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Abstract

We present a flexible, open source R package designed to obtain biological and epidemio-

logical insights from serological datasets. Characterising past exposures for multi-strain

pathogens poses a specific statistical challenge: observed antibody responses measured in

serological assays depend on multiple unobserved prior infections that produce cross-reac-

tive antibody responses. We provide a general modelling framework to jointly infer infection

histories and describe immune responses generated by these infections using antibody

titres against current and historical strains. We do this by linking latent infection dynamics

with a mechanistic model of antibody kinetics that generates expected antibody titres over

time. Our aim is to provide a flexible package to identify infection histories that can be

applied to a range of pathogens. We present two case studies to illustrate how our model

can infer key immunological parameters, such as antibody titre boosting, waning and cross-

reaction, as well as latent epidemiological processes such as attack rates and age-stratified

infection risk.

Author summary

Antibody levels can determine previous exposure to a pathogen and how likely individuals

are to be infected in the future. However, antibody concentrations change over time, and

some pathogens are continually evolving. In such cases, individuals may be infected and

vaccinated multiple times when their pre-existing immunity fails, leading to a wide range

of antibody profiles. Traditional approaches to analyse such data do not typically account

for this. In addition, studies collecting antibody data may be designed differently, but are

often underpinned by similar biological processes. We developed a statistical method and
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accompanying software package to better understand the immunology and epidemiology

of these complex systems using serological data. We present two case studies to demon-

strate how our software package, serosolver, can be applied to different settings: i) the epi-

demiology of the 2009 pandemic A/H1N1 influenza virus in Hong Kong and ii) historical

patterns of A/H3N2 influenza infection in Guangzhou, China. These results demonstrate

how modern analytical methods can reveal additional information from serological data

that is otherwise missed using traditional approaches.

Introduction

Serological assays measure the interaction of a virus with the antibody repertoire of an individ-

ual host [1]. Originally developed in the mid-20th century, assays based on haemagglutination

inhibition (HI) and viral neutralization (NT) are still widely used and demonstrate good intra-

laboratory reproducibility [2, 3]. These assays can be setup relatively easily once viral stocks are

in place, allowing antibody concentrations to be quantified quickly and inexpensively [4]. Usu-

ally, sera are diluted in successive 2-fold steps and mixed with a fixed amount of virus [4]. Inhi-

bition of viral activity at higher serum titres indicates a strong antibody response, whereas

failure to inhibit activity at the lowest titre indicates the absence of a significant response. The

longevity of antibodies make serological assays a key tool in epidemiological surveillance [5–8].

There are two common ways of interpreting antibody titres in serosurveillance: threshold

metrics and titre rises. When only a single sample is available for an individual, a threshold

titre for ‘seropositivity’ is often used as evidence of prior exposure or protection or both, for

example the commonly used HI titre threshold of 1:40 for influenza [4, 9, 10]. When serum

samples encompassing a window of known strain circulation are available, a� 4-fold rise in

antibody titre is usually interpreted as exposure to that strain [4]. Samples taken before and

after an influenza season for which the main circulating strain is known can therefore be used

to infer attack rates [11–13]. Given that there is a degree of subjectivity when interpreting the

serum dilution series, a� 4-fold difference, within a 2-fold dilution scheme, is deemed to be

more robust against human error than a� 2-fold difference in assessing the presence of hae-

maglutination (for HI) or cell death (for NT) in each well of the assay plate [14, 15]. However,

a Bayesian analysis of titre rise data suggested that the somewhat arbitrary 4-fold rise misses a

substantial number of infections that result in lesser titre rises [16]. Individual-level differences

in age, infection history, time between exposure and measurement, and virus-specific effects

likely all play a role in generating sub-4-fold titre rises [17–19].

Cross-reactivity complicates the interpretation of serological results when an individual

may have been exposed to two or more antigenically related viruses. Two pathogens are con-

sidered antigenically related if exposure to one generates a cross-reactive antibody response to

the other in a serological assay. For example, antibodies generated in response to infection

with one dengue virus serotype can cross-react to viruses of another serotype [20], as well as

other flaviviruses such as Zika virus [21, 22]. Moreover, lineages of successive circulating influ-

enza A strains cross-react with their precursors and progeny of the same subtype [23].

Interpretation of data from panels of cross-reacting strains has improved through antigenic

cartography: a method to reduce complex tables of HI readings for novel viruses and reference

antisera to two dimensional space visualised as an ‘antigenic map’ [20, 24, 25]. An individual’s

entire antibody repertoire against an antigenically variable pathogen can then be projected as a

surface over these antigenic maps, with the height of the surface indicating the expected titre

for that individual against a strain at any location in the map [26]. These ‘antibody landscapes’
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can be used to generate biological insight by investigating how antibody profiles develop over

an individual’s life [27].

Recently, there have been a number of initiatives to refine analyses of serological data.

Mathematical models that harness the qualitative predictability of the post-exposure antibody

response (boosting and subsequent waning of antibody levels) retain much of the information

inherent in antibody titres that is otherwise lost using threshold or 4-fold rise metrics, enabling

improved inference of unobserved single infections [28]. These methods have been applied in

a number of human and wildlife disease systems to understand antibody waning rates and

population trends in infection [13, 29–33]. However, dynamical models for antigenically vari-

able pathogen systems with the potential for multiple exposures and cross-reactive antibody

responses have been somewhat neglected until recently [27, 34–36].

Here, we present the R package serosolver, which is the latest version of a code base devel-

oped to increase the epidemiological insight available from serological assays [27, 37]. The ser-
osolver package takes assay results from one or more serum samples for an individual, which

may have been tested against one or more related viral strains, and infers a history of infections

for that individual that is consistent with the observed titres. It can jointly estimate the parame-

ters for the antibody kinetics model by simultaneously inferring infection histories for many

people. Our approach introduces a number of refinements over existing methods designed to

support modelling of multi-season, antigenically variable pathogen systems, including a well-

defined statistical framework to represent multiple exposures and the inclusion of cross-reac-

tive antibody responses. We use a Bayesian approach and obtain samples from the joint poste-

rior distribution of infection histories and antibody kinetics parameters. The required

assumptions for some priors are straightforward and may incorporate previously observed

immunological phenomena. Prior assumptions for infection histories and the process that

generates them can also be incorporated, but require additional justification, as we shall

discuss.

