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Abstract—Several variants of models for predicting the IC50 values of inhibitors of influenza virus neuramin-
idase are presented for both individual strains and also for combinations of data for neuraminidases of several
strains. They are based on the use of calculated energy contributions to the amount of change in the free
energy of enzyme-inhibitor complexes. In contrast to previous works, aimed at the complex modeling, we
added a procedure of comparison of the docking variants with one of the neuraminidase inhibitors, for which
the structure of the complexes was determined experimentally. Selection of reference molecules for the com-
parison of structure similarity was made using the Tanimoto metrics and the limit of the RMSD value for a
similar part of the structure was no more than 2 Å. Using this limitation and filtering datasets for a particular
strain by the Q2 value obtained in the leave-one-out control procedure it was possible to construct equations
for predicting the IC50 value with a Q2 value close to the minimum confidence threshold (0.57 in this work).
Taking into consideration that in this version of the prediction models, a minimum set of energy contributions
is used, which does not employ expensive calculations of entropy contributions, the result obtained supports
the correctness of using a generalized model based on the data on the position of known ligands to predict the
inhibition of neuraminidase of the influenza virus of various strains.
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INTRODUCTION
This work represents a logic continuation of our

earlier studies aimed at the development of models for
predicting the IC50value (concentration causing 50%
inhibition) for influenza virus neuraminidase inhibi-
tors [1–3]. The search for new anti-influenza drugs
continues. The need for them is dictated by the high
variability of the influenza virus, which leads to the
rapid emergence of viral drug resistance development
[4]. Currently, the inhibitors of neuraminidase of
influenza A and B viruses oseltamivir, zanamivir,
peramivir, and laninamivir are registered as second
generation drugs. The emergence of resistance has
been repeatedly shown in relation to these drugs [4], so
that the transition to the third and subsequent genera-
tions is inevitable. Despite the fact that the coronavi-
rus has noticeably reduced public interest in the influ-
enza virus, the problem of combating drug resistance
and the creation of universal drugs effective against
neuraminidase of various strains of the virus group still
requires its solution.

This work is based on the hypothesis of minimizing
the probability of (drug) resistance development in the
case when an inhibitor does not have a narrow speci-

ficity for a particular serotype, but binds with approx-
imately equally affinity to neuraminidases of all (or
most) strains, albeit with a lower affinity. In this case,
the most general calculated parameters, independent
of the choice of a specific neuraminidase variant,
should serve as a basis for creating predictive equa-
tions.

Earlier, we have shown that it is possible to con-
struct predictive equations based on a set of experi-
mentally determined (by X-ray structural analysis)
and modeled variants of the structure of neuramini-
dases of various strains [2]. In addition, it was shown
[3] that the use of the componentwise enthalpy contri-
butions to the change in the free energy of the com-
plex, calculated by the MMPBSA method [5], was
sufficient to create models that allow dividing the set
of ligands into weak, medium, and strong inhibitors.
This work considers the possibility of using a priori
information about the position of already known
ligands to improve the predictive power of the model.
In the process of modeling the complexes, we use the
molecular docking procedure. Its main problem is the
selection of an adequate solution. Frequently, the
closest solution to the observed solution does not
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match the best according to the scoring function. As a
rule, if we analyze the best 100 variants selected
according to the evaluation function, then there is one
close to the experimentally observed variant among
them. There is no other way to select from the list,
except by the magnitude of the evaluation function or
by the previously known position of individual struc-
tural groups. For example, for neuraminidase inhibi-
tors, this is the position of the COO- group or the
localization of a positive charge on the nitrogen atom.
The Protein Data Bank (PDB) contains a sufficient
amount of data on the position of individual ligands at
the binding site of various influenza virus neuramini-
dases [6]. After analyzing the pairwise similarity of one
of these molecules with the modelled ligand, it is pos-
sible to find common or similar parts of the structure
and estimate how close to the known ligands they are
located in the ligand/enzyme complex. This informa-
tion can be used to select the final version of the com-
plex because the complex structure is subsequently
optimized using molecular dynamics in which small
deviations do not play a significant role.

