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Abstract

Metric systems for semantics, or semantic cognitive maps, are allocations of words or other representations in a metric
space based on their meaning. Existing methods for semantic mapping, such as Latent Semantic Analysis and Latent
Dirichlet Allocation, are based on paradigms involving dissimilarity metrics. They typically do not take into account relations
of antonymy and yield a large number of domain-specific semantic dimensions. Here, using a novel self-organization
approach, we construct a low-dimensional, context-independent semantic map of natural language that represents
simultaneously synonymy and antonymy. Emergent semantics of the map principal components are clearly identifiable: the
first three correspond to the meanings of ‘‘good/bad’’ (valence), ‘‘calm/excited’’ (arousal), and ‘‘open/closed’’ (freedom),
respectively. The semantic map is sufficiently robust to allow the automated extraction of synonyms and antonyms not
originally in the dictionaries used to construct the map and to predict connotation from their coordinates. The map
geometric characteristics include a limited number (,4) of statistically significant dimensions, a bimodal distribution of the
first component, increasing kurtosis of subsequent (unimodal) components, and a U-shaped maximum-spread planar
projection. Both the semantic content and the main geometric features of the map are consistent between dictionaries
(Microsoft Word and Princeton’s WordNet), among Western languages (English, French, German, and Spanish), and with
previously established psychometric measures. By defining the semantics of its dimensions, the constructed map provides a
foundational metric system for the quantitative analysis of word meaning. Language can be viewed as a cumulative product
of human experiences. Therefore, the extracted principal semantic dimensions may be useful to characterize the general
semantic dimensions of the content of mental states. This is a fundamental step toward a universal metric system for
semantics of human experiences, which is necessary for developing a rigorous science of the mind.
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Introduction

Words of natural language along with idioms and phrases are

used in speech and writing to communicate conscious experi-

ences, such as thoughts, feelings, and intentions. Each

meaningful word, considered without any context, is character-

ized by a set of semantic connotations [1]. These connotations

are a product of, and correlate with experiences communicated

with the use of the word. Stated differently, communicated word

semantics are behavioral correlates of experienced semantics.

Therefore, the scientific characterization of word semantics can

shed light on semantics of human experiences. In particular, if

word meaning can be measured based on a metric system, the

same metric system might be useful to measure the meaning of

experiences. Thus, a precise metric system for the semantics of

words could be a key in developing empirical science of the

human mind [2].

To build a metric system for the semantics of words means to

allocate words in a metric space based on their semantics, i.e., to

create a semantic map of words. There are multiple ways to

generate such maps based on the representation of semantic

dissimilarity as geometrical distance [3–7]. Word semantics have

multiple, possibly complementary aspects. Semantic maps created

with distance metrics that emphasize different aspects may have

different properties [8]. One aspect of word semantics determines

the likelihood for the word to appear in a particular topic or

document. Most of the previous studies devoted to allocating

words in space based on their meaning, including Latent Semantic

Analysis (LSA: [4]) and related techniques [5], focused on this

aspect of word semantics, resulting in domain-specific semantic

maps.

Here we develop an alternative approach based on the separate

aspect of word semantics that determines whether two words are

synonyms or antonyms (we will generally refer to a word that is

either a synonym or an antonym as an onym). This aspect of word

semantics, when expressed parsimoniously, is in many cases

domain-independent, as may be illustrated with the following

example. The term short-term memory belongs to the domains of

cognitive, computational and neuro-sciences, together with its

antonym: long-term memory [9]. At the same time, the general sense

of the parsimoniously expressed antonymy relation, ‘‘short vs.

long’’, is applicable to virtually any domain.
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This semantic aspect relates to the basic ‘‘flavor’’ of experience

captured by generally applicable antonym pairs [10,11]: e.g., big

vs. small, abstract vs. concrete, material vs. spiritual, whole vs. part, central

vs. peripheral, one vs. many, rich vs. poor, etc. Interestingly, we

determined that the seemingly enormous variety of possible

semantic directions is reducible to a small number (estimated as

four) of main semantic dimensions that are in a definite sense

orthogonal to each other. We found that these main semantic

dimensions can be approximately characterized as (1) ‘‘good’’ vs.

‘‘bad’’, (2) ‘‘calming’’ vs. ‘‘exciting’’, (3) ‘‘open’’ vs. ‘‘closed’’, and

(4) ‘‘basic’’ vs. ‘‘elaborate’’.

Materials and Methods

Linguistic Corpora and Core Dictionaries
This study was conducted using the dictionaries of synonyms

and antonyms extracted from the thesaurus of Microsoft Office

2003 and 2007 Professional Enterprise Editions, further referred to

as MS, in English, French, Spanish, and German, as well as the

dictionary of English synonym and antonyms available as part of

the Princeton WordNet 3.0 resource [12], further referred to as

WN English or simply WN.

The MS corpora have independent origin for different

languages (e.g., the English thesaurus was developed for Microsoft

by Bloomsbury Publishing, Plc., while the French thesaurus is

copyrighted by SYNAPSE Development, Toulouse, France).

These MS dictionaries of synonyms and antonyms were acquired

automatically with the following recursive procedure (see below for

hardware and software details).

Step 1. Start in the thesaurus with the seed word ‘‘first’’,

or its translation in other languages. Alteration of the

initial word never changed the resultant core dictionary

by more than a few words.

Step 2. Add all synonyms and antonyms of the word to

the dictionary, avoiding duplicates; repeat step 2 using

each of these onyms sequentially as a new word.

Step 3. Take the next word from the thesaurus in

alphabetical order, and repeat steps 2 and 3. After the

last alphabetical word, resume with the first one and

continue until the entire thesaurus is processed.

Next, we extracted the subset of the dictionary corresponding to

the largest component of the graph of synonym and antonym links

truncated to nodes (words) with a minimum of two links, including

at least one antonym link, per node [13]. In particular, the MS

dictionaries of synonyms and antonyms, and the equivalent

WordNet dataset downloaded from the zipped files available

online (http://wordnet.princeton.edu on 3/29/07), were further

processed in the following ways.

Step 4. Symmetrize the onym relation by making all

synonym and antonym links bi-directional. In other

words, if word A is a synonym of word B, then B is

synonym of A. This symmetrization is necessary to

define the energy function.

Step 5. Eliminate onym inconsistencies: if word A is

listed at the same time as synonym and antonym of word

B, both onym relations between A and B are removed.

Step 6. Identify the largest connected cluster in the

graph of onym relations. Remove all words that do not

belong to this main cluster.

Step 7. Eliminate all words with no antonyms or fewer

than two synonym/antonym links. The remaining

dictionary of synonym and antonyms is referred to as

the ‘‘core’’ dictionary.

The different core dictionaries had widely differing character-

istics. The MS English core has 15,783 words, with an average of

11 synonyms and 2.7 antonyms per word. The WN English core

has 20,477 words, with an average of 3.8 synonyms and 4.2

antonyms per word. The MS French core has 65,721 words, with

an average of 6.5 synonyms and 10 antonyms per word. The MS

German and Spanish cores have 93,887 and 259,436 words,

respectively. The total size of each corpus is above 200,000 words,

and in all cases, the extracted cores were a small part of the entire

thesaurus. However, the next largest connected cluster was

typically several orders of magnitude smaller than the core. For

example, in WN the second largest connected cluster only

contained 34 words.

Construction of the Semantic Map
Our approach to constructing a cognitive map by self-

organization of a distribution of words in a multidimensional

vector space is inspired by statistical physics. At the beginning, we

randomly allocate all N words of a given core dictionary as points

in a high-dimensional unit ball, i.e. as vectors with length #1. The

specific results described here were obtained with a dimension of

26, but they remained essentially identical when using the lower

and higher dimension values of 10 and 100, respectively. Next, we

minimize an ‘‘energy’’ or cost function H of the distribution,

thereby finding a minimum or ‘‘ground state’’ of the system. The

energy function of the word configuration x, was defined precisely

as follows:

H xð Þ~{
1

2

XN

i,j~1

Wijxi
:xjz

1

4

XN

i~1

Dxi D4, x [<N
6<26: ð�Þ

Here xi is the 26-dimensional vector representing the ith word (out

of N) in the configuration x. The Wij entries of the symmetric

relation matrix equal +1 for pairs of synonyms, 21 for pairs of

antonyms, and zero for all non-onym pairs. Intuitively, maximiz-

ing the first sum moves synonyms towards the same hemispaces,

while minimizing the second tends to align antonym pairs on

opposite sides of the origin, reflecting their semantic relations. The

fourth-power norm provides a soft limit to the absolute distance

from the center. More specifically, the first term of the equation is

the simplest analytical expression that captures the intent of

aligning synonym vectors in parallel and antonym vectors in

opposite directions. The last term is the lowest symmetric power

term that is necessary to keep the distribution compact. This

general approach and specific selection were empirically validated

by their successful reconstruction of a map whose meaning was

known a priori, that of color space, as illustrated at the end of the

Results section.

