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Abstract: Food supplements with microalgae are becoming increasingly abundant and can be easily
found anywhere. The most popular products are based on cyanophytes, such as Aphanizomenon
flos-aquae, Arthrospira platensis and Limnospira maxima, or on chlorophytes, such as Chlorella or
Haematoccus. Although they are all advertised as being very beneficial for health, these products
might be harmful because they may contain cyanotoxins and other contaminants, and no information
on production methods or strain origins is usually provided. While legislation on the presence
of microcystins in waters for different uses is clear, toxicological analyses are not compulsory for
food supplements, nor for analyzing anatoxins. Given the potential risk of eating contaminated
food, cyanotoxins, heavy metals and the presence of other contaminant organisms were analyzed in
10 microalgae food supplements. Microcystin-LR and anatoxin-a were detected in three analyzed
products, and in both cyanophyte- and chlorophyte-based products. The light microscope study
revealed the presence of different potentially harmful microbial contaminants. The ICP (OES) analyses
detected high concentrations of some heavy metals, especially Pb. The results emphasize the need
to promote the better control of food products containing microalgae, and to develop standard
methodologies to analyze cyanotoxins and potential toxic compounds to protect consumer health.

Keywords: anatoxins; bacteria; cyanotoxins; fungi; heavy metals; microalgae supplements;
microcystins

Key Contribution: Highlight the potential health risks of algae supplements and the need for
international sanitary control agreements.

1. Introduction

The increasing popularity of microalgae food products and supplements worldwide is based
on their potential health benefits because they can represent a source of proteins, vitamins, essential
fatty acids and antioxidants [1]. Current food production challenges, especially meat, and their
consequences for our planet may explain why many people are changing to vegan or vegetarian
diets [2]. Thus, meat substitutes like microalgae flourish [3,4], and the world demand for these products
increases [1], even if the long-term success of such products depends especially on their digestibility,
bioavailability and clinical evidence [5].

Cyanobacteria are considered natural health promoters in different ways: prevention and
control of obesity, control of diabetes, as anti-inflammatory, antibacterial, antiviral, anticancer,
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hypocholesteraemic or hypotrigliceridaemic agents, as antioxidants, and as promoters of the immune
system and neuroprotectors, as several clinical trials have shown [6–16]. BGAS (Blue Green Algal
Supplements) can be easily obtained in herbalists, supermarkets, pharmacies or on the Internet [6].
The most frequent species used for these food supplements are Limnospira maxima (Setchell and Gardner)
Nowicka-Krawcysk, Mühlsteinova and Hauer (usually under the name of Spirulina maxima), Arthrospira
platensis Gomont (normally called Spirulina platensis (Gomont) Geitler) and Aphanizomenon flos-aquae
Ralfs ex Bornet and Flahault [17,18]. Microalgae from other taxonomic groups are also frequently
consumed, of which the most popular are probably Chlorella and Haematococcus (Trebouxiophyceae
and Chlorophyceae, respectively). These products are available in diverse forms (e.g., pills, capsules,
powder, flakes, tablets) [19–21] and have been progressively included in other products, like biscuits,
pasta, drinks or yoghurt [22,23]. As it is compulsory to only indicate the composition, daily intake
and a warning about them not substituting healthy diet in most countries [24,25], the labels of these
products are often inaccurate and do not offer information about geographic origin, if they are collected
from nature, or if they are produced in close bioreactors or open systems. All these aspects represent a
potential hazard and a risk for different contamination kinds.

When microalgae are produced in outdoor ponds, they can be affected by air-coming pollutants,
and the presence of other algae and microorganisms is unavoidable [26,27] and poses a hazard if
these organisms produce toxic compounds. The presence of Microcystis aeruginosa (Kützing) Kützing
(the most important microcystin producer) in supplements of Aphanizomenon flos-aquae Ralfs ex Bornet
and Flahault has been documented [28,29], but sometimes those containing A. flos-aquae are used
to treat children with hyperactivity or attention deficiency syndrome [30]. Thus no clear idea is
available of what a healthy daily dose actually is [17,21,30,31]. These products are normally bought
with no medical prescription and are perceived as being safe [6,25,32,33]. However, some studies
have detected microcystin (MC) concentrations below 1 µg/g [6,30,33–35], and chronic exposure
to this low concentration can also pose a major health problem, especially for children given its
carcinogenic character.