MATERIALS AND METHODS
The following data on the structure and inhibitory

activity (the IC50 value) of chemical compounds have
been used in this study: (1) a set of various low molec-
ular weight compounds active towards neuraminidases
from 5 strains A/Tokyo/3/67, A/tern/Austra-
lia/G70C/75, A/PR/8/34, A/Aichi/2/68 and
B/Lee/40 (221 potential complexes) [1]; (2) a set of
three known drugs (oseltamivir, zanamivir, peramivir)
active towards 30 neuraminidase variants:
A/teal/Hong Kong/W312/97, A/duck/Alberta/35/76,
A/duck/ Singapore/3/97, A/duck/Germany/1215/73,
A/turkey/Ontario/6118/68, A/shearwater/Austra-
lia/1/72, A/duck/Czechoslovakia/56, A/quail/Italy/
1117/65, A/duck/Memphis/546/74, A/turkey/Min-
nesota/916/1980, A/duck/Memphis/546/74, A/tur-
key/Minnesota/916/1980, as well as 8 variants of
mutations, A/duck/Memphis/546/74 plus 9 variants
of mutations (90 complexes) [2].

The general plan on modeling the complexes was
described earlier [2, 3]. Development of predictive
models was carried out using the parameters of the
complexes calculated by the MM-PBSA (MM-
GBSA) method. Data preparation, docking, and
molecular dynamics were performed using the Dock
6.9 [7] and Amber 18.0 [8] software (force fields
FF14SB and GAFF2). During each preparatory step
the simulation time for molecular dynamics was
0.5 ns. The final simulation was performed for a 1 ns
interval and 25 variants of the complexes were
recorded every 40 ps; using these data the averaged
values of the energy contributions to the change in the
binding energy calculated by the MM-PBSA (MM-
GBSA) method were obtained. The following set of
independent variables was used in the equations:
BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B:
molecular weight of the inhibitor; change in the mag-
nitude of electrostatic interaction (ELE); change in
the value of van der Waals interactions (VDW), as well
as hydrophobic (PBSUR) and solvation (PBCAL)
contributions to the change in free energy calculated
by the Poisson-Boltzmann (PB) method, similar con-
tributions calculated by the generalized Born method
(GB) (GBSUR and GB). Linear regression equations
were estimated by the value of Q2 in a cross-check pro-
cedure using the leave-one-out method.

An important difference of this work from the pre-
vious ones was the use of an additional criterion during
selection of a variant of the complex after docking.
The procedure included a number of sequential steps
(including preparatory ones):

(1) Selection of complexes of influenza virus neur-
aminidases from PDB with unique ligand structures.
In total, 12 structures were used in this study:
(PDBID: 2QWB, 1F8E, 1F8D, 3K37, 4KS4, 4KS1,
2QWF, 2QWD, 3CL0, 2QWE, 2SIM, 1INF). These
complexes included: sialic acid, aromatic inhibitors,
oseltamivir, zanamivir and their derivatives (Fig. 1).

(2) Spatial alignment of all complexes with known
ligands, as well as neuraminidase variants used as a
binding site during docking (Fig. 2).

(3) Each of the available molecular structures (a
total of 185 original compounds) was compared pair-
wise with each of the 12 structures selected at step 1.
Using the Instant JChem package (ChemAxon, Hun-
gary) [9], the common part of the molecular structure
was isolated and the degree of structure similarity was
determined (using the Tanimoto metrics).

(4) After the docking procedure, up to 100 variants
of the ligand position were saved. By calculating the
root mean square deviation (RMSD) between the
atoms of the coinciding part of the structure of the
candidate molecule and that of the 12 molecules with
which the candidate had the maximum similarity (or
identity), the best variant was selected. During the
selection process, the following parameters could be
varied: the cutoff value of the evaluation function (in
our work, the “Grid Score” value was no more than
‒20), the minimum value of the Tanimoto coefficient
(0.5), and the maximum allowable RMSD value (2 Å).

Calculations were performed using a hybrid high-
performance computing complex of the Federal
Research Center “Computer Science and Control” of
the Russian Academy of Sciences (FRC IU RAS) [10]
IBM based on CPU Power9 and graphics accelerators
Nvidia Tesla V100.

RESULTS AND DISCUSSION
The scheme for the selection of complexes used in

this work assumes that some of them will be discarded.
For example, Fig. 3 shows distribution of the maxi-
mum possible Tanimoto coefficient obtained by com-
paring 185 compounds from the total set with 12 inhib-
 BIOMEDICAL CHEMISTRY  Vol. 15  No. 2  2021
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Fig. 1. Twelve structures of influenza virus neuraminidase inhibitors with known positions the complexes with neuraminidases
deposited in the PDB.
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Fig. 2. An example of the spatial alignment of known neur-
aminidase complexes and the resultant superimposition of
ligands.