First, we outline how the joint posterior distributions for antibody kinetics parameters,

individual infection histories and the time-varying probability of infection in the population

are flexibly implemented in the serosolver package. We then show how the package can be

applied to cross-sectional and longitudinal influenza data from mainland China and Hong

Kong to infer key epidemiological and immunological values.

Methods

Approach

The methods underpinning serosolver are motivated by the following base assumptions: (i)

antibody titres may be measured using serum samples taken at some point in time; (ii) these

antibody titres are an incomplete observation of true, underlying antibody levels that undergo

a dynamical process following infection; (iii) these underlying antibody kinetics arise from the

culmination of repeated exposures to antigenically related or identical pathogens. The aim is

infer the combination of infections at different times or with different strains that are most

consistent with observed antibody titres. In the main text, we describe how this system is

implemented specifically for the subsequent case studies on influenza. S1 Text describes the

framework in a more generalised form as a reference for future development of serosolver to

other disease systems.

We frame the overall inference challenge as obtaining estimates for the joint posterior dis-

tribution of antibody kinetics parameters (Θ), individual infection histories (Z) for all n indi-

viduals in the sample, and the time-varying probability of infection in the population (Φ)

across m possible discrete infection periods given an observed serological dataset (Y, which
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may include assay measurements against one or more strains). This distribution, P(Z, Φ, Θ|Y),

is comprised of three components:

1. The combined observation and antibody kinetics models f(Yi|Zi, Θ), which give the likeli-

hood of observing a set of titres Yi for each individual i at discrete serum sampling times (ti)
given infection history Zi and the antibody kinetics parameters Θ;

2. The infection history model P(Zi,j|Fj), which gives the probability of individual i having

been infected with strains circulating in each discrete time period j when infection might

have occurred (between time jmin and jmax), conditional on the time-varying population

infection probabilities Φ;

3. The prior probabilities of the antibody kinetics parameters, P(Θ), and the prior probability

of any infection in each discrete time period j, P(Fj).

P (Z;©;£jY ) /
nY

i=1

³

Serum samples
taken at a subset
of all time periods

z}|{Y

t2ti

f(Yi;tjZi;£)| {z }
(i) Observation

and antibody kinetics
models

)

Infection history for all
possible infection times

or strains
z }| {
jmaxY

j=jmin

P (Zi;jj©j)| {z }
(ii) Infection
history model

P (©j)
´
P (£)

| {z }
(iii) Priors on infection

probability and
antibody kinetics

parameters

ð1Þ

In each discrete time period, j, we assume that there is only one strain that circulates. Refer-

ence to j therefore refers to both the time period itself and the index of the strain that circulated

during that time. Treating time as discrete differs to some previous approaches which model

infection times as continuous variables [13, 35]. The time resolution of j can be set when run-

ning serosolver depending on the amount of data; using only one possible infection period

(m = 1) is conceptually similar to an analysis of seropositivity, whereas choosing m to represent

many small intervals of time (e.g. months) becomes conceptually similar to continuous time.

Antibody kinetics model

For a given individual infection history and set of biological parameters, the antibody kinetics

model generates a set of expected log titres for that individual against all possible test strains.

These antibody titres are observed at only a subset of times for which serum samples are avail-

able, and the model-predicted antibody titres across all times are therefore referred to as latent

antibody titres. Although other functions for f(Yi,t|Zi, Θ) may be implemented and used with

only minor modifications to the code, the model used here follows previous work [27]. The

expected log titre individual i has against the strain that circulated during discrete time period

j when observed at time t (Xi,j,t) is defined as a linear, deterministic combination of contribut-

ing antibody responses from each prior infection:

Xi;j;t ¼
X

k2Zi

Zi;k sðZi; kÞ½mldlðj; kÞ þ mswðt; kÞ dsðj; kÞ� ð2Þ

The model components are defined by:

1. Long-term boosting defined by a parameter μl, giving the expected persistent rise in titre

against a homologous strain following primary infection.
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2. Short-term boosting. The transient component of the antibody kinetics model defined by

μsw(t, k) = μs max{0, 1 − ω(t − k)}, where μs is the boost in homologous titre, ω is a waning

parameter to be fitted, and t − k is the time since infection with strain k.

3. Cross-reactive antibody responses from related strains. We assume the level of cross-reac-

tion between a test strain j and infecting strain k 2 Zi decreases linearly with antigenic dis-

tance (defined below) [24]. The cross-reaction functions are dl(j, k) = max{0, 1 − σl δj,k} and

ds(j, k) = max{0, 1 − σs δj,k} for the long-term and the short-term boosts respectively. δj,k is

the antigenic distance between strains j and k, and σl and σs are fitted parameters.

4. Antigenic seniority from boosting suppression. This results in lower titre boosts from later

compared to earlier infections. In the model, the contribution of an exposure is scaled by s
(Zi, k) = max{0, 1 − τ(Nk − 1)}, where Nk is the infection number (i.e. primary infection is 1,

secondary is 2) and τ is a fitted parameter.

In the model, the antigenic distance δj,k between strains j and k is defined by a matrix of

pairwise distances in an antigenic map. δj,k = 1 if serum from a naive ferret infected with strain

k gives a titre against strain j one log unit lower than against the homologous strain k [24]. The

serosolver model can accommodate antigenically varying strains (all δj,k are specified) or a sin-

gle homologous strain (all δj,k = 0). The extent to which strains are antigenically distinct or

similar can be specified by the distance matrix.

The antibody kinetics model can be reduced to simpler models by setting certain parameter

values equal to 0. These nested sub-models allow hypothesis testing to distinguish between

immunological mechanisms. For example, a model without antigenic seniority can be created

by setting τ = 0 or a model with only waning responses by setting μl = 0. In addition, serosolver
can be extended to include more complex antibody kinetics (e.g. boosting that scales as a func-

tion of pre-existing titre), as described in S2 Text. We note that the additional immunological

phenomena described in S2 Text are not exhaustive, and additional mechanisms may be easily

implemented by making minor modifications to the package code.

