −0.66 PBE Supercell [70]
Al-doped CO −4.98 PBE Supercell [82]
Al-doped CO −0.57 a PBE Supercell [83]
Al-doped CO −0.56 B3LYP Supercell [84]
Al-doped NO −1.35 PBE Supercell [70]
Al-doped NO2 −2.48 PBE Supercell [70]
Al-doped NO2 −0.65 B3LYP Supercell [85]
Al-doped SO2 −1.65 PBE Supercell [65]
Al-doped SO2 −1.54 PBE Supercell [70]
Al-doped SO2 −1.26 PW91 Supercell [72]
Pd-doped CO −0.91 PBE Supercell [60]
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Table 4. Cont.

Material Gas Eads (in eV) Functional Approach Refs.

Pd-doped CO −0.92 B3LYP Finite system [76]
Pd-doped CO −1.05 PBE Supercell [86]
Pd-doped CO −1.07 PBE Supercell [87]
Pd-doped NO −3.92 PBE Supercell [60]
Pd-doped NO −1.33 PBE Supercell [82]
Pd-doped NO2 −2.17 PBE Supercell [87]
Pd-doped NO2 −2.19 PBE Supercell [87]
Pd-doped SO2 −1.12 PBE Supercell [87]
Pd-doped SO2 −5.78 PBE Supercell [88]
Ni-doped CO −1.02 B3LYP Finite system [76]
Ni-doped CO −0.96 B3LYP Finite system [78]
Ni-doped NO −1.64 PBE Supercell [89]
Ni-doped NO2 −1.83 PBE Supercell [89]
Ni-doped SO2 −4.21 PBE Supercell [88]
Ni-doped SO2 −0.92 PBE Supercell [89]
Ni-doped SO3 −1.59 PBE Supercell [89]
Ti-doped CO −0.45 PBE Supercell [68]
Ti-doped CO −1.00 B3LYP Finite system [78]
Ti-doped NO −1.72 PBE Supercell [68]
Ti-doped NO −1.44 PBE Supercell [71]
Ti-doped NO2 −2.98 PBE Supercell [71]
Ti-doped SO2 −3.20 PBE Supercell [68]

Mn-doped CO −1.50 PBE Supercell [62]
Mn-doped CO −1.42 B3LYP Finite system [78]
Mn-doped NO −2.14 PBE Supercell [90]
Mn-doped NO2 −2.76 PBE Supercell [90]
Mn-doped SO2 −1.73 PW91 Supercell [72]
Mn-doped SO2 −1.83 PBE Supercell [90]
Co-doped CO −0.94 B3LYP Finite system [76]
Co-doped CO −0.94 B3LYP Finite system [78]
Co-doped CO −0.62 PBE Supercell [47]
Co-doped NO −1.51 PBE Supercell [47]
Co-doped SO2 −1.07 PBE Supercell [47]
Pt-doped CO −1.30 B3LYP Finite system [76]
Pt-doped NO −6.22 PBE Supercell [91]
Pt-doped NO2 −7.37 PBE Supercell [91]
Pt-doped NO2 −2.21 PBE Supercell [92]
Pt-doped SO2 −1.02 PW91 Supercell [72]
Pt-doped SO2 −1.06 PBE Supercell [92]
Si-doped CO −0.25 PBE Finite system [69]
Si-doped NO −0.82 PBE Supercell [93]
Si-doped NO2 −2.17 PBE Supercell [93]
Si-doped SO2 −0.90 PW91 Supercell [72]
P-doped CO −0.07 PBE Supercell [94]
P-doped NO −0.51 PBE Supercell [94]
P-doped NO2 −1.89 PBE Supercell [94]
P-doped SO2 −0.32 PBE Supercell [94]
S-doped CO −0.01 PBE Supercell [70]
S-doped NO −0.12 PBE Supercell [70]
S-doped NO2 −0.83 PBE Supercell [70]
S-doped SO2 −0.09 PBE Supercell [70]

Ga-doped CO −0.67 PBE Supercell [95]
Ga-doped NO −0.78 PBE Supercell [95]
Ga-doped NO −0.81 PBE Supercell [96]
Ga-doped NO2 −1.93 PBE Supercell [95]
Ag-doped NO −6.93 PBE Supercell [91]
Ag-doped NO2 −7.83 PBE Supercell [91]
Ag-doped SO2 −0.97 PW91 Supercell [72]
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Table 4. Cont.