This process may be illustrated with an example. In the initial

random distribution of all words, before minimizing the energy

function (*), the angles between word vectors in multi-dimensional

space tend to be close to 90u. For instance, one specific simulation

run using MS Word English data started from the following angles

for a sample of word pairs: right/wrong, 63u; excited/hectic, 71u; right/

excited, 91u. During the optimization process, words move from the

initial random allocation based on their synonym/antonym

relations, such that synonyms would ‘‘attract’’ each other and

antonyms would ‘‘repel’’ each other. After the optimization is

completed, the angles between the same word vectors become:

Principal Semantic Dimensions
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right/wrong, 178u (almost opposite directions); excited/hectic, 12u
(almost parallel); right/excited, 95u (almost orthogonal). These final

angles do not depend on the initial angles.

The adopted optimization procedures included a second-order

Newton algorithm using analytic expressions for derivatives of the

energy function, and a zero-order steepest-descent algorithm with

time-dependent ‘‘thermal noise’’ or simulated annealing. Conver-

gence of the optimization was assessed by measuring the norm of

the gradient of the energy function, as well as the relative change

of the energy function itself and word coordinates in one iteration

(see below for hardware and software details). In particular, the

process was terminated whenever any of these monitored

parameters fell below the threshold of 2?1026 (dictated by the

precision of calculations), which was achieved in all cases in less

than 106 steps.

When the optimization is completed, we rotate the resultant

distribution to its principal components (PCs) by single value

decomposition. Since the cost function and optimization proce-

dure are symmetric with respect to the origin, the final sign of any

PC coordinate is not meaningful by itself and can be considered a

random outcome. Thus, upon completion of optimization, we flip

each axis as needed to standardize its semantics for consistency

among simulation runs. We selected the axes orientation

arbitrarily once and for all maps, pointing the positive ends

toward ‘‘good’’, ‘‘exciting’’, ‘‘open’’ and ‘‘elaborate’’, respectively.

Moreover, we normalized word coordinates by the average square

length of all word vectors, effectively scaling the entire distribution

to the unit variance. These post-processing operations of rotation,

selective axis inversion, and rescaling, do not change the intrinsic

shape of the optimized distribution, but are convenient and

necessary for quantitative comparison of corpora.

The final distribution appeared to be systematically invariant

with respect to the choice of initial random coordinates over

multiple trials, suggesting that the global minimum of H (*) was

reached in each case.

Psychometric Data and Word Frequency Databases
The Affective Norms for English Words (ANEW [14]) database,

developed by the Center for the Study of Emotion and Attention

(CSEA) at the University of Florida, was kindly provided by Dr.

Margaret M. Bradley. The ANEW database contains 1,034 words

and was created using the Self-Assessment Manikin to acquire

ratings of pleasure, arousal, and dominance. Each rating scale in

ANEW runs from 1 to 9, with a rating of 1 indicating a low value

(low pleasure, low arousal, low dominance) and 9 indicating a high

value on each dimension.

Two word frequency databases were used. The first is the

demographic (conversational) set from the British National Corpus

(BNC), a 100 million word collection of language samples from a

wide range of sources, representative of contemporary English. The

XML Edition (2007 release), maintained by the University of

Oxford (United Kingdom), was downloaded from http://www.

natcorp.ox.ac.uk/corpus. The raw dataset distilled so to exclude

those items occurring five or fewer times [15] included 14,736

words, of which 2,453 were common with the MS English core and

were used in our study. The second word frequency database we

employed is the Sydney Morning Herald Word Database, which

contains frequency and density figures from one full year (1994) of

newspaper publication, amounting to more than 23 million words in

38,526 articles. This ‘‘Australian’’ database, maintained by the

University of Queensland, was downloaded from http://www2.

psy.uq.edu.au/CogPsych/Noetica/OpenForumIssue4/SMH.html.

The curator’s filtering to exclude items that occur in only one article

yield 97,031 words [16], of which 8,807 were common with the MS

English core.

Software and Hardware
The algorithm to acquire the MS dictionaries of synonym and

antonyms (Steps 1–3 above) was based on COM (Component

Object Model) automation, and implemented in MathWorks

Matlab (v7.5, R2007b) following published examples [17]. The

programs to extract the core dictionaries (Steps 4–7), to construct

the semantic map (as described above), and to analyze the results,

were custom implemented using a combination of GNU C (GCC

4.2) and Matlab along with their standard libraries and functions

(all code is available upon request). These programs ran under the

Windows XP Professional, Linux Fedora 7 and 8, or SunOS

operating systems, either on a Dell Optiplex GX620 workstation

or on a Sun Fire V890 server.

Results

Construction and Geometric Characterization of the
Semantic Map

Starting from the synonym/antonym matrix extracted from the

widely-employed English thesaurus of Microsoft Word (MS

English), optimization converges to a definite stable state that is

macroscopically independent of the initial random conditions

(details in the Materials and Methods section above). Upon

rotation to principal components and normalization to unit

variance, the resulting spatial distribution of words displays

distinct geometric features associated with corresponding word

meanings, i.e. it constitutes a semantic map (Figure 1). A first

semantic interpretation of the principal components was derived

by examining the word sorted along each axis. The top and

bottom of these lists indicated that the first principal component

captures the notion of good/bad (‘valence’), the second of calming-

exciting (‘arousal’), and the third of open-closed (‘freedom’). A

more detailed semantic analysis is provided below.

The maximum spread planar projection (Figure 1A) exhibits a

prominent ‘‘U-shape’’ resulting from a bimodal distribution along

the first dimension and a unimodal distribution along the second.

Subsequent components are all unimodal with a systematic

increase in the ‘‘peakedness’’, or kurtosis (Figure 2). The first

three and four components encompass 95% and .99.9% of the

spatial variance, respectively (Figure 2), irrespective of the

dimensionality of the initial embedding (R10–R100).

Qualitatively similar features emerge when adopting an

independent dictionary of synonyms and antonyms, Princeton’s

WordNet [12] (Figure 1B), and different languages, including

French (Figure 1C), German, and Spanish (Materials and Methods

section below).

Qualitative and Quantitative Semantic Characterization
of the Map

A key issue in the analysis of the constructed semantic map is

the assignment of clearly recognizable semantics, if any, to each of

the significant principal components, which are all geometrically

orthogonal to each other. Such identification of the principal

semantic components demonstrates the suitability of this approach

to establish a metric to measure meaning and the content of

mental states. The relative locations of words in the map

consistently match the content of their meaning. Specifically, the

projection of words onto the first principal component of the map

systematically lines up along the ‘‘good-bad’’ dimension (‘valence’).

More precisely, the sign of this coordinate robustly predicts the

‘‘positive-negative’’ content of each word, and the numerical value

Principal Semantic Dimensions
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along this axis accurately orders words according to that aspect of

their meaning. To illustrate this feature with an example, we

ranked words describing mood (from best to worst) based on an

independent psychometric measure of ‘‘pleasure’’ derived from a

large number of human raters, namely the first of the Affective

Norms for English Words (ANEW) [18]. Traversing the resulting

list in the MS English map yields a quantitative ‘‘mood scale’’,

from happy (1.96), confident (1.50), merry (0.99), and untroubled (0.78),

to bored (20.57), helpless (21.01), hurt (21.33), depressed (21.59), and

sad (21.89). These words follow the exact same order in the map

derived from WordNet (WN), and the quantitative values between

the two are tightly correlated (R = 0.95, p,1024). This charac-

terization of the first component generalizes to all words of the

dictionary, demonstrating a highly significant correlation both

between corpora (MS and WN) and with the ANEW ‘pleasure’

scale (Figure 3).