Observation model

The expected titre Xi,j,t defined in Eq 2 feeds into the observation model. For HI and NT titres,

this necessitates conversion of continuous latent titres into discrete observations. The distribu-

tion of the observed titre consists of a normally distributed random variable g(s) with mean

Xi,j,t and variance ε, which is then censored to account for integer-valued log titres in the

assay. Hence the probability of observing an empirical titre at time t within the limits of a par-

ticular assay Yi,j,t 2 {0, . . ., Ymax} given expected titre Xi,j,t for individual i measured against

strain j at serum sampling time t is:

PðYi;j;tjXi;j;tÞ ¼ f ðYi;j;tjZi; θÞ ¼

R Yi;j;tþ1

Yi;j;t
gðsÞds if Yi;j;t 2 f1;Ymax � 1g ;

R 1

� 1
gðsÞds if Yi;j;t ¼ 0 ;

R1
Ymax

gðsÞds if Yi;j;t ¼ Ymax :

8
>>>>><

>>>>>:

ð3Þ

There are additional options in serosolver to include strain-specific measurement bias, which

may arise through strain-specific differences in assay reactivity [26, 38, 39]. Specifically, an

additional observation error is added to the predicted log antibody titres; this measurement

error can be different for each individual strain or can be specified for a group (or cluster) of
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strains. The predicted titre X0i;j;t taking into account strain-specific measurement bias is:

X0i;j;t ¼ Xi;j;t þ Pj ð4Þ

where Pj is the measurement offset for strain j. Pj may be estimated as independent parameters

for each j, or may be assumed to come from a hierarchical distribution rj � N ð�r; s2
x
Þ. Pj may

also be fixed for particular strains/groups e.g. fixing �r ¼ 0 or rjmax
¼ 0.

Infection history model

Each individual’s infection history is tracked by serosolver as a vector of binary latent states

indicating the presence (1) or absence (0) of infection within each unit of discrete time. Zi =

[Zi,1, Zi,2, . . ., Zi,j�t] represents a vector of infection states that could have occurred at or before

the time a serum sample is taken during interval time t. The set of infection histories for the

sample population is therefore described by a binary matrix, Z = [Z1, Z2, . . ., Zn]. Each row of

the matrix represents an individual, i, and each column represents a time, j, at which an indi-

vidual could be infected once. The likelihood for the infection history model, P(Z|Φ)P(Φ), is

given by:

PðZjΦÞPðΦÞ ¼
Yn

i¼1

Yjmax

j¼jmin

PðZi;jjFjÞPðFjÞ ð5Þ

where each infection event, Zi,j, is the outcome of a single Bernoulli trial with probability

PðZi;jjFj ¼ �jÞ ¼ �
Zi;j
j ð1 � �jÞ

ð1� Zi;jÞ. A value of zi,j = 1 indicates that individual i was infected in

discrete time period j and zi,j = 0 indicates that they were not. The choice of the prior distribu-

tion for the probability of infection, P(Fj), is discussed below and in further detail in S1 Text.

The time resolution of infection times may be set by the user depending on the data: frequent

serum sampling times affords greater time resolutions (e.g. months), whereas less frequent

sampling may be better suited to cruder time resolutions (e.g. years).

The infection history posterior can be used to calculate the population attack rate over time.

Attack rates can be inferred through combining estimated infection histories post-hoc to esti-

mate the proportion of at risk individuals that were infected in a given time period. Summing

the columns of the infection history matrix gives the total number of infections for a given

time period, whereas summing the rows give the total number of lifetime infections for an

individual. To ensure biological plausibility, individual infection histories are constrained to

prevent infections before an individual is born and after the last time at which a serum sample

was taken. A key feature of the package is that the user is given control over the prior assump-

tions for the infection history and the probability of infection during each time period

(months, years etc).

User inputs

Data. The serosolver package requires a dataset of individual-level log titres. Each individ-

ual may have repeat titre measurements from one or more serum sampling times, t (i.e. when

each serum sample was collected), against viruses that may have circulated at each discrete

time period j (i.e. when the strain was originally isolated).

The initial development of serosolver focused on influenza A/H3N2, which has circulated in

human populations since 1968 and has undergone substantial antigenic evolution over this

time [24, 39–41]. Fig 1 illustrates how our analytical approach applies to influenza A/H3N2. In

serosolver, a key but non-essential input to the framework is therefore an antigenic map: a data
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Fig 1. Conceptual overview of the analytical approach used in serosolver, as applied to influenza A/H3N2. Top

panel: antigenic map for influenza A/H3N2 using coordinates from [24], with different viruses coloured by year of

isolation. Solid points show centroids across all strains isolated in a given calendar year, hollow points show individual

strains. Dashed line shows an antigenic summary path, generated by fitting a smoothing spline through the observed

isolates. Points further apart in space are less cross-reactive. Middle panel: conceptual illustration of the antibody

kinetics model. An individual is infected with the orange virus, which results in boosting and waning of homologous

antibody titres. In parallel, antibodies that cross react with viruses at different points in antigenic space also boost and

wane (purple and blue viruses). The individual is later infected by the purple virus, which leads to further boosting and

waning of antibodies. Bottom panel: HI titres measured from serum samples taken at different times capture different

parts of the homologous and cross reactive antibody kinetics. Different sampling strategies will represent different

subsets of these measurements e.g. a cross-sectional study might inform a single subplot, whereas a longitudinal study

might inform just the orange bars from each of the three subplots. Clearly a sampling strategy with multiple serum

samples and many viruses tested per sample will provide the most information.

https://doi.org/10.1371/journal.pcbi.1007840.g001
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structure describing the two-dimensional location of viruses in antigenic space that circulated

at each time point during the period of interest (specifically, an x and y coordinate for the

strain that circulated in each time period j). This map is used to calculate the pairwise antigenic

distance between any two viruses (i.e. δj,k in the antibody kinetics model, for strains j and k).

Not all disease systems or epidemiological problems require an antigenic map. For example,

the map may be considered equivalent to a single point when the pathogen of interest shows

no antigenic variability over time. A model with only one circulating antigenic variant may

therefore be specified by using a null input for the antigenic map argument.

Prior assumptions. We take a Bayesian approach in serosolver, meaning that priors must

be defined for all model parameters and infection histories. The priors on the antibody kinetics

parameters are uniform by default, but users may create their own prior function, which may

be based on previous analyses. For example, constrained estimates for the short-term antibody

waning parameters may be used to specify strong beta or Gaussian priors on antibody kinetics

parameters.