Material Gas Eads (in eV) Functional Approach Refs.

Au-doped NO −8.47 PBE Supercell [91]
Au-doped NO2 −9.34 PBE Supercell [91]
Au-doped SO2 −1.28 PW91 Supercell [72]
Cr-doped CO −1.63 B3LYP Finite system [78]
Cr-doped SO2 −1.68 PW91 Supercell [72]
Cr-doped SO2 −1.59 b PW91 Supercell [97]
Nb-doped CO −0.53 PBE Supercell [98]
Nb-doped SO2 −0.32 PBE Supercell [98]
Ta-doped NO2 −2.31 PBE Supercell [99]
Ta-doped SO2 −1.68 PBE Supercell [99]
Li-doped CO −3.51 PBE Supercell [100]
Sc-doped CO −0.35 B3LYP Finite system [78]
V-doped CO −0.55 B3LYP Finite system [78]

Cu-doped CO −1.20 B3LYP Finite system [78]
Zn-doped CO −0.67 B3LYP Finite system [78]
Ru-doped CO −1.22 B3LYP Finite system [76]
Rh-doped CO −1.01 B3LYP Finite system [76]
In-doped CO −0.02 PBE Supercell [61]
Sb-doped CO −0.01 PBE Supercell [61]
Os-doped CO −1.80 B3LYP Finite system [76]
Ir-doped CO −1.57 B3LYP Finite system [76]

a Results obtained under electric field = 0.0 a.u. b Adsorption energy calculated using zigzag graphene nanoribbons.

On the other hand, the selectivity of doped graphene toward the toxic gases has
been investigated [77,79]. In this sense, Cortés-Arriagada et al. investigated the selec-
tivity of Fe-doped graphene toward the CO and SO2 molecules in O2 environments [77].
They computed an O2 adsorption energy of −1.68 eV, which is similar or higher than
the energy absorption of CO and SO2 molecules. This limits selectively toward the CO
and SO2 molecules in aerobic environments [77]. Another study examined the selectivity
of Fe-doped graphene toward the NO and NO2 gases in O2 environments [79]. Results
showed that Fe-doped graphene is selective toward the NO and NO2 molecules in O2
environments [79].

Another strategy for doping graphene has been to substitute various carbon atoms
with the doping atoms. Figure 5a shows a graphene sheet with three atoms of N and
a vacancy. This type of doping is known as pyridinic-type doping. Currently, there are
some detailed studies on the use of pyridinic-type N-doped graphene (PNG) as toxic gas
sensors [57,102]. Ma et al. investigated toxic gas adsorption on PNG sheet using the GGA
method [57]. They demonstrated that the PNG is a good candidate for selectively sensing
CO from air [57]. Recently, the NO, and SO2 adsorption on PNG was investigated using
the B3LYP approximation [102]. It was shown that the NO molecule is weakly adsorbed on
PNG sheet [57,102], which shows that PNG may not be a good candidate as a NO sensor.
However, the SO2 gas is strongly adsorbed (−2.58 eV), thus, PNG may be a good candidate
as a SO2 sensor.