The second component of the map similarly orders terms based

on a connotation of ‘‘calming-exciting’’ or ‘‘easy-difficult’’ (vertical

axis in Figure 1A–C). Both the sign and the relative value of this

coordinate are again consistent semantic predictors, as in the

examples of relax (21.55 in the MS map, 21.05 in WN), troubling

(0.62, 0.95), and excite (0.99, 1.16). Since principal components are

by construction orthogonal on the map, the values of word

coordinates in these first two dimensions (PC#1 and PC#2) are

mutually independent. In particular, words with negative ‘arousal’

value can be either good or bad, as in soothing (first principal

component 0.69, second 21.19 in MS) and boring (21.31, 20.94),

and the same holds for positive arousal terms such as thrilling (0.88,

0.74) and shocked (20.50, 0.76). More generally, while the positions

of words in the maximum spread projection (first two components)

are highly consistent among MS English, WordNet, and the map

derived from MS French thesaurus (Figure 1A–C), they bear no

implication on the values of subsequent components (Figure 1D).

The precise semantics of a component is given by the entire

distribution of words on the map. For practical purposes, however,

these semantics may be approximately described by the most

representative words. In particular, the projection of a word on a

given axis reflects its semantic amount along the corresponding

Figure 1. Principal components (PCs) of the constructed semantic map. Distributions of words in maximal-spread projections (PC2 vs. PC1)
are shown in panels A–C. Coordinates are normalized by the squared-average vector length of all words. A: MS (Microsoft Word) English, B: WN
(WordNet 3.0) English, C: MS French. D: MS English in PC3–PC4 coordinates. Representative words are labeled and identical terms or automated
word-to-word translations are marked by same colors on different panels. The small blue dots represent all words of the corpora. A small random
subset of words is plotted in light blue to aid visibility of individual dots in the face of excessive density (e.g., in panel C). Similarity of relative word
positions is evident across panels A–C, but not D.
doi:10.1371/journal.pone.0010921.g001
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component. At the same time, the alignment of a word with an

axis provides an indication of the semantic specificity for that

component. Thus, every semantic component of the map can be

intuitively characterized by the words with both the largest

projection on, and the best alignment with, each axis in either

direction. For a given ith component, these words can be found as

follows. We divide the ith coordinate of each word by the square

root of their individual vector length, and sort all words according

to the result. The projection of a word on each axis simply equals

the value of the corresponding coordinate, while the alignment

with an axis is measured by that coordinate value divided by the

word vector length; thus the coordinate divided by the square root

of the vector length is the geometric mean between the projection

on, and the alignment with, a given axis. The top and bottom

words of the sorted list are taken to represent the meaning of that

component.

A similar process can be applied to antonym pairs. In particular,

antonym pairs can be sorted by dividing the difference of the two

words in the given coordinate by the square root of their vector

distance. The top antonym pairs in the sorted list are also taken to

represent the meaning of that component. Both approaches based

on individual words and antonym pairs reveal definitive and

consistent semantics for all four significant PC’s in MS English

(Table 1). For example, the top individual words for the first

component (clear, well…, improve) all have positive valence, while

the bottom ones (decline, poor…, bad) all have negative valence.

Similarly, the sorted antonym pairs (e.g. happy/sad, well/badly, etc.)

have opposite meaning relative to valence.

The semantics of the third and fourth orthogonal dimensions

can be summarized as ‘‘open/closed’’ (‘dominance’) and ‘‘copi-

ous/essential’’, respectively. The first three components, but not

the fourth, are also consistent with the corresponding semantics of

both the WN English corpus and the MS French corpus, after

automatic translation into English with the Google translator tool

(http://translate.google.com). In particular, a large number of

terms repeated in the same components across corpora and

languages, reflecting general semantic agreement in matching PCs

(Table 1). As demonstrated in the next section, this correlation can

be quantified and is statistically significant across these and several

other languages and corpora. Words that ‘jumped’ components

across corpora (austere, bound, demolished, destroyed, dry, old, overcame,

release, severe, slacken, subjected, subjugated) always involve PC4, except

one word (smooth) occurring in PC2 and PC3. Moreover, PC4 has

no within-column cross-corpora repetitions, and in general shows

lower consistency compared to the first 3 PCs.

The general essence of each word can be thus quantitatively

represented as a set of coordinates corresponding to its values

along each of the principal components of the map (Figure 4). For

example, the meaning of the word serenity has ‘‘good’’ valence

(+0.59 on component 1), a major ‘‘calm’’ term (21.08 on

component 2), and a sense of ‘‘closure’’ (20.21 on component

3). In this case, there is a clearly dominant component (the

second). On average, by construction, the first components tend to

have higher amplitudes than later components. This means that,

broadly, the most informative element of a word is how ‘‘good’’ or

‘‘bad’’ it is, followed by how ‘‘calming/exciting’’, etc. It is also

interesting to compare the principal semantic components of a

given word on a relative scale after filtering this general trend. This

renormalization can be achieved by dividing each coordinate by

the average amplitude of the corresponding component. In the

Figure 2. Standard deviations and kurtosis of the first PCs in the MS English map. Inset: distributions of word projections onto the first 3
PCs normalized to unit area under the curve.
doi:10.1371/journal.pone.0010921.g002
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serenity case, the third component becomes nearly as prominent as

the first one on this relative scale (68% vs. 72%, respectively:

Figure 4).

Predictive Power of the Semantic Map
As expected based on the form of the energy function H, words

with similar meanings (synonyms) have similar proportions on the

principal components of the map, i.e. small angles between their

vectors (Figure 5). In contrast, words with opposite meanings

(antonyms) tend to have anti-parallel vectors. In particular,

synonyms and antonyms in MS English had median angles of

13u and 170u, respectively (means of 21u and 165u). Less than 3%

of synonym pairs have angles greater than 90u, and less than 1% of

antonyms have angles smaller than 90u. Upon checking, these

exceptions revealed rare instances of questionable assignments in

the source dictionary, which the map effectively ‘‘corrects’’. For

example, opposite and harmonizing are listed as synonyms in MS

English, but their angle on the map, 145u, suggests otherwise.

Although in most usage cases opposite and harmonizing would be

considered antonyms (as predicted by the map) the assignment as

synonym in the source dictionary may still be appropriate in

specific contexts (such as in describing power balance, or musical

tones). As an alternative example, hot and cool are typically

antonyms (referring e.g. to weather or beverages), except when

used idiomatically to describe an idea, a videogame, or a

classmate.

Overall, given a pair of synonyms or antonyms in the dictionary,

their dot product identifies the correct ‘‘onyms’’ relation with 99%

accuracy. In particular, four real numbers associated with each

word contain all essential information to identify antonyms among

related terms: all semantic flavors of antonymy are reducible to four

principal semantic dimensions. In contrast, random pairs (i.e.,

typically unrelated words) have an average angle of 90u, with less

than 3% of values below 13u or above 170u.
It is tempting to extrapolate these considerations and assume

that proximity of two words in the map is sufficient to ensure a

similarity of their meanings. However, this is not the case.

Unrelated word pairs vastly outnumber synonyms (,1500:1) and

antonyms (,7400:1). The majority of unrelated words pertains to

separate semantic domains, and could not possibly be considered

synonyms or antonyms. Even the tail ends of their angle

distribution constitute a disruptive confounder of the semantic

relations. Stated differently, given a particular word, it is fair to

assume that, among all related terms, synonyms will be concen-

trated in the neighborhood and antonyms in the antipodes.