Priors on the infection histories require more consideration, because the prior also captures

any assumptions regarding the infection generating process. Because the number of potential

infection times and strains can be vast, the contribution of the infection history prior must be

well characterised to avoid any unforeseen bias during inference. The prior assumption on the

functional form of Φ, whether individual infection risks are independent at a given time j, and

whether an individual’s risk of infection depends on infection outcomes at previous times can

have important implications for the prior on key infection history summary metrics, such as

the attack rate in a given time period and the lifetime number of infections for an individual.

There are four infection history prior options in serosolver. We summarise these priors here

and discuss their trade-offs in the Results section through simulation-recovery experiments,

though an extensive discussion of their derivation is provided in S1 Text.

Prior 1, hyper-prior on the probability of infection in each time period j. Under this prior,

the probability of infection is given byFj as in Eqs 1 and 5. The infection generating process is:

zi;j � Bernoullið�jÞ ð6Þ

�j � hðjÞ ð7Þ

where h is a user specified function describing the prior distribution on Φ, P(Fj). By default, h is

the uniform distribution, ϕj* unif(0, 1), though it may be set to incorporate information related

to transmission such as seasonality or changes in social behaviour.

This prior is appropriate when Φ is itself of interest and when a distinct user-specified

prior, P(Fj), is desired for each possible infection j. Markov chain Monte Carlo (MCMC) mix-

ing under this version is relatively slow given the correlation of each Fj and
Pn

i¼1
Zi;j, and this

prior is therefore most suited when P(Fj) is well informed and the number of potential infec-

tion periods is small.

Prior 2, beta prior on the probability of infection in each time period j. As in prior 1,

this prior assumes that individuals are under a common infection process during a given win-

dow of time. The infection generating process is:

zi;j � Bernoullið�jÞ ð8Þ

�j � Betaða;bÞ ð9Þ
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By choosing a beta prior on Fj with parameters α and β, using the analytical solution for the

integral over values of Fj allows the infection history likelihood to be simplified:

PðZÞ ¼
Ym

j¼1

Z 1

0

Yn

i¼1

PðZi;jjFj ¼ �jÞ

 !

PðFj ¼ �jÞd�j ð10Þ

¼
Ym

j¼1

Z 1

0

�
kj
j ð1 � �jÞ

ðnj � kjÞPðFj ¼ �jÞd�j ð11Þ

¼
Ym

j¼1

Bðkj þ a;bþ nj � kjÞ
Bða; bÞ ð12Þ

where B is the beta function; kj ¼
Pnj

i¼1 Zi;j is the total number of infections during time period

j; and nj is the number of individuals that could be infected during time period j. Eq 1 may

then be changed to:

PðZ;Φ;ΘjYÞ /
Yn

i¼1

Y

t2ti

f ðYi;tjZi;ΘÞ

 !

PðZÞPðΘÞ ð13Þ

Under this prior, the prior on the per-capita attack rate is beta distributed and the prior on

the lifetime number of infections for any individual follows a binomial distribution. This ver-

sion is suitable when individuals are assumed to be under the same infection generating pro-

cess (e.g. in the same location) as in prior 1, but where faster MCMC mixing and convergence

is required. For example, when the number of potential infection times is large, this prior sig-

nificantly improves mixing by integrating out each Fj. We have also found that this prior gives

unbiased attack rate estimates when titre data are sparse and the number of individuals is

large.

Prior 3, beta-binomial prior on the total number of infections during an individual’s

life. Unlike priors 1 and 2, this prior assumes that an individual’s risk of infection at a given

time is independent of all other individuals. Rather, a prior is placed on the total number of

infections that an individual is expected to experience over the course of their life. This is the

prior used in our previous work [27]. The infection generating process is assumed to be:

zi;j � BernoulliðliÞ ð14Þ

li � Betaða; bÞ ð15Þ
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Similar to prior version 2, the infection history likelihood may be simplified by integrating

over Λi:

PðZÞ ¼
Yn

i¼1

PðZiÞ ð16Þ

¼
Yn

i¼1

Z 1

0

PðZijLi ¼ liÞPðLi ¼ liÞdli ð17Þ

¼
Yn

i¼1

Z 1

0

l
ki
i ð1 � liÞ

mi � kiPðLi ¼ liÞdli ð18Þ

¼
Yn

i¼1

Bðaþ ki; bþmi � kiÞ
Bða; bÞ ð19Þ

where B is the beta function; ki ¼
Pmi

j¼1
Zi;j is the total number of infections experienced by

individual i; and mi is the number of time periods that individual i could be infected in. The

posterior distribution can then be written as in Eq 13.

The prior on the per-capita attack rate across all individuals therefore follows a binomial

distribution, and the prior on the lifetime number of infections for any individual follows a

beta-binomial distribution, with parameters α and β that can be set by the user. This prior is

suitable when individuals can be assumed to be under different infection generating processes

but still share antibody kinetics parameters. This version can give the quickest convergence

and most efficient chain mixing when there is a relatively small number of individuals with a

large amount of antibody titre data.

Prior 4, beta prior on the probability of any infection. In the final prior version, infec-

tion states are assumed to be independently and identically distributed with respect to both

time and individual under the following infection generating process:

zi;j � Bernoullið�Þ ð20Þ

� � Betaða; bÞ ð21Þ

and the marginal likelihood of Z is:

PðZÞ ¼
Z 1

0

Ym

j¼1

Yn

i¼1

PðZi;jjF ¼ �Þ

 !

PðF ¼ �Þd� ð22Þ

¼
Bðkþ a; bþ nm � kÞ

Bða; bÞ
ð23Þ

where B is the beta function; k is the total number of infections across all years and individuals;

and nm is the total number of possible infection events.