The WHO recommends a tolerable daily intake (TDI) of 0.04 µg/kg for adults of corporal body/day
microcystin, which means 0.24 µg per day for a person weighing 60 kg [36]. In some countries, however,
this limit has been modified, e.g., the USA (Oregon), 1 µg of MC-LR equivalents/g of dry weight has
been proposed [37]. There is also growing concern about high levels of some metals, mostly related to
the location of the cultivation ponds or chemicals used for harvesting biomasses [38], or even essential
macro- and trace elements that can pose health problems [39]. The presence and proliferation of other
microorganisms (fungi and bacteria) are frequently detected in food [40], especially under deficient
conservation conditions. Food supplements are not free of such contamination and no data on it
are available.

This study aims to assess the ecological and non ecological microalgae product contents
in cyanotoxins, other microbial organisms, toxic metals and macro- and trace elements to
envisage the importance of control during production processes and labeling, and the need for
international legislation.

2. Results

2.1. Microscopic Analysis

All the samples contained lower or higher proportions of microorganisms other than microalgae,
of which fungi hyphae, fungi conidia, other algae and bacteria were frequent (Figures 1 and 2).
Chlorophyta were present in the Spirulina samples, and Spirulina-like morphos were also found in
the Chlorella products. Chlorella product number 7 contained different chlorophytes (Trebouxia-like)
and several cyanophytes, diatoms, fungi hyphae and conidia. Gram-staining allowed the Clostridium
with endospores in this product to be identified (Figure 2). The proportion of these contaminants
varied from low to high (Table 1). The variability between the studied aliquots was always very
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wide. The ecological products contained a higher proportion of contaminants and were the only ones
with Clostridium.
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Figure 1. Microscopic observation of the microalgae supplement products: (a). Cell aggregations
(product 7); (b) Trebouxia-like cells (product 7); (c) Branched fungal hyphae (product 7); (d). Arthrospira
fragment (product 5); (e). Chlorococaceae and Arthrospira fragments (product 8); (f). Fungi hypha and
conidia (product 3); (g) Aphanizomenon phragmented (product 10); (h). Fungi hypha and conidia
(product 9); (i) Synechococcus (product 10). The material from image 1 was stained with lugol and that
from images 3, 6, 8 and 9 was stained with methylene blue.
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Figure 2. Microorganisms observed in the analyzed microalgae supplement product 7: (a) Multicellular
fungi conidium; (b) Clostridium type Gram- endospore (arrow).

Table 1. Proportion of the microorganisms observed in the analyzed microalgae supplement products:
1 = 1–20%, 2 = 21–50%, 3>50%, - absent.

Products Commercial Name

Contaminants 1
Spirulina

2
Chlorella

3
Alga

Spirulina

4
Espirulina

5
Spirulina

6
Spirulina

7
Chlorella

8
Spirulina

9
Klamath

and
Spirulina

10
Upper

Klamath
Algae

Fungi hyphae 3 3 3 2 2 2 2 2 3 3
Conidia 2 2 2 1 1 2 2 1 1 1

Other algae 1 1 1 1 1 1 2 1 1 1
Bacteria 2 2 2 2 2 2 2 2 2 2
Bacteria

endospores - - - - - - 1 - - -

2.2. ELISA

Of the samples, 30% were positive to microcystin/nodularin, namely products 7 (Chlorella),
9 (Klamath and Spirulina) and 10 (Upper Klamath Algae), and some had higher concentrations than
the standard range (Table 2).

Table 2. ELISA test results: <0.15 below the value of the lowest concentrated standard, >5.00 = over
the value of the highest concentrated standard.