Nevertheless, unrelated words will still constitute the majority of

terms even close to 0u and 180u. These unrelated words randomly

end up in the proximity of a given term by virtue of their large

number in the self-organizing reduction of the high number of

initial dimensions into the low-dimensional principal component

space. Therefore, the constructed semantic map of words differs

from the high-dimensional semantic spaces typically obtained with

Figure 3. Semantic map correspondence across languages and methodologies. The scatter plots demonstrate numerical correspondence
between MS English PC1 and both WN English PC1 (blue) and the first ANEW dimension, ‘pleasure’ (red). The dashed line represents the common
linear fit. Captions show correlation coefficients (R), corresponding P-values, and numbers N of common words used for the analysis. All three
distributions (MS English PC1, WN English PC1, and ANEW pleasure) are clearly bimodal. The correlations are highly significant even when analyzed
for the two separate clusters of data. For words with negative MS English PC1 values, the correlation with the corresponding WN English PC1 values is
R = 0.46 (p,10210, N = 3101); and with ANEW: R = 0.36 (p,1027, N = 226). For the positive MS English values, R = 0.40 for WN English (p,10210,
N = 2825) and R = 0.39 for ANEW (p,1028, N = 225).
doi:10.1371/journal.pone.0010921.g003
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other existing approaches [4,19], in which the distance between

any pair of embedded symbols reflects the whole semantic

dissimilarity for a restricted contextual domain. Our low-

dimensional map complements those local approaches by

observing global semantic properties. Here, the distance between

locations selectively measures the aspects of the dissimilarity

broadly applicable to any context, without distinguishing between

domain-specific semantic flavors.

A pool of terms likely related to a given word is constituted by

all synonyms of synonyms or, more generally, ‘‘onyms of onyms’’

of that word. In particular, words which are onyms of onyms are

usually in overlapping semantic domains, but not all words in

overlapping domains are onyms of onyms. Having a synonym or

antonym in common does not guarantee, but strongly indicates,

that two words pertain to overlapping semantic domains. Thus,

within the pool of onyms of onyms, one could expect angular

information to be a powerful predictor of semantic content. To test

this hypothesis, we sampled 20 words from MS English and WN

English, and computed the cosines of their angle with each of their

onyms of onyms. We then assigned the binary values of +1 and 21

to the onyms of onyms that were also reported as synonyms or

antonyms, respectively. The correlation between the cosines and

binary values was statistically significant in all 40 cases (Table 2).

In addition to finding systematically significant numerical values

in all 40 cases examined, this compilation reveals the consistent

ability of the map to identify, based on the dot products, ‘‘new’’

synonyms and antonyms not explicitly listed as such in the

dictionary. A specific example may constitute a useful illustration.

In WN, the term antonym has 22 onyms of onyms. Among these,

the two terms with the largest positive dot products are the only

Table 1. Sorted lists of words and antonym pairs.

PC #1 (valence) PC #2 (arousal) PC #3 (freedom) PC #4 (mixed)

positive negative
exciting,
tough

calming,
easy

close,
dominate

open,
free

rich,
extra

basic,
core

MS Word
English

Individual
words

clear decline stiff calm close release later basic

well poor hard relaxed final go advanced earlier

accept stop heavy mild detain fire soggy concise

praise uncertain serious easy restraint free slowly plain

support fail extreme gentle confine freedom far ahead quickly

good reject deep modest swallow independent well ahead crisp

improve bad loud quiet restrain new far along austere

Antonyms accept decline hard soft restrain release advanced basic

good poor fierce calm close open later earlier

praise criticize tough easy restraint freedom soggy crisp

well badly loud quiet restricted free wordy concise

happy sad heavy insignificant experienced new slowly quickly

WordNet Ind. words good ill rough smooth close_up free inclined disinclined

bright bad stormy calm block open destroyed unloving

superior poor heavy uncolored bound available loving outside

animal badly hard easy covert new supportive unsupportive

well unsaturated wild quiet confine unrestricted encouraging vertical

Antonyms good inferior rough smooth close_up free inclined disinclined

healthy ill dirty calm covert open loving unloving

intelligent dull heavy fine old new apt vertical

superior bad dark thin block release supportive discouraging

fit unfit troubled quiet close leaky encouraging unsupportive

tasty poor painful easy confine phlegmy synchronous perpendicular

Transl.
French

I.W. happy forgery excessive calm catch to release neophyte lost

praise weakened extreme modest taken freedom fixed monitor

Antonyms some forgery impetuous calm subjects release retained gave up

happy cut down enormous modest taken to give up neophyte monitor

to approve to refuse extreme moderated controls delivered subjugated lost

agreement contradict disproportionate thin tightened smooth bound released

Each of the first 4 PCs for each of three corpora (MS English, WN English, MS French) is described by a list of the top and bottom individual words sorted by a
combination of their projection on, and alignment with, the corresponding axis, as well as by similarly sorted pairs of antonyms. A total of 21 words are repeated within
components, and they all involve the first 3 PCs: 13 between MS English and WN English (bold), 5 between MS English and MS French (italic), 1 between WN English and
MS French and 2 among all three (bold italic). A total of 13 words are repeated across components, all except 1 involving PC4.
doi:10.1371/journal.pone.0010921.t001
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listed synonyms, namely opposite_word (1.000) and opposite. Similar-

ly, the words with the largest negative dot products are the only

two listed antonyms, namely equivalent word (20.999) and synonym

(20.998). The two onyms of onyms with the positive and negative

dot products closest to zero lack any synonym/antonym content:

cyclic (0.190) and secondary (20.066). These qualitative observations

are reflected in an R value of 1.00 and a P value of 3.3?1028.

The term antonym is not part of the MS English core, but the word

opposite is, and has 306 onyms of onyms. In this case, however, the

same analysis returns relatively weaker R and P values of 0.44 and

0.025, respectively. A closer inspection to the list of onyms of onyms

explains this apparent inconsistency and further corroborates the

predictive value of the semantic map. The top ranking positive dot

products correspond to terms listed as synonyms, namely dissimilarity

(1.00), the other extreme, and contra (both 0.98). Next in the list, while

not reported as synonyms, are nonetheless correct predictions:

heretical, heterodox, competing, and contrary to accepted belief (all 0.98),

followed by contending and hotheaded (both 0.97). Interestingly, the

next terms at similar values are again listed as synonyms: inverse,

opposing (both 0.97), deviating, and contrary (both 0.96).

The lower correlation value for opposite in MS is due to a few

outliers, such as harmonizing (dot product of 20.80, but listed as

synonym). As discussed above (see footnote 1), even in these cases

the map intuitively appears to be robust enough to actually

‘‘correct’’ mistaken assignments (i.e., harmonizing is more akin to an

antonym than a synonym of opposite). To quantify this impression,

we computed the correlation for the subset of the onyms of onyms

that are listed as synonyms or antonyms of the word opposite in the

independent WN dictionary, but not in MS. In other words, we

‘‘tested’’ the predicted assignment of the MS semantic map based

on the available data in the WN dictionary. The resulting R and P

values (0.99 and 0.005) were statistically significant, and the

identified terms were consistent both among the new synonym

(different, dot product of 0.94) and new antonyms (like, similar, and

same, at 20.74, 20.93, and 20.94, respectively). Furthermore, the

words with even more extreme negative dot products, although

not explicitly listed in either dictionary, were all consistent with

antonym meanings: resemblance, congruence (both 20.96), analogy

(20.97), equivalence, and similarity (both 20.99).

A potential practical application of the described semantic map

consists of specifying the connotation as well as the general

meaning (denotation) of words. An illustration of considering

connotation is provided in Figure 6, where onyms of onyms of two

words (control and delicate) are plotted in the plane of the first two

principal components. In general, terms are located in the proper

octant according to the connotation of their meaning (‘‘good’’,

‘‘good/exciting’’, ‘‘exciting’’, ‘‘bad/exciting’’, ‘‘bad’’, ‘‘bad/calm-

ing’’, ‘‘calming’’, ‘‘good/calming’’). For instance, the term control

can be substituted with a ‘‘good’’ connotation by organize, or with a

Figure 4. Values of the first four PCs for four different words in
the MS English semantic map. PC coordinate values are represented
in the bars, while the corresponding numbers express these quantities
as percentages of the standard deviation of each PC (cf. Figure 2).
doi:10.1371/journal.pone.0010921.g004

Figure 5. Angular distributions of word pairs on the map. The
plots represent histograms of angle distributions for synonyms (1, blue),
antonyms (2, red), onyms of onyms not listed as onyms (3, solid black
line), and unrelated words (4, dashed line). Here ‘‘onym’’ stands for
‘‘synonym or antonym’’, and onyms of onyms include synonyms of
synonyms, synonyms of antonyms, antonyms of synonyms, and
antonyms of antonyms.
doi:10.1371/journal.pone.0010921.g005

Table 2. Assignment of synonyms/antonyms among related
words.