This assumption places a beta-binomial prior on both the number of infections at a given

time j (the attack rate) and the number of lifetime infections experienced by individual i. This

prior is suitable when weakly informative priors are desired on both attack rates and total life-

time infections per individual, and where there are a small number of individuals and small

amount of titre data in the sample.
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Posterior sampling. We implemented a custom, adaptive MCMC framework in serosol-
ver to sample from the joint posterior distribution of Θ and Z conditional on the antibody titre

data Y (Eq 1). The package jointly estimates Θ and Z using a Metropolis-Hastings algorithm,

alternating between sampling values for Θ and Z. The MCMC framework automatically tunes

the proposal step size for Θ, and changes the number of individuals sampled for Z to achieve a

specified acceptance rate. Because MCMC sampling of binary variables is a challenging prob-

lem in large dimensions [42, 43], serosolver includes custom proposal steps for Z to improve

chain mixing. The full sampling algorithm for Z is described in S1 Text. Briefly, the algorithm

uses a random-scan Metropolis-within-Gibbs proposal on infection histories to either propose

new infection states or swap the times of existing infection states. These steps were developed

to improve MCMC mixing when the infection states in adjacent time periods may be highly

correlated. In the event that automated tuning is insufficient to achieve good mixing, all of the

parameters controlling the proposal algorithm are exposed to the user to be changed manually

from their default values.

MCMC diagnostics. To ensure reliable MCMC model fitting, thorough convergence

diagnostics should be calculated to ensure that separate MCMC chains have converged on the

same distribution, are not trapped in local modes and provide estimates of the posterior distri-

bution with sufficient sample size. Functions to test these criteria fall into two broad categories:

(i) visual assessment of convergence and goodness of fit; (ii) metrics of convergence checking

between-chain agreement, auto-correlation and effective sample size. Alongside existing tools

in the coda and bayestools packages [44, 45], these functions include: MCMC trace and density

plots for antibody kinetics parameters; MCMC trace and density plots for inferred attack rates

over time; MCMC trace and density plots for inferred infection histories; model predicted

titres plotted against observed titres; and inferred attack rates over time. MCMC chain outputs

are written to disk during the fitting procedure, and the chain outputs are compatible with the

coda and bayesplot R packages. The full posterior distribution of infection states as augmented

data is therefore easily recoverable for further analysis, for example, for regression analysis of

numbers of infections during some period of time.

Implementation

In serosolver, model inputs and assumptions may be changed depending on the serological

data and hypotheses under consideration. For example, in some cases the user may be most

interested in short-term, fine-scale (e.g. weekly or monthly) dynamics of infection; in other

situations, long-term annual dynamics may be of interest. Furthermore, although much of the

development of this package came from analysis of influenza A/H3N2 dynamics, these con-

cepts and inputs are easily adaptable to antigenically stable pathogens by specifying a null anti-

genic map.

The package work flow is divided into a number of distinct stages, which handle the data

and parameter inputs, simulation, inference, posterior diagnostics, and analysis (Fig 2). We

developed the package to rely on only a few function calls for each of these stages, but with

ample room for customisation and flexibility at each stage.

To set up the model, users only need to provide: a data frame describing the model parame-

ters (they can also change a flag to fix or estimate any of the parameters); a data frame with the

antibody titre data in long format; and (optionally) an antigenic map describing the antigenic

relationship between each strain. A null argument may be specified for the antigenic map

when modelling only a single circulating antigenic variant. Examples of a typical data cleaning

workflow are provided in S4 Text.
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Users may create their own likelihood and prior functions on top of those provided by

default, requiring only that they return a vector of likelihoods (one per individual), and accept

arguments for a vector of parameters (matching those defined in the general serosolver model)

and the infection history matrix. Users can specify which prior assumption about infection his-

tories is used, as specified above. In addition to the range of inbuilt options, the modular work-

flow of serosolver means that custom extensions tailored to particular problems should be

readily achievable with only minor modifications to the code. In particular, alternative anti-

body kinetics models that capture pathogen-specific immunology and alternative assumptions

about the infection history generating process.

Because of the complex nature of these Markov spaces, it is usually important to run multi-

ple chains when using the Metropolis-Hastings MCMC algorithms implemented by serosolver.
Multiple chains from different starting locations in the space help to detect convergence issues

arising, for example, from multi-modal posterior distributions. Furthermore, model compari-

son and sensitivity analyses are a common output of model fitting analyses. It is simple to use

serosolver with a parallel back-end, either through a computing cluster or locally with packages

such as doParallel [46]. The accompanying vignettes (S3 and S4 Text) demonstrate how multi-

ple chains may be run in parallel locally, but we note that much of our own work with serosol-
ver is done using a computing cluster.

Results

Infection history priors

Fig 3 compares infection history metrics simulated from models under the different infection

history priors compared to the analytical probability mass functions for the total number of

infections per unit time j and per lifetime of individual i. These results highlight the contribu-

tion of different prior assumptions on inferred attack rates, total number of lifetime infections

and accumulation of an infection history with age. The ability of each of the different priors to

recover known antibody kinetics parameter values, infection histories and attack rates is dem-

onstrated in S1 Text using simulation-recovery experiments with different sero-survey designs

Fig 2. Inputs and outputs for the serosolver R package. Users input the serological data to be fitted, an antigenic map if considering an antigenically

variable pathogen, the infection history prior and any priors on the antibody kinetics parameters. These inputs feed into the process model that can

either be used to simulate data by itself, or combined with observed data and MCMC to obtain three posterior outputs: individual-level infection

histories, population probabilities of infection, and antibody kinetics parameters. Once these posteriors have been obtained, serosolver can run MCMC

diagnostics and plot key immunological and epidemiological processes.

https://doi.org/10.1371/journal.pcbi.1007840.g002
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under various infection history prior assumptions. Datasets may be rich in different dimen-

sions (e.g. number of individuals vs. number of viruses tested), which leads to different infer-

ential power for different quantities. S1 Table summarises each of these priors and the

situations when each one is advised.

The different shapes and widths of the distributions in Fig 3 demonstrates how different

prior forms may lead to strong assumptions about an individual’s infection history. Here, a

beta prior was used with α = β = 1 in all of these examples (equivalent to a uniform distribu-

tion), though priors of different shapes may be set by specifying different values for α and β as

shown in S1 Fig. Under prior versions 1 and 2, this assumption leads to a highly constrained

binomial prior on the total number of lifetime infections with mean mα/(α + β) (Fig 3A), but a

uniform prior on the attack rate in each time period j (Fig 3B). Conversely, under prior version

3, the prior on the total number of lifetime infections follows the beta-binomial distribution,

which is uniform under these values, whereas the attack rate prior follows the binomial distri-

bution with mean nα/(α + β) (Fig 3D&3E). Both the total number of infections per unit time

and total number of lifetime infections are uniformly distributed under prior version 4 (Fig

3G&3H).