Products Commercial Name

Toxins 1
Spirulina

2
Chlorella

3
Alga

Spirulina

4
Espirulina

5
Spirulina

6
Spirulina

7
Chlorella

8
Spirulina

9
Klamath

and
Spirulina

10
Upper

Klamath
Algae

Absorbance
450 nm

0.761 ±
0.051

1.042 ±
0.126

0.759 ±
0.087

0.868 ±
0.071

0.867 ±
0.048

0.719 ±
0.107

0.451 ±
0.132

0.960 ±
0.180

0.115 ±
0.004

0.172 ±
0.012

MC-NOD (µg) <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 0.813 <0.15 >5.00 >5.00
Dry weight (g) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

2.3. HPLC-MS

The three samples positive with ELISA contained MC-LR at different concentrations. However,
in product 7 (Chlorella), the concentration was unquantifiable as it was under the limit of quantification
(LoQ; Table 3), but its presence was confirmed in the fortified samples. Anatoxin-a was also present in
the three samples. These, and all the other tested variants ([Dhb7]-MC-LR, MC-RR, MC-YR, MC-LW
and MC-LF) and nodularin, were below the detection level in the other analyzed products.
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Table 3. HPLC-MS analysis results. Limit of quantification (LoQ).

Product MC-LR
(µg/g)

ANA-a
(µg/g)

Dry Weight
(g)

7. Chlorella <LoQ 0.034 ± 0.002 1.64
9. Klamath and Spirulina 0.008 ± 0.002 0.025 ± 0.006 1.57
10. Upper Klamath Algae 0.002 ± 0.0001 0.002 ± 0.001 1.53

The chromatograms of product 9, containing Aphanizomenon and Spirulina, with labeled Anatoxin-a
(ANA-a) and Microcystin LR (MC-LR) peaks, are shown in Figure 3.

Toxins 2020, 12, x FOR PEER REVIEW 5 of 14 

 

Table 3. HPLC-MS analysis results. Limit of quantification (LoQ). 

Product 
MC-LR 
(µg/g) 

ANA-a 
(µg/g) 

Dry weight 
(g) 

7. Chlorella <LoQ 0.034  0.002 1.64 
9. Klamath and Spirulina 0.008  0.002 0.025  0.006 1.57 
10. Upper Klamath Algae 0.002  0.0001 0.002  0.001 1.53 

The chromatograms of product 9, containing Aphanizomenon and Spirulina, with labeled 
Anatoxin-a (ANA-a) and Microcystin LR (MC-LR) peaks, are shown in Figure 3. 

 
Figure 3. Chromatogram of A. flos-aquae and S. platensis (product 9). 

2.4. Elemental Composition 

The concentration of metals vastly varied among products (Table 4). The Al and Fe 
concentrations were very high in products 1, 3 and 6, and Cr was high in products 1 and 3. Cu was 
high in 7 compared to all the other products, but its levels fell within the safety limits according to 
the European Food Safety Authority (EFSA) [41]. Pb was detected in products 1–3, 5–6 and 8. As was 
found in products 6, 9 and 10, Mo only in samples 6 and 10, Ti was very high in 1, 3 and 6, and Ni 
was high only in sample 3 compared to the rest. In all cases, levels fell within the safety limits [41]. 

The Na concentration was very high in samples 1 and 3 versus all the others, which probably 
indicates a marine culture (Table 4). However, if the products’ intake recommendation is followed 
(Table 5), doses do not reach the maximum ones recommended by European regulations [41]. The 
recommended dietary daily intake for an adult male is estimated at between 8–10 mg Fe/day [42,43]. 
Products 1–3 and 6 exceeded that value, especially product 1 which, according to the indications on 
its label, it could represent 5× the recommended value.

Figure 3. Chromatogram of A. flos-aquae and S. platensis (product 9).

2.4. Elemental Composition

The concentration of metals vastly varied among products (Table 4). The Al and Fe concentrations
were very high in products 1, 3 and 6, and Cr was high in products 1 and 3. Cu was high in 7 compared
to all the other products, but its levels fell within the safety limits according to the European Food
Safety Authority (EFSA) [41]. Pb was detected in products 1–3, 5–6 and 8. As was found in products 6,
9 and 10, Mo only in samples 6 and 10, Ti was very high in 1, 3 and 6, and Ni was high only in sample
3 compared to the rest. In all cases, levels fell within the safety limits [41].