Corpus MS English WN English

Word N R P N R P

above 232 0.92 1.8?1028 67 1.00 4.1?10222

below 122 1.00 2.4?10225 64 1.00 2.2?10227

good 2342 0.98 7.0?10270 3470 0.97 7.8?102140

bad 1760 0.85 2.3?10235 2903 0.96 1.0?10285

exciting 665 0.99 1.9?10245 199 1.00 1.9?10216

calming 296 0.89 7.3?1027 74 0.93 4.9?10213

open 2271 0.95 1.5?10283 2673 0.95 1.0?10282

close 3077 0.78 1.3?10234 2759 0.96 1.2?10288

voluntary 328 0.83 4.8?1027 229 0.89 5.0?10217

basic 1105 0.76 4.4?10212 489 0.78 2.5?10212

central 502 0.98 5.8?10229 1217 0.91 2.4?10210

peripheral 215 0.92 2.5?1026 350 0.88 1.4?10211

take 3219 0.40 4.3?1027 1096 0.68 7.4?10228

give 2197 0.39 3.2?1024 1005 1.00 3.1?1027

increase 2111 1.00 8.2?102154 228 1.00 1.2?10220

decrease 1317 0.98 4.4?10256 88 1.00 2.1?10219

boring 834 0.97 8.6?10236 310 1.00 1.8?10221

soothing 445 0.95 2.4?10215 68 1.00 1.4?1029

catastrophic 128 1.00 ,102256 96 1.00 8.2?1028

triumphant 207 0.98 2.5?10212 70 1.00 6.0?1028

Assignment of synonyms/antonyms among related words. N is the number of
onyms of onyms of each listed word in either corpus. R is the correlation
coefficient between the dot product of the of onyms of onyms with the original
listed word, and a binary value indicating if each onym of onym is listed as a
synonym (1) or antonym (21) of that word. P is the probability to obtain such
correlation by chance.
doi:10.1371/journal.pone.0010921.t002
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‘‘bad’’ connotation as curb. Likewise, delicate can connote a

‘‘calming’’ semantic as soft or an ‘‘exciting’’ semantic as personal.

Moreover, the vector representation of words in this map has

both absolute and relative meanings. For example, the terms okay

and good lie in the same quadrant of the map with an angle of 10u
between them and can be considered ‘‘absolute’’ synonyms. In

particular, they both have a positive value in the first component

(1.36 and 2.13, respectively). However, with respect to the position

of fine, these two terms lie on opposite sides (i.e., the angle between

the vector connecting fine and okay and that connecting fine and

good is greater than 90u). Relative to fine (whose value in the first

component is 1.70), the term okay has actually a negative valence

(20.34), whereas the term good has a positive one (0.43).

The length of the vector can also be interpreted as a measure of

the semantic component of a word measured by its main map

dimensions, i.e. the aspect of the word meaning that distinguishes

between antonym and synonym relations across most contexts. For

example, the term relevant has greater vector length (1.33) than the

term pertinent (1.15), but smaller than the term important (1.90). The

word closest to the center is emigrant (vector length 0.36). Despite its

definite meaning, this word is relatively neutral with respect to the

main semantic dimensions of the map. The distribution of lengths

over the whole dictionary (Figure 7A) shows a median meaning of

0.93 (m6s= 0.9860.23). In contrast, the average semantics of the

dictionary computed as the vector mean of all words nearly

coincides with the origin of coordinates, i.e. the point of ‘‘no

meaning’’ (first three components: 20.03360.006, 0.08060.004,

and 0.00460.002).

However, words have different usage frequency in language

(Figure 7B). For example, the term doctor (which is used on average

Figure 6. Semantics of the cognitive map (MS English): examples of connotation mapping. For each of the two representative (bold and
circled) words, control and delicate, 8 synonyms are selected such that they nearly uniformly occupy all quadrants.
doi:10.1371/journal.pone.0010921.g006
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every 5511 words) is 26 times more common than the term

professor. It is thus possible to compute an overall ‘‘concept mean’’,

as the frequency-weighted average position of all words in the

semantic map. Such measure captures the most representative

meaning composed across a particular language (Figure 7C). In

English, this vector has a significant length (close to 0.5) and a non-

uniform contribution of principal components. In particular, the

significantly positive projection on the first axis (.0.5) corresponds

to a ‘‘good’’ semantic, while all other dimensions have non-

significant values. The same holds for the difference between the

frequency-weighted and the absolute vector means. Thus, positive

words are used more frequently in English than negative words

(P,10218), while there is no significant preference in the other

semantic dimensions (all three P.0.3).

Statistical Cross-Corpus Semantic Comparison
The semantic characterization of the map principal components

also enables a direct comparison across corpora, languages, and

data types. As mentioned earlier, the first three components, but

not the fourth, demonstrate high consistency across independent

corpora (MS English vs. WN English) and languages (cf. MS

French, Table 1). To extend the comparison of principal semantic

components to a quantitative measurement across additional

corpora and languages, we also Google-translated the MS German

and MS Spanish dictionaries into English. For the scope of this

analysis, each corpus (after translation as applicable) was limited to

the set of words that overlapped with the MS English core

dictionary. For example, the 15,783 MS English core words and

the 20,477 WN English core words have 5926 terms in common.

For MS French, the overlap was 4704 English words, mapped

onto from 19,944 French terms, representing approximately 30%

of the MS French core dictionary. Many French words projected

onto single English words, because word inflections are listed

separately in the MS French thesaurus; the same occurred in

German. We then extracted several correlation measures between

the word coordinates from each of the separate semantic maps

(WN English, MS French, MS German, and MS Spanish) and the

MS English map.

First, for each pair of corpora, we computed a matrix of PC-to-

PC correlation coefficients (Table 3). Results demonstrate a

systematic two-way semantic correspondence of the first three PCs

for all compared pairs of corpora. In particular, each of the first

three PC in every corpus displays the highest correlation

coefficient with the corresponding PC of the other corpus in the

pair. These values are all statistically significant (p,0.001). Such

correspondence only holds for the fourth component between MS

English and WN English, but not across different languages.

Dimensions beyond the fourth are not statistically significant in

MS English and are thus not represented in this table. Moreover,

we compared the first three PCs of MS English with the three

original dimensions of ANEW, whose semantics are identified as

pleasure, arousal, and dominance. In this case, the two-way semantic

correspondence was only revealed on the first two components.

This is not surprising given that the coordinates of the ANEW

dataset are not internally orthogonal. In fact, the first and third

coordinates are highly correlated within the ANEW sample. We

also computed the correlation of the first 4 MS English PCs with

each of the 32 Paivio norms [20] and of the 51 Rubin properties

[21], which constitute, to the best of our knowledge, the largest

available collections of psychometric measures. However, none of

these attempts resulted in higher correlation coefficients than those

found for ANEW.

Next, we subjected each pair of corpora to canonical correlation

analysis [22] (CCA). CCA finds the basis vectors for two sets of

multidimensional variables such that the correlations between the

projections of the variables onto these basis vectors are mutually

maximized. The first four CCA coefficients are reported in Table 3

for each pair of corpora. CCA rotates two distributions of points so

as to align them for maximal correlation. Thus, the first CCA

correlation must be, by construction, higher than (or equal to) the

correlation between the first principal components independently

obtained in the two sets. The fact that these values are extremely

close between MS English and each of the other corpora (e.g. 0.78

vs. 0.73 for WN English, 0.75 vs. 0.74 for MS French, 0.83 vs. 0.80

for ANEW) suggests an excellent alignment of their intrinsic

principal components. Moreover, the fact that the number of

statistically significant canonical correlations (7 for WN English,

French, and Spanish, and 6 for German) systematically exceed the

number of significant dimensions in MS English (4) is a further

indication of geometric consistency across corpora, even if the

semantics no longer strictly correspond beyond the fourth

dimension.