Fig 3. Simulated vs. analytical infection history prior metrics (α = β = 1). Bars show density histograms of

infections from 10,000 simulated infection histories for 100 individuals across 42 infection periods. Red lines show

known probability mass function. Plots A, D and G show the prior on the total number of infections per discrete time

period j. Plots B, E and H show prior on the total number of lifetime infections per individual. Plots C, F and I show

the prior on the cumulative number of infections across 42 time periods for one individual. Black line shows prior

median, dark gray region shows 50% credible intervals and light gray region shows 95% credible intervals. Note that

priors 1 and 2 are equivalent under these assumptions.

https://doi.org/10.1371/journal.pcbi.1007840.g003
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Computational performance

The serosolver code uses a C++ back-end with substantial optimisation to scale the model to

large datasets and high infection time resolutions with reasonable run times. Table 1 displays

the mean run time of 5 MCMC chains fitting the serosolver model to serological data of differ-

ent dimensions. In the most complex scenario, which involves fitting the model to 164,000

antibody titre measurements and inferring the infection state of 1000 individuals at 164 differ-

ent time points (164,000 infection states), effective sample sizes >200 are achievable for both

the antibody kinetics parameters and attack rate estimates in <12 hours. For smaller scale

analysis (e.g. 100 individuals, <5000 titres), high effective sample sizes and well-mixed chains

are easily generated within 30 minutes.

Case study results

We present two case studies to highlight the range of insights that serosolver can generate from

serological samples. These cover two types of study designs commonly used to examine epide-

miological and immunological dynamics using serological data, which can be thought of as

subsets of the observations shown in Fig 1, bottom panel. The first is a serological survey test-

ing individuals against a single homologous strain, which can reveal short-term epidemic

Table 1. Comparison of run time and posterior sampling efficiency across a range of serosurvey designs.

Case

study

Number of

individuals

Mean run-time

(minutes)

Number of observed

titres

Number of time

periods

θ ESS Z ESS θ ESS per

minute

Z ESS per

minute

1 100 6.41 400 4 1020 5030 159 784

1 100 6.88 400 8 998 41000 145 5960

1 100 7.87 400 16 871 4650 111 591

1 500 13.8 2000 4 1020 545000 73.9 39500

1 500 14.8 2000 8 1000 25800 67.7 1740

1 500 16.8 2000 16 849 3840 50.5 229

1 1000 22.7 4000 4 981 1040000 43.2 45700

1 1000 26.9 4000 8 987 22000 36.7 817

1 1000 31.4 4000 16 913 4540 29.1 145

2 100 12.2 800 41 2030 2990 167 245

2 100 18.8 4100 41 1360 1980 72.4 105

2 100 19 800 82 1190 2400 62.4 126

2 100 34.2 8200 82 1070 1660 31.3 48.6

2 100 37 800 164 1980 2470 53.5 66.9

2 500 38 4000 41 1730 1860 45.4 48.9

2 500 51.2 4000 82 1630 2500 31.8 48.8

2 500 72.3 20500 41 1600 651 22.1 9.01

2 1000 73.6 8000 41 1580 910 21.4 12.4

2 500 78.6 4000 164 1550 2420 19.7 30.8

2 100 87.8 16400 164 846 2100 9.63 23.9

2 1000 90.4 8000 82 1550 2050 17.2 22.7

2 500 150 41000 82 925 478 6.17 3.19

2 1000 153 41000 41 1530 555 9.99 3.63

2 1000 182 8000 164 1250 2270 6.89 12.5

2 1000 327 82000 82 926 213 2.83 0.65

2 500 346 82000 164 553 837 1.6 2.42

2 1000 674 164000 164 310 416 0.46 0.618

https://doi.org/10.1371/journal.pcbi.1007840.t001
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dynamics, analogous to observing each of the bars of a single colour from Fig 1. We use data

from a longitudinal study conducted in Hong Kong between 2009 and 2011 to estimate short-

term antibody kinetics parameters against A/H1N1pdm09 in a population with limited prior

immunity [47]. The second type of study design involves testing samples against a panel of pre-

viously circulating strains, which can provide insights into historical patterns of infection,

analogous to observing all of the bars within a single serum sample from Fig 1 [37, 48]. To

illustrate this application, we apply the package to cross-sectional samples tested against a

panel of historical A/H3N2 influenza strains to infer infection histories and antibody kinetics

[37, 48].

Case study 1. The first case study uses data from a cohort study in Hong Kong during and

after the 2009 A/H1N1pdm09 outbreak [47]. With repeat serological samples tested against a

given virus, serosolver can reconstruct the unobserved infection dynamics from measured

titres collected several months apart. It is also possible to examine these infection dynamics

stratified by available demographic variables, such as vaccination status (Fig 4A) and age (Fig

4B). Fig 4C shows example model fits to the observed antibody titres. Finally, we can estimate

biological parameters shaping the short-term antibody response (Fig 4D).

We estimated quarterly exposure rates, which could include either infection or vaccination.

The inferred peaks in exposure rates are consistent with the observed two waves of the 2009

pandemic [47]. Constrained estimates of high incidence were obtained for Q4 2009. The fol-

lowing period of elevated incidence but with high uncertainty in early 2010 reflects the gap

between the second and third round of serum sampling; further antibody boosts were detected

in this period, but the exact quarter could not be determined.

We investigated the impact of vaccination status and age on inferred exposure rates, finding

differences in exposure rates in vaccinated individuals (n = 113) compared to unvaccinated

individuals (n = 307). Inferred boosting rates were almost identical between vaccinated and

unvaccinated individuals up to and including Q4 2009. However, higher overall exposure rates

in vaccinated individuals were inferred from Q1 2010 onward (Fig 4A). Additionally, we

observed clear differences in age-stratified exposure rates of unvaccinated individuals (Fig 4B),

with exposure rates highest among children (<19 years old, n = 30) and adults (19-64 years

old, n = 264), and lowest among the elderly (>64 years old, n = 17), confirming previous find-

ings of age-stratified exposure rates during the 2009 pandemic [49]. Some of the inferred infec-

tions in Q1 2009 may represent pre-existing baseline titres rather than infections with A/

H1N1/pdm09.