The Na concentration was very high in samples 1 and 3 versus all the others, which probably
indicates a marine culture (Table 4). However, if the products’ intake recommendation is followed
(Table 5), doses do not reach the maximum ones recommended by European regulations [41].
The recommended dietary daily intake for an adult male is estimated at between 8–10 mg Fe/day [42,43].
Products 1–3 and 6 exceeded that value, especially product 1 which, according to the indications on its
label, it could represent 5× the recommended value.

The full elemental analysis results are shown in the Supplementary Material (Table S1).
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Table 4. Elemental composition of microalgae products (detection level = 0.01 µg/g).

Products Al
µg/g

As
µg/g

Cr
µg/g

Cu
µg/g

Fe
µg/g

Mo
µg/g

Na
µg/g

Ni
µg/g

Pb
µg/g

Sr
µg/g

Ti
µg/g

1. Spirulina 308.65 ± 15.43 <0.01 2.03 ± 0.06 1.22 ± 0.09 940.55 ± 47.02 <0.01 12.55 ± 0.75 0.70 ± 0.04 0.54 ± 0.04 23.06 ± 2.07 22.93 ± 0.91
2. Chlorella 43.62 ± 1.31 0.13 ± 0.05 1.19 ± 0.06 3.52 ± 0.14 661.64 ± 46.31 <0.01 0.41 ± 0.02 0.38 ± 0.03 0.26 ± 0.01 7.26 ± 1.09 9.99 ± 0.79

3. Alga Spirulina 482.53 ± 19.30 <0.01 2.74 ± 0.14 1.63 ± 0.03 1053.56 ± 84.28 <0.01 8.24 ± 0.41 2.54 ± 0.20 0.87 ± 0.03 24.37 ± 1.70 35.84 ± 1.79
4. Espirulina 39.08 ± 0.78 <0.01 0.62 ± 0.03 0.30 ± 0.02 324.34 ± 9.72 <0.01 1.66 ± 0.03 0.08 ± 0.01 <0.01 15.24 ± 0.45 2.42 ± 0.12
5. Spirulina 40.76 ± 1.63 <0.01 0.41 ± 0.02 0.45 ± 0.04 260.45 ± 15,63 <0.01 11.19 ± 0.78 0.20 ± 0.01 0.14 ± 0.01 12.47 ± 0.75 1.96 ± 0.05
6. Spirulina 263.73 ± 18.48 0.34 ± 0.02 1.83 ± 0.11 0.99 ± 0.06 896.61 ± 44.83 3.15 ± 0.19 2.26 ± 0.14 0.26 ± 0.02 0.39 ± 0.03 13.27 ± 0.39 34.81 ± 2.44
7. Chlorella 17.58 ± 0,88 <0.01 1.06 ± 0.04 9.14 ± 0.73 123.59 ± 2.47 <0.01 2.15 ± 0.13 0.16 ± 0.01 <0.01 20.36 ± 1.42 1.66 ± 0.06
8. Spirulina 77.40 ± 5.42 <0.01 1.11 ± 0.08 0.65 ± 0.04 262.05 ± 20.96 <0.01 8.14 ± 0.73 0.54 ± 0.02 0.14 ± 0.01 27.56 ± 1.10 3.72 ± 0.33

9. Klamath and
Spirulina 97.57 ± 6.83 2.07 ± 0.10 0.79 ± 0.04 2.85 ± 0.19 363.18 ± 21.79 0.36 ± 0.03 3.48 ± 0.28 0.66 ± 0.02 <0.01 25.42 ± 1.52 6.14 ± 0,25

10. Upper
Klamath Algae 20.01 ± 1.80 2.20 ± 0.06 0.28 ± 0.02 3.68 ± 0.15 305.89 ± 12.24 2.03 ± 0.08 1.82 ± 0.11 0.32 ± 0.01 <0.01 33.47 ± 2.67 2.82 ± 0.14

Table 5. Recommended daily intake (RDI) from product labels and the corresponding daily intake for a person weighing 60 kg (n.d. below the detection
level= 0.01 µg/g).