Figure 7. Semantic characteristics of the frequency of word usage. A: cumulative distribution of vector length of all words in MS English,
with dotted horizontal lines at the 2.5th, 50th, and 97.5th percentiles. The arrow indicates the mean weighted by the British National Corpus (BNC)
frequency distribution. B: MS English word sorting by the frequency of their usage according to two independent sources (see Materials and
Methods): Australian database (blue) and BNC (red). C: Values of the first 4 PCs of the weighted average of all words according to the Australian
database frequencies. As in Figure 4, the bars and corresponding numbers represent the PC coordinate values and their percentage of the standard
deviation of each PC (in the case of BNC frequencies, the corresponding numbers are: 64.0+7.5%, 13.3+6.4%, 215.4+11.9%, and 10.2+6.4%). Standard
errors are reported for both bars (as whiskers) and numbers. Only the first component is statistically significant.
doi:10.1371/journal.pone.0010921.g007
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Finally, as an additional method of quantifying the linear

relationships between pairs of corpora (i.e., two multidimensional

variables), we defined an ‘‘overall correlation’’ OC (**) based on

the norms of the covariant matrices, which are the natural

generalization to higher dimensions of the concept of the variance

of a scalar-valued random variable. The covariance matrix or

dispersion matrix is a matrix of covariances between elements of a

vector, and naturally generalizes to higher dimensions the concept

of the variance of a scalar variable. The correlation coefficient for

a pair of scalar variables is the ratio of their covariance to the

product of their standard deviations. Our formulation (**) is a

natural extension to variables in multiple dimensions. The formula

is analogous to that of the Pearson correlation coefficient, and

coincides with it in one dimension:

OC x,yð Þ~ cov x,yð Þk k
cov xð Þk k1=2

cov yð Þk k1=2
: ð��Þ

This measure characterizes the alignment of two distributions of

points, each independently rotated to their internal principal

components, throughout all of their dimensions. The overall

correlation coefficient consistently assumed high values (be-

tween 0.68 and 0.80), always intermediate between the first

canonical correlation and the correlation between first principal

components.

This result of the cross-corpus comparison, as well as the

qualitative assessment of the semantic content of the significant

principal components, also proved to be generally robust with

respect to alterations of the cost function parameters and/or the

initial conditions in optimization. These findings indicate overall

consistency and reliability across languages, datasets, and

variations of the technique.

Validation in Color Space
To verify the general applicability and robustness of our

approach, we designed a simple simulation of color mapping. The

model semantic space Xcolor was defined as a sphere S2, in which

each point was associated with a unique color, using the three

Cartesian coordinates as RGB values. A number n of points

(initially set to n = 1000) were randomly sampled from Xcolor. For

each sampled point, a list of ‘‘synonyms’’ and ‘‘antonyms’’ was

generated by stochastically selecting neighbors within a certain

‘threshold angle’ as synonyms and neighbors within that threshold

angle from the antipode as antonyms. The initial values for the

threshold angles and the average number of onyms per point (the

‘degree’ of the graph) were set to 20u and 3.5, respectively,

consistently with the parameters of the available linguistic corpora,

and later allowed to vary as described below.

The points were then embedded in a d-dimensional space (with

a default value of d = 10) with random initial coordinates. Their

coordinates were optimized by minimizing the above-described

Table 3. Correlations of word coordinates across corpora.

MS English

PC1 PC2 PC3 PC4 CCA Other parameters

WN English PC1 0.73 0.20 20.06 20.031 0.78 5926 a

PC2 20.23 0.64 0.18 0.22 0.72 7 b

PC3 0.12 20.13 0.57 0.13 0.63 6.6?1024 c

PC4 0.029 20.022 0.001 0.30 0.52 0.76 d

MS French PC1 0.74 0.0057 0.0004 0.034 0.75 4704/19944 a

PC2 20.01 0.41 0.24 0.14 0.54 7 b

PC3 20.034 20.33 0.37 0.0097 0.49 2.0?1022 c

PC4 0.056 0.066 20.0058 0.021 0.27 0.74 d

MS German PC1 0.73 0.037 0.025 0.056 0.78 5290/35464 a

PC2 20.081 0.21 0.16 0.097 0.57 6 b

PC3 0.049 20.16 0.26 0.029 0.46 1.1?1024 c

PC4 20.089 0.007 0.014 0.026 0.24 0.73 d

MS Spanish PC1 0.67 0.037 20.046 20.014 0.71 1269/1269 a

PC2 20.20 0.45 20.13 0.14 0.62 7 b

PC3 0.17 20.056 0.46 0.066 0.60 0.005 c

PC4 0.0014 0.33 0.19 0.18 0.45 0.68 d

ANEW D1 0.80 20.19 0.20 0.21 0.83 451 a

D2 0.052 0.39 0.26 0.22 0.55 2 b

D3 0.0085 0.22 0.094 20.22 0.37 ,10210 c

0.80 d

Correlations of word coordinates across corpora. MS English dictionary is correlated with WN English, translated MS French, MS German, and MS Spanish, as well as the
ANEW database. PC1–PC4 represent the first 4 principal components (D1–D3 are the 3 non-orthogonal dimensions of ANEW), and the numbers in each column are the
corresponding correlation coefficients. The correlation coefficients with the consistently highest absolute values within their row and column (if any) are typeset in bold.
CCA: the first four canonical correlation coefficients. Other parameters (right column), a: the number of common words in each pair of corpora (English/foreign); b: the
number of significant canonical correlation components; c: the P value of the last significant component (all P values of the previous components are smaller); d: the
overall correlation (**) of the compared corpus pair. All values reported in the Table are statistically significant.
doi:10.1371/journal.pone.0010921.t003
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energy function H of locations and synonym-antonym connec-

tions, using the same convergence criteria adopted for the main

language study (see ‘Construction of the Semantic Map’ in

Materials and Methods). Finally, the resultant distribution was

rotated to principal components (Figure 8). The resulting accurate

reconstruction of the coloring of the sphere indicates that the

topology and geometry of this cognitive map (whose semantic was

in this case known by construction) could be reconstructed from a

sparse subset of synonym and antonym relations.

Specifically, after reconstruction, the amplitudes (standard devia-

tions) of the first three PCs are each close to 1, while the remaining 7

are negligible (Figure 8C), resembling the situation observed in MS

English (Figure 1 A–C). The semantics of the reconstructed map are

also consistent with the original map, as intuitively seen from

comparison of the two color projections (Figure 8 D, E). This intuition

is confirmed by numerical measures of the above defined overall

correlation (**) between the original and reconstructed maps

(Figure 9). In particular, altering the dimensionality of the embedding

space d, the average number of ‘‘onyms’’ per color node (i.e., the

average node degree), the threshold angle between ‘‘onyms’’, as well

as the number of color nodes, did not affect the quality of the

reconstruction in a wide range of parameters. In other words, the

results of this approach are robust with respect to alteration of the

corpus parameters: the dimension of the embedding (Figure 9A), the

number of ‘‘onyms’’ per ‘‘word’’ (Figure 9B), the number of ‘‘words’’

(Figure 9C), and the maximal/minimal distance or angle between

‘‘synonyms’’/‘‘antonyms’’ (Figure 9D).

Discussion

In his 1946 ‘‘Man’s Search for Meaning’’, neurologist and

psychiatrist Viktor Frankl maintained that life has meaning under

any imaginable circumstance, that the search for this meaning is

the core human drive, and that personal freedom consists of the

individual choice of such meaning [23]. Although internal

meaning may be viewed as the most (or arguably, the only)

important matter of human existence, its scientific characterization

has so far resisted the otherwise seemingly unstoppable strides of

technological progress. This topic has been at times dismissed as

metaphysical due to the perceived impossibility to reconcile the

individual, first-person perspective of the very meaning of any

concept, and the scientific requirements for objective validation,

unambiguous communication, systematic reproducibility, and

empirical falsifiability. Recently, however, the need, potential,

and importance of extending traditional research paradigms to

include subjective experience have been recognized with increas-

ing urgency [24,25]. One of the missing foundations is a precise

measure of the content of mental states. The present study is a step

toward bridging this gap.

Major Conclusions
This study demonstrates the possibility to derive a precise metric

system for semantics of human experiences objectively from data

collected without using human subjects. More generally, the new

technical approach we presented may have practical implications

for multiple fields. Previous studies that resulted in semantic maps

either relied on subjective human judgments (e.g. ANEW [18],

semantic differential [10]) or were not explicitly related to human

experiences (e.g. LSA [4], Latent Dirichlet Allocation: LDA [26]).

In contrast, we constructed a prototype general metric system for

semantics from all-purpose dictionaries, and validated its applica-

bility to human experiences by available psychometric data. The

significant correlation between the affective space of ANEW and

our semantic cognitive map establishes a strong, novel, and

Figure 8. Reconstruction of the color map. A: original PC standard deviations in d = 10. B: standard deviations of PCs in the starting
configuration selected for optimization. C: reconstructed PC standard deviations in d = 10. D: original color space map. E: reconstructed color space
map.
doi:10.1371/journal.pone.0010921.g008
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unexpected connection between results in experimental psychol-

ogy and computational linguistics.