The pandemic vaccine was available from December 2009, and this increase in inferred

boosts from Q1 2010 may therefore capture pandemic vaccine-derived responses. Intuitively,

we would expect infection rates to be lower in vaccinated individuals; however, the converse

suggests that vaccination caused additional antibody boosting. It is unlikely that these detected

boosts represent true infections, as the vaccinated cohort had a larger proportion of older indi-

viduals, who likely experienced lower infection incidence (Fig 4B). Vaccination around the

first sampling round was predominantly with the older 2009/10 seasonal vaccination, which

was unlikely to elicit a novel antibody response (rather than a memory-derived response)

effective against the antigenically dissimilar pandemic virus.

We aimed to characterise the short-term immune response following infection by estimat-

ing long and short-term antibody kinetics parameters. We found that there is a strong short-

term average boost (μs) of 2.59 (posterior median; 95% CI: 2.19-2.86) log titre units followed

by a persistent long-term boost (μl) of 3.38 (posterior median; 95% CI: 3.27-3.52) log titre

units. We estimated that every 3 months, 58.4% (posterior median; 95% CI: 48.5-72.6%) of the

short-term boost is lost (ω) such that only the long-term boost remains after 0.428 years (pos-

terior median; 95% CI: 0.344-0.515).
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To assess whether data contain enough information to reliably estimate the infection histo-

ries and biological process parameters, serosolver can be used to run a simulation recovery

study. For example, if data of the same structure as the A/H1N1pdm09 outbreak in Hong

Kong are generated using plausible parameter values [27], it is possible to re-infer these param-

eters (Fig 5B) alongside the individual-level infection histories (Fig 5C) and overall probabili-

ties of infection (Fig 5A). However, depending on the sampling frequency, number of tested

strains and number of repeat measurements, there are varying levels of information to estimate

these quantities. When antibody titre data is sparse, the priors placed on either the antibody

parameters, infection histories or probability of infection parameters will have a greater effect

on the estimation performance. We therefore recommend routine implementation of

Fig 4. Influenza A/H1N1pdm09 infection dynamics in Hong Kong cohort. A: Exposure rates in unvaccinated and vaccinated individuals. Shaded

regions show 80% (dark) and 95% (light) credible intervals (CI). Solid lines shows posterior medians. X-axis gives midpoint for that quarter. B: Age-

specific exposure rates in unvaccinated individuals. Solid lines show median estimates for each age group (pink:<19 (n = 30), green: 19-64 (n = 264),

blue:>64 (n = 17)) with 80% (dark) and 95% (light) CI shaded. C: Model predicted titres and inferred infections compared to observed titres for 4

representative individuals with inferred infections. Purple diamonds show observed titres; black dashed lines indicate posterior median model

predicted titres; green shading shows 95% CI on model predicted latent titres (dark) and assay observations (light); orange shading indicates posterior

probability of infection. Grey region shows titres outside the limit of detection. X-axis gives midpoint for that quarter. D: Posterior densities of antibody

kinetics parameters and total number of infections (∑Zi). Vertical lines represent 2.5th, 50th, and 97.5th percentiles.

https://doi.org/10.1371/journal.pcbi.1007840.g004
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simulation recovery on new data to ensure that the most suitable model is being applied to the

data available.

Case study 2. The second case study considers cross-sectional serological samples col-

lected in southern China in 2009, which were tested against nine historical influenza A/H3N2

strains that circulated between 1968 and 2008 [37, 48]. We demonstrate how serosolver can be

used to reconstruct several features of the epidemiological and immunological dynamics in

this cohort. First, Fig 6A shows substantial variation in the inferred historical attack rates of A/

H3N2, with clear periods of high incidence interspersed by periods of very low incidence

(range of posterior medians: 3.63% to 95.2%). Periods of high and low attack rates were similar

to those in a previous analysis from a cohort in Ha Nam, Vietnam [27]. In these analysis, we

Fig 5. Simulation-recovery of parameter and infection estimates using simulated single strain longitudinal data in same format as the Hong

Kong dataset. A: Model estimated attack rates vs. ‘true’ attack rates. Solid line shows estimated attack rate with 80% (dark) and 95% (light)

credible intervals (CI); green line and points shows true attack rates. B: ‘True’ process parameters used for simulation compared to estimated

posterior densities. Green vertical lines indicate true parameter values; vertical lines represent 2.5th, 50th, and 97.5th percentiles. C: Model

predicted titres and inferred infections compared to observed titres and known infections. Green diamonds indicate observed titres; black dashed

lines indicate posterior median model predicted titres; blue shading shows 95% CI on model predicted latent titres (dark) and assay observations

(light); vertical lines indicate the timings of true infections; orange shading indicates posterior probability of infection.

https://doi.org/10.1371/journal.pcbi.1007840.g005
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used a weakly informative prior on the annual attack rate with a mode of 15% with prior ver-

sion 2. Our posterior estimates were very similar to this, with a median inferred attack rate of

14.6%, suggesting either agreement between the data and prior or a lack of information in the

data.

We also identified clear age-specific patterns of infection. Fig 6B shows the median number

of infections per 10 years alive stratified by age at the time of exposure. These estimates agree

with previous analyses that individuals are infected, or at least experience antibody boosting,

less frequently as they get older [27]. Inference of long-term biological parameters suggested

that individuals experience a long-term average antibody boost μl of 2.24 log units (posterior

median; 95% CI: 1.95-2.51), corresponding to approximately a 4-fold boost to long-term

homologous titres that wanes with antigenic distance (long-term cross reaction σl = 0.105

Fig 6. Influenza A/H3N2 dynamics in southern China. A: Inferred historical attack rates. Shaded regions show 80% and 95% credible intervals

(CI), solid line and points shows posterior median estimate; B: Frequency of inferred antibody responses (sero-responses) by age group. Boxplots

show distribution across individuals based on posterior median total number of infections per individual per 10 years alive. C: Model predicted

titres and inferred infections compared to observed titres (black diamonds). Shaded regions show 95% CI on model predicted latent titres (dark)

and assay observations (light).

https://doi.org/10.1371/journal.pcbi.1007840.g006
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posterior median; 95% CI: 0.0962-0.113) and decreases with each successive exposure (anti-

genic seniority parameter, τ = 0.0310 posterior median; 95% CI: 0.0210-0.0415).