Fig. 3. Distribution of 185 compounds by the value of the
Tanimoto coefficient obtained by pairwise comparison
with ligands with a known position in the crystals of influ-
enza virus neuraminidase. Black fill shows the maximum
possible values obtained during comparison with all
12 structures, the unfilled shows comparison with osel-
tamivir.
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itors taken from crystal structures (for demonstration,
a comparison of the same compounds with one single
molecule, oseltamivir, is also given). It can be seen
that 20 compounds should be discarded already at this
stage, since they do not satisfy the condition that the
Tanimoto coefficient should be greater than 0.5. In
addition, docking may not find a solution at all, or the
cutoff by the given parameters, cannot yield any solu-
tion (RMSD is not more than 2 Å). The selection pro-
cedure resulted in selection of 252 out of 311 poten-
tially possible (167 for the first set and 85 for the sec-
ond one).

The main parameters of the equations for predicting
the IC50 value, or more precisely the value pIC50 =
‒log(IC50), built for various combinations of data
subsets, are presented in Table 1. High learning R2

values for set 1 can be the result of overlearning,
although it gives a very good result in the leave-one-
out cross validation test (in contrast to sets 2 and 4).
An equation with 7 independent variables and a con-
stant was always used as a starting point. In other
words, the number of observations should be at least
40, which is well demonstrated by such a parameter as

—averaged over 10 training procedures, when the
pIC50 values were mixed randomly. Simple pooling of
sets did not provide a significant improvement. How-
ever, the result became significant when only sets with
Q2 higher greater than 0.4 were pooled (set 1 + 3 +
5 + 7 + 8, Q2 = 0.57). Unfortunately, the quality of
the data collected from the literature cannot be reli-
ably confirmed, especially since the datasets them-
selves are often compiled from different sources pub-
lished by different research groups and at different
times. The sets 6, 7, and 8 represent another variant.

2
rmR
BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B:
The data were obtained by two groups of researchers,
but the problem with these samples consisted in the
narrow range of IC50 values.

Thus, we can conclude that the use of an additional
restriction in the selection of variants for the ligand
position after the docking procedure makes it possible
to obtain an adequate set of calculated parameters;
using these parameters it is possible to construct an
equation combining data on the inhibition of neur-
aminidases from various influenza virus strains. Inclu-
sion of data on inhibition of individual strains into a
total dataset is reasonable in the case of those datasets,
which demonstrate minimum acceptable result in the
leave-one-out test (e.g. they have Q2 value higher
than 0.4).
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Table 1. Parameters of pIC50 prediction linear regression equations obtained during training and the test results

 is R2 of learning; MSEL is mean standard error of learning; n—is the number of observation during learning (selected complexes);

 is averaged R2 in the test of random mixing of the dependent value; Q2 is Q2 of the model; MSELOO—is mean standard error for the
leave-one-out method; N is an optimal number of variables in the leave-one-out control (maximal 7 + constant). The set composition:
1—data on inhibition of the A/Tokyo/3/67 strain; 2—inhibition of the A/tern/Australia/G70C/75 strain; 3—inhibition of the
A/PR/8/34 strain; 4—inhibition of the A/Aichi/2/68 strain; 5—inhibition of the B/Lee/40 strain; 6—inhibition of 30 variants of influ-
enza virus A neuraminidase by oseltamivir; 7—inhibition of 30 variants of influenza virus A neuraminidase by zanamivir; 8—inhibition
of 30 variants of influenza virus A neuraminidase by peramivir.

Training set MSEL n Q2 MSELOO N pIC50 range

1 0.82 0.82 20 0.45 0.66 1.63 4 2.0 : 8.8
2 0.55 0.45 20 0.34 0.1 1.1 5 3.2 : 9.3
3 0.62 0.72 43 0.2 0.51 0.93 5 4.6 : 10.1
4 0.39 1.66 61 0.16 0.32 1.86 2 3.27 : 9.85
5 0.54 1.59 23 0.3 0.47 1.86 3 2.1 : 8.5
6 0.38 0.92 28 0.28 0.15 1.36 2 4.56 : 9.88
7 0.49 0.27 29 0.21 0.39 0.35 3 6.58 : 9.5
8 0.55 0.31 28 0.28 0.44 0.39 3 6.94 : 10.22
from 1 to 5 0.35 2.3 167 0.155 0.24 2.7 4 2.0 : 10.1
from 6 to 8 0.42 0.45 85 0.2 0.04 0.7 1 4.56 : 10.22
from 1 to 8 0.45 2.4 252 0.1 0.22 1.7 6 2.0 : 10.22
1 + 3 + 5 0.47 2.2 86 0.07 0.38 2.5 3 2.0 : 10.1
7 + 8 0.37 0.5 58 0.1 0.17 0.6 6 6.58 : 10.22
1 + 3 + 5 + 7 + 8 0.59 1.75 143 0.01 0.57 1.84 4 2.0 : 10.22

2
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rmR

2
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