Self-organizing semantic maps have been described before [27],

and numerous methods exist to construct spatial representations of

lexical knowledge (e.g., [28]). However, to our knowledge, this is the

first objective approach to construct, based on available data, a

simultaneous quantitative representation of synonymy and antonymy

in a continuous metric space, whose dimensions have clearly

identified general meanings. The low dimensionality of this semantic

map indicates that, although thousands of distinct categories of

meanings are conceivable, only very few apply to all contexts without

a substantial domain-specific alteration of their semantic content.

This limited number of general meanings is consistent with recent

independent linguistic dimensional analyses [29] and contrasts with

the extensive lists of semantic categories represented in Roget’s

thesaurus and related or similar endeavors [30]. At the same time, the

remarkable consistency of the significant principal components of our

map across dictionaries and languages, as well as with previous

psychometric data obtained with very different methods (such as

factor analysis and word ranking), suggests that they may be rooted in

the fundamental laws of the human mind.

The three dominant semantic categories revealed in our study

(‘‘good-bad’’, ‘‘calm-excited’’, ‘‘open-closed’’) are consistent with

earlier psychometric, cognitive, and linguistic theories and

findings, including Osgood’s semantic differential [10] and Leary’s

interpersonal Circumplex [31] (cf. [32]). In particular, semantic

differential rating was devised as a scale to measure the affective

meaning of objects, events, and concepts. Subjects evaluate the

semantic content of a term as a relative position between two

bipolar words, such as warm-cold, bright-dark, beautiful-ugly,

sweet-bitter, fair-unfair, brave-cowardly, meaningful-meaningless.

Through factor analysis of large collections of semantic differential

scales, Osgood characterized three recurring attitudes: evaluation,

potency, and activity. These dimensions, mostly corresponding to

the adjective pairs ‘‘good-bad’’, ‘‘strong-weak’’, and ‘‘active-

passive’’, respectively, were found to be cross-cultural universals

[33]. There is a clear resemblance between these connotations and

the principal semantic components of language that emerged in

our approach. Similarly, the interpersonal Circumplex is a two-

dimensional representation of personality based on agency, or

power (status, dominance, and control), and communion, or love

(solidarity, friendliness, and warmth: [34]).

Figure 9. Robustness of the color map reconstruction. A: correlation between the reconstructed map and the original map as it varies with the
embedding space dimension d for three different values of the threshold angle between ‘‘onyms’’: 10u (blue), 20u (red), and 30u (black). The number
of nodes and their average degree are 1000 and 3.5, respectively. B: correlation between the reconstructed and the original map as a function of the
average node degree. The number of nodes, embedding dimension, and threshold value are 1000, 10, and 0.90, respectively. C: correlation with the
original map as a function of the number of nodes. The embedding dimension, threshold, and average degree are 10, 0.50, and 3.5, respectively. D:
correlation with the original map as a function of the threshold angle between ‘‘synonyms’’ and ‘‘antonyms’’ for four different values of the number
of nodes: 100 (blue), 300 (red), 1000 (black), 5000 (magenta). The embedding dimension and average degree are 10 and 3.50, respectively.
doi:10.1371/journal.pone.0010921.g009
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The possibility to objectively define a quantitative scale for the

major categories of general semantic content, capturing both

synonym and antonym relations, has practical applications to

linguistic data mining [26] and sentiment analysis [35]. The main

scientific value of the constructed map, however, is to lay the

foundation of a precise metric system for meaning that goes far

beyond the current practice of qualitative assessment [36], with

important implications for artificial intelligence and cognitive

neuropsychology [2]. In fact, a rigorous science of mind may

require a precisely defined, universal metric system for mental

state semantics [2,8]. Similarly, in cognitive architectures repre-

sentations need to be sorted by their semantics [37].

Related Works and Novelty of the Contribution of This
Work

Low-dimensional vector-space representations of word meaning

were constructed previously at least in two fields, namely

computational linguistics and experimental psychology. In the

former case (e.g. LSA [4], probabilistic latent semantic analysis, or

pLSA [38], LDA [26,38], Isomap [39]) the purpose is often to

improve information retrieval systems by indicating which

documents are similar and which are not. Efforts in experimental

psychology (Semantic Differential [10], ANEW [18], Circumplex

[32]) aim to describe aspects of human semantic memory and

affective states. The present work connected results of these two

fields by establishing a correspondence between the objectively

constructed semantic cognitive map and ANEW [14]. Previous

semantic maps created with different techniques did not

demonstrate similar features. The observation that positive words

are used more frequently in English than negative words provides

additional evidence for the usefulness of the map as a metric

system for human experiences.

The semantic similarity of our map with ANEW in the first two

dimensions was quantitatively confirmed by canonical correlation

analysis, based on the map locations of words that are common for

the two maps. However, the two maps are not equivalent to each

other. The map constructed in the present study contains more

dimensions and more words, including words that do not belong to

affective stimuli. Most importantly, this map differs qualitatively

from previous data as it was not constructed based on given

semantic dimensions. Instead, semantics of our map dimensions

are emergent and defined by the locations of all words together.

The constructed semantic cognitive map provides one geomet-

rical representation for two relations: synonymy and antonymy.

Most existing automated methods infer synonymy from word co-

occurrence [19] and do not explicitly account for antonymy. Thus,

the ability to represent antonymy, which may capture a vital

aspect of meaning [40], constitutes an essential feature of our

approach. Previous semantic cognitive mapping studies involving

dissimilarity metric [4,6] had problems to find a geometric

representation of antonymy (e.g., [41]). This limitation of known

approaches could be due to the non-trivial relation between

antonymy and the traditionally used dissimilarity metric. For

example, king and queen could be synonyms, as in head of the royal

family, or antonyms, as in gender (see also footnote 1 above). Our

choice of energy function (*) departs from the current paradigm.

The principal components of the resulting map uniquely capture

the general aspects of antonymy, i.e. those that apply to most

contexts. Accordingly, the notions of synonymy and antonymy

used in our analysis differ from the concepts of similarity and

dissimilarity as defined by co-occurrence, as illustrated by the

king/queen or hot/cool examples mentioned above. Many

definitions of antonymy were proposed over the years [42–46],

and none of them is reducible to a notion of (dis)similarity.

Unlike with LSA and related techniques, were the low-

dimensionality of the map results from manual truncation of

higher dimensions [5], in our case this property emerged naturally.

This may have broad implications. In the foundational hypothesis

of a set of categories as generators of language, the number of

necessary categories was believed to be large [11]. The idea that

such large variety of antonymy senses used in natural language is

reducible to relatively few basic notions was actually discussed in

the previous century [47], but is no longer considered in modern

linguistics. It is therefore surprising that this reduction can be

achieved with only three or four basic dimensions.

Unlike most previous studies, our model was not tailored for a

special practical purpose, but was constructed starting from basic

principles. Our energy function was selected as the most

parsimonious analytical expression corresponding to the concept

of synonym and antonym vector alignment. The first term is the

simplest analytical expression that attempts to align synonym

vectors in parallel and antonym vectors in opposite directions. The

last term is the lowest symmetric power term that is necessary to

keep the distribution compact. This conceptual framework

significantly differs from the frameworks mentioned above,

including LSA [5], LDA [26], Multidimensional Scaling (MDS)

[48], etc. Semantics of the principal dimensions of our map are

reproduced across databases and languages. This is not a

characteristic of any previously constructed vector semantic map

in computational linguistics. Even though dimensions of the earlier

constructed maps have identifiable semantics, those semantics are

domain-specific, and there is no visible semantic similarity

between our map and various vector representations of semantics

of words constructed using LSA, LDA and other approaches.

Limits and Applications of the Semantic Map
Although the constructed semantic map reveals definitive

semantics in each of its significant principal components, the

vector associated with every word in the map should be

interpreted as a ‘‘noisy’’ measure rather than an exact set of

numerical values. This cautious interpretation is motivated by two

considerations. First, the positions of individual words on the map

depend on the selection of available synonym-antonym links,

which only constitute a small subset of all possible synonym-

antonym links. Adding or deleting a link changes map coordinates

of the corresponding words. Stated differently, any dictionary of

synonyms and antonyms only provides sparse sampling of the

onym graph.