As with the first case study, simulation recovery was used to validate the ability of serosolver
to correctly infer underlying processes from a given dataset (discussed in detail in S4 Text).

Availability and future directions

The serosolver package provides a general inference framework to estimate epidemiological

and immunological dynamics from serological data. The open source package is available

from GitHub (https://github.com/seroanalytics/serosolver), with detailed accompanying

vignettes covering the main implementation and case studies presented here. The aim of this

package is to provide an open source, modifiable code base to fit antibody kinetics models that

also require inference of unobserved infections. Disparate serosurveys measuring antibody

titres over time are often underpinned by comparable dynamics, and we therefore felt that a

unifying tool to enable quick reproduction and direct comparison of analyses across different

datasets would be a useful addition to the literature.

As well as the stand-alone applications we have illustrated in the case studies above, serosol-
ver could easily link with traditional epidemiological analysis. The results presented here are

not intended to be exhaustive analyses, but rather demonstrate the utility and range of insights

that can be generated from serological data. In particular, the posterior latent individual-level

infection histories and titre trajectories could act as observations for regression models. For

example, serosolver outputs could be combined with syndromic or lab-confirmation data to

examine the relationship between susceptibility and titre at time of infection [50]. These meth-

ods could also apply to other pathogens; a similar model structure has recently been used to

examine latent titres for dengue [35]. Although our work so far has focused on influenza and

therefore uses an antigenic map to specify cross-reactivity between related influenza strains,

alternative models to describe cross-reactivity in serological assays could be coded into serosol-
ver as part of the antibody kinetics model. For example, independent parameters for the pair-

wise cross-reactivity of each pathogen in the system could be inferred directly given sufficient

serological data.

The simulation-recovery results presented here highlight that different priors have their

uses depending on the distribution of the serological data, the resolution of the model and the

particular question under consideration. If the data being fitted has few individuals, few infec-

tion times and a large number of titres, then the assumptions of these priors has relatively little

impact on the inferred infection histories. However, if the amount of data and therefore

weighting of the likelihood is small, then the infection history prior becomes important. For

example, a dataset with very few individuals but a large number of tested titres per individual

may be well suited to analysis under the beta-binomial prior on total lifetime infections (prior

3) where the aim is to infer an individual’s lifetime infection history and antibody kinetics

parameters, but not necessarily population-level attack rates. Conversely, inferring accurate

historical attack rates is better suited to the priors on per time attack rates (priors 1 and 2), as

infection probabilities are shared across individuals.

Prior knowledge on the time of exposure may be incorporated into serosolver, either from

surveillance data or, if relevant, temporal climate variables. In the case studies presented, we

used relatively simple priors for the probability of infection. However, more complex temporal

priors could be imposed by having a different prior distribution for the probability of at each

time point (i.e. different values of α and β) to account for seasonality in transmission dynam-

ics. In the future, we hope to extend serosolver to include non-linear feedback between past

exposures and future risk by embedding an epidemic model as well as the probability of
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infection [32]. In theory, this package could be used to generate an ongoing database of

inferred immunological parameters, allowing estimates to be updated and combined across

studies to better estimate attack rates and infection histories in less data-rich cohorts.

This framework could also be used to inform the design of serological sample collection

and testing. Given potential logistical or budgetary restrictions on analysis of stored sera or

collection of new samples, serosolver could be used to simulate different study designs and

show how accurately these designs could recover the main parameters of interest.

At present, serosolver focuses on inference for a single exposure type. However, for viruses

like influenza and dengue, individuals may be exposed to multiple subtypes or serotypes in the

same season. Exposure to one antigen may cross react with another antigen providing protec-

tion against antigens an individual has not been directly exposed to. For example, infection

with influenza A/H1N1 may provide cross-reactive protection against other group 1 viruses,

and A/H3N2 against group 2 viruses [51]. Additionally, the incorporation of multiple expo-

sures can facilitate the inclusion of vaccine exposure. In influenza, where vaccination is recom-

mended annually, exposure to vaccination is an important piece of the immunological life

course puzzle of an individual [52]. In its current form, serosolver can estimate differences

between exposures by being fit independently to different subtypes. It can also fit models sepa-

rately to vaccinated or unvaccinated populations to estimate how serological dynamics vary

between these groups. Although this is a useful first approximation, future versions of serosol-
ver will include potential for multiple exposure types during the same season so that any inter-

actions can be modelled explicitly. Such an extension will also allow for multiple co-circulating

pathogens to be modelled.

Through using a multi-strain HI assay panel, we estimated historical influenza A/H3N2

attack rates in southern China from 1968 onward. The assumption that the probability of

infection was the same for all individuals in the cohort at a given time faithfully captures the

expected uncertainty in estimates from times when only few individuals in the cohort were

alive. Further data from the Fluscape study with increased strain coverage, number of individ-

uals, and repeated longitudinal serum samples will help improve the precision of these esti-

mates [53]. However, attack rate estimates of nearly 100% must be interpreted with caution. In

the model, elevated titres to historical strains may only be explained by a fixed amount of

homologous and cross-reactive antibody boosting from infection. There are other ways in

which relatively high titres might be achieved: different strains may elicit different levels of

homologous boosting [18]; systematic bias in the HI assay towards higher titres in particular

strains may falsely suggest higher exposure rates [26, 39]; survival of high-immunity individu-

als may bias the sample; and continual strengthening of titres from asymptomatic exposures

should be considered. Alternatively, these estimates may be a true reflection of infection, or at

least antibody response, rates that are far higher than previously thought based on traditional

methods. Epitope-specific antibody kinetics models combined with state-of-the-art assays may

be useful in disentangling the relative contributions of these effects [54, 55].

There is increasing evidence that serological titre data contain substantial additional infor-

mation about infection and immunity dynamics, which are not captured by simple 4-fold rise

metrics [16, 28, 29, 35] Furthermore, in multi-strain pathogen systems, evidence is mounting

that individual-level heterogeneity in unobserved exposure histories is a key driver of suscepti-

bility to infection and disease [26, 52, 54, 56]. The serosolver package provides a generic frame-

work to extract this information from commonly collected data. As serological data become

increasingly available, it will be important to develop modern analytical methods and tools

that account for known biological and epidemiological processes that may confound or bias

inference [29, 57–59].
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