Another strategy employed to dope the graphene sheets is inserting the doping
atom in a double vacancy (divacancy), see Figure 5b. These structures are interesting
because they show better reactivity toward the toxic gases than defective graphene [60].
Consequently, there have been various studies on the use of doped vacancy-defected
graphene as toxic gases sensors [60,62,75,80,89]. Jia et al. investigated the CO adsorp-
tion on Mn-doped vacancy-defected graphene using the PBE functional [62]. The CO
adsorption energy on Mn-doped vacancy-defected graphene was higher than on defective
or pristine graphene [62]. In another study, the CO and NO adsorption on Fe-doped
vacancy-defected graphene was investigated using the PBE approximation [75]. Ad-
sorption energies of −1.10 and −2.41 eV were computed for CO and NO on Fe-doped
vacancy-defected graphene, respectively [75]. At the same time, Gao et al. computed the
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NO2 and SO3 interaction on Fe-doped vacancy-defected graphene employing the PBE func-
tional (see Figure 6) [80]. Adsorption energies of NO2 (−1.59 eV) and SO3 (−1.39 eV) were
investigated on Fe-doped vacancy-defected graphene [80]. Recently, Ni-doped vacancy-
defected graphene sheets were studied as toxic gases sensors considering the PBE func-
tional [89]. The computed results indicate that NO (−1.87 eV) and NO2 (−1.30 eV) were
strongly adsorbed on Ni-doped vacancy-defected graphene, while the SO2 (−0.36 eV)
and SO3 (−0.38 eV) gases were weakly adsorbed [89]. Finally, the CO and NO adsorption
on Pd-doped vacancy-defected graphene were computed using the PBE functional [60].
The computed adsorption energies of CO and NO molecules on Pd-doped vacancy-defected
graphene were higher than on single-vacancy and pristine graphene [60].
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Many theoretical studies have been conducted on the use of doped graphene as toxic
gas sensors. The results evidence that doped graphene sheets are good candidate materials
as gas sensors. To experimentally confirm some of the above-mentioned theoretical predic-
tions, various doped graphene materials have been synthesized and evaluated as toxic gas
sensors [103–108]. Based on experimental evidence, the sensitivity and selectivity of doped
graphene were higher than pristine graphene [103–107]. However, it is difficult to control
the doping concentration and the number of graphene layers. Hence, future trends should
be focused on the improvement of doped graphene gas sensors through novel, low-cost
industrially scalable techniques that allow to control the doping concentration and type
in graphene.
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6. Conclusions and Perspectives

This review presents a detailed and critical analysis of current progress of graphene-
based toxic gas sensors using first-principle methods. Following the development of
graphene as a gas sensor, it has gained considerable interest from both a theoretical and
a technological viewpoint. Therefore, modifications made to graphene to improve the
detection of CO, NOx, and SOx toxic gases were revised and analyzed in detail. Based on
this review, we concluded the following:

(a) The interaction between toxic gases and pristine graphene is weak, which reduces the
sensitivity and selectivity of pristine graphene toward the toxic gases.

(b) The pristine graphene decorated with transition metals is a promising material for use
in a toxic gas sensor. However, up to now these types of studies are still scarce; there-
fore, more theoretical studies on the sensitivity and selectivity of pristine graphene
decorated with transition metals toward the toxic gases should be carried out.

(c) It was observed that graphene with single-vacancy defects interacts stronger with
the toxic gases compared to pristine graphene. Therefore, it is a promising material
for use in toxic gas sensors. In addition to point defects, line or multivacancy defects
should be investigated at the DFT level, to enrich graphene functionalities.

(d) Bilayer and multilayer graphene exhibit higher different dimensionalities than single-
layer graphene, which can increase the number of possible defect types, namely,
point defects, line defects, and so on. At the theoretical level, more attention should
be paid to understanding stable bilayer and multilayer graphene with randomly
distributed defects.

(e) A large number of theoretical studies have addressed the use of doped graphene
as a toxic gas sensor. The evidence indicates that doped-graphene sheets are good
candidate materials. However, up to date, DFT studies on the selectivity of doped
graphene toward the toxic gases are limited. Therefore, more theoretical studies
on the selectivity of doped graphene toward the toxic gases should be carried out.
In addition, feasible approaches to facilitate the desorption of toxic gas on the doped
graphene surface should be investigated.

(f) The pyridinic-type N-doped graphene and doped vacancy-defected graphene are
good materials for use in toxic gases sensors. However, more DFT-based studies on
pyridinic-type N-doped graphene and doped vacancy-defected graphene as toxic gas
sensors are needed.

(g) The reasons for the difference of adsorption energy obtained by using different
functionals (e.g., GGA, LDA, PBE, and vdW-DF2) in the calculation methods should
be compared and analyzed.

(h) This review shows the importance of theoretical studies for the design of novel and effi-
cient toxic gas sensors. The theoretical results obtained up to now can help and motivate
experimental groups to design novel and efficient graphene-based toxic gas sensors.
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