The quantitative extent of this sparse sampling can be estimated

by comparing two independent thesauri, such as MS English and

WN English. Limiting the respective dictionaries of synonyms to

the pool of their 5,926 words in common leaves 30,922 links for

MS and 12,188 for WN, with 6,576 overlaps. Assuming that

synonyms in each of the two dictionaries are sampled randomly

and independently from the ‘‘comprehensive’’ set of all true

synonyms, the cardinality of the true synonym set can be

computed as (30,922?12,188/6,576) = 57,311. Thus, the MS and

WN English dictionaries only represent at most ,54% and 21%,

respectively, of all synonyms. However, the assumption of

independent random sampling is unlikely to be realistic, because

more usual synonyms may have a greater chance to be listed in

both dictionaries, thus increasing the number of overlaps.

Therefore, these values should be considered coarse overestimates,

and the real representation is likely to be even sparser.

The second major source of noise in the constructed map is that

each word is associated with a number of potentially very different

meanings, or ‘‘senses’’. For example, the word mean can assume the

distinct meanings of ‘‘average’’, ‘‘nasty’’, and ‘‘indicate’’. There-
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fore, the word vector may be forced to find a compromise

orientation that does not match precisely any of the word

meanings. From this perspective, the constructed map crudely

approximates meanings with words. Semantics of individual words

may not match precisely semantics of their map locations, and

therefore should not be taken as literal definitions of the latter.

Although the map was constructed based on relations among

individual words, precise numerical definitions of its semantics

only apply to large subsets of words, as in the analyses involving

word frequency data (Figure 8).

More generally, individual map locations can be viewed as

representing unambiguous, topographically organized semantics

defined by the entire distribution of all words on the map rather

than by one word. In particular, the map location of a specific

meaning could be computed precisely as the center of mass of the

group of all its representing words. Two meanings with close/

opposite centers of mass would be more likely to be synonym/

antonym than two individual words separated by the same

distance on the map. The accuracy of the map location of a

meaning would increase with the number of its representing

words. Ideally, in order to precisely allocate meaning on the map,

the center of mass of all dictionary words should be computed with

appropriate weights measuring their semantic agreement with the

given meaning.

As a result of these two limitations, namely sparse sampling and

approximation of meanings with words, individual word coordi-

nates are subject to considerable noise, the relative amplitude of

which can be roughly estimated as 10–20%. Nevertheless, the map

is robust with respect to the assignments of synonyms and

antonyms, and their connotation, from sets of related words. In

particular, within all onyms of onyms, constituting a pool of terms

likely related to a given word, dot product is a powerful predictor

of semantic content (Figure 8 and Table 2). Moreover, when

global map characteristics are derived from all word coordinates,

as in cross-corpus map correlations (Table 3) the noise effectively

averages out. This means that the map can be used as a precise

semantic scale, even if individual words cannot.

In addition, our map does not capture the whole semantics of a

word, but only the aspect that distinguishes between synonyms and

antonyms in a context-independent query. The domain-specific

part of meaning, including the aspect that determines the

likelihood for a word to appear in a particular topic or document,

is missed equally for all words. Words that fall near the origin (like

‘‘emigrant’’) do not have a significant measure of the ‘‘semantic

flavor’’ that this map represents. This is also why finding unrelated

words next to each other on the map does not indicate an

inconsistency.

Relating the Constructed Word Map to Semantic Space
Semantic space, or the set X of all meanings, by assumption can

be mapped into a high-dimensional Euclidean space (Figure 10,

left). Selected relations among meanings represented by words are

shown as vectors connecting points of X (colored arrows). These

relations have each their own domain of applicability in X. Dashed

lines of corresponding colors show the domain boundaries. For

example, the word hot can be viewed as a label for the relation

among two meanings represented by points in X, one of which can

be considered hot as compared to the other: the red color is hot

compared to the blue color, the weather in Mexico is hot

compared to Canada, the housing market in Manhattan is hot

compared to that in Detroit. The relation hot, however, has a

limited domain of applicability. For instance, this concept does not

make sense in general when referred to pairs of elementary

geometrical shapes. As a particular example, a triangle can be said

to be sharp, but not hot, compared to a circle.

Domains of applicability of two relations labeled by words may

be overlapping or disjoint. For example, domains of applicability

of hot and sharp overlap, e.g. in the food domain, while the domains

of applicability of differentiable, a mathematical term, and charismatic

appear to be disjoint. Two relations labeled by words within an

overlap of their domains are synonyms, if their vectors point in the

same or similar directions (e.g., hot and sharp in the food domain).

They are antonyms, if their vectors point in the opposite or nearly

opposite directions (e.g., hot and cold). These notions of synonymy

and antonymy have a clear geometrical interpretation in X locally.

However, they may or may not be globally consistent. For

instance, good and bad are in general globally consistent antonyms,

i.e. they point in nearly opposite directions in all of their

overlapping domains of applicability. In contrast, hot and cool are

often antonyms but occasionally point in similar directions, i.e. are

synonyms, as in the example of ‘‘a hot videogame’’ and ‘‘a cool

videogame’’ (cf. footnote 1).

The vectors representing relations labeled by words, when

translated to a common origin, span a vector space V. Here they

can be further rotated to reduce the dimension of V, respecting the

following rule: global synonyms should remain nearly parallel and

global antonyms nearly anti-parallel. However, the converse may

not be true. For example, if red and brown arrows (Figure 10) have

Figure 10. Semantic space concept. X: space of concepts (meanings) internally delineated by distinct domains of applicability; V: space of
relations among concepts; G: graph of relations among selected concepts in X. Links connecting concepts in X and in G are translated to common
origin in V and rotated to minimize the energy function (*), while preserving their consistent angular relations that correspond to the notions of
synonymy and antonymy.
doi:10.1371/journal.pone.0010921.g010
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overlapping domains in X and represent synonyms, then they

should be nearly parallel in V. Blue and purple arrows have

disjoint domains and therefore cannot be called global synonyms

or antonyms, despite the fact that they are nearly parallel in V.

Thus, their mutual orientation in the embedding of X could be

any. Red and purple arrows have overlapping domains and are

nearly anti-parallel in X (antonyms), therefore, they have to keep

this property in V. However, brown and purple arrows cannot be

antonyms, because their domains are disjoint. Red and green

arrows have overlapping domains in X and are orthogonal in their

common domain in X: they are neither synonyms nor antonyms.

While in principle according to the above rule they can be

oriented at any angle in V, our numerical experiments show that

they are more likely to be nearly orthogonal to each other in V, if

other angular relations within the overlap of their domains are

satisfied.

The above rule to translate and rotate vectors from X to V is

captured by the energy function described in Materials and

Methods (*). As a consequence of the optimization process, the

dimension of V can be smaller than the dimension of the Euclidean

space into which X is mapped. However, because metrics in V

respect consistent synonym and antonym relations among all

vectors defined at any given location in X, the dimension of V is

unlikely to be smaller than the dimension of X itself. Therefore, the

dimension of V, which in our analysis is ,4 provides an

approximate upper bound on the dimension of X and a lower

bound on the dimension of the Euclidean space into which X is

mapped.

According to this interpretation, the results of our work can be

restated as the following. There are only a small number (,4) of

independent (‘‘orthogonal’’) semantic relations that generally

apply in a consistent manner to almost all possible domains of

applicability. In order of importance, or of the amount of meaning

they express, as measured by the captured variance, they can be

identified as good/bad (valence), calm/excited (arousal), open/

closed (freedom), and copious/essential. The first three of these

dimensions are consistent across corpora and languages.

An alternative, simplistic view of the semantic space X is a

connected graph G (Figure 10, right), where nodes are words now

interpreted as corresponding to broad categories in the set X.

Edges of G represent relations among words, namely synonymy

(black) and antonymy (colored). Because each meaning of a word,

and in most cases each word, typically has at most one antonym in

the dictionary, words again can be associated with directions of

their antonym links and therefore can be embedded as vectors in

V, as described above. The above analysis suggests that equivalent

semantic properties of V will result from interpretation of either

individual words or pairs of antonyms as vectors in V.
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