Products RDI
G

Al
mg

As
µg

Cr
µg

Cu
µg

Fe
mg

Mo
µg

Na
µg

Ni
µg

Pb
µg

Sr
mg

Ti
mg

1. Spirulina 60.00 18.51 n.d. 121.80 73.20 56.43 n.d. 753.00 42.00 32.40 1.38 1.37
2. Chlorella 25.00 1.10 3.25 29.75 88.25 16.54 n.d. 10.25 9.50 6.50 0.18 0.25

3. Alga Spirulina 10.00 4.82 n.d. 27.40 16.30 10.53 n.d. 82.40 25.40 8.70 0.24 0.36
4. Espirulina 0.90 0.04 n.d. 0.56 0.27 0.29 n.d. 1.49 0.07 n.d. 0.01 0.002
5. Spirulina 2.34 0.09 n.d. 0.96 1.05 0.61 n.d. 26.18 0.47 0.33 0.03 0.004
6. Spirulina 3.60 0.95 1.22 6.59 3.56 3.22 11.34 8.14 0.94 1.40 0.05 0.12
7. Chlorella 3.60 0.06 n.d. 3.82 32.90 0.44 n.d. 7.74 0.58 n.d. 0.07 0.005
8. Spirulina 1.35 0.10 n.d. 1.50 0.88 0.35 n.d. 10.99 0.73 0.19 0.04 0.005

9. Klamath and Spirulina 1.20 0.12 2.48 0.95 3.42 0.43 0.43 1.50 0.79 n.d. 0.03 0.007
10. Upper Klamath Algae 0.75 0.01 1.65 0.21 2.76 0.23 1.52 1.37 0.24 n.d. 0.02 0.002
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3. Discussion

As it is not compulsory, most commercial products do not display information about the origin of
their material, culture, collection or preservation methods. Only product number 2 indicated that the
alga was grown in freshwater ponds, and products 9 and 10 explain that Aphanizomenon was collected
from Klamath Lake, but they added Spirulina of unknown origin to product 9. On other occasions,
statements were untrue because, as in products 1 and 2, they indicated that they were free of heavy
metals or bacteria. However, fairly high concentrations of Pb and bacteria were detected in the former.
No information about the presence of other organisms was displayed because it is not compulsory to
do so. Our microscopic study showed the presence of several different microorganism species in all the
products, especially in 7 (Chlorella), including some potential cyanobacteria. The presence of foreign
species (not indicated on labels) was more frequent in the ecological than in the non-ecological products.

The presence of fungi hyphae and conidia was frequent, and a good number of fungi could produce
toxic compounds, and can even prove lethal [41]. Endospores of an unidentified Clostridium were also
detected, and some species of this genus could also produce lethal compounds [44]. The proliferation on
these organisms is probably related to inadequate microalgae biomass preservation after collection [40].

The presence of microcystin in microalgae-based food supplements has been previously
documented, especially when they contain Aphanizomenon [6,21,27,28,33,35,45,46]. The more
commercialized Aphanizomenon comes from Klamath Lake (USA), and several reports about the
toxicity of this product are found in literature [28–30,46]. Anatoxin-a has been also detected in food
supplements previously [47,48]. When microalgae production takes place outdoors, it is almost
impossible to avoid the presence of other species, and some can produce toxins regardless of the
growing algae being cyanophytes or not. According to our results, both MC-LR and anatoxin-a were
detected in a Chlorella product, as formally indicated in [30] and [49].

The provided labels are usually inaccurate as factual and declared contents usually do not match,
although other authors have found a stronger resemblance [38,50]. The public is not generally aware
that ecological labels are not a non-toxicity guarantee because they only indicate that chemical fertilizers
and pesticides were avoided during production. The analyzed subsamples offered wide variability,
which indicates that both toxin concentration and the concentration of contaminants can change with
different doses.

The microcystin TDI for adults must be below 0.04 µg per kg of body weight, which means a
maximum intake of 2.4 µg for people weighing 60 kg [51]. If product recommendations are followed,
the limit will not be surpassed in this case. However, the risk remains, especially for children
if we bear in mind these compounds’ carcinogenic characters and their longer exposure to them.
No recommendations exist for anatoxin-a.

The WHO [51] does not recommend eating food containing Pb, which emphasizes that care should
be taken with children because it is apparently related to neurodegenerative processes, Moreover, Pb is
absorbed more in children than in adults, and accumulates in soft tissues and bones. Nevertheless,
a high concentration of this element has already been reported [38]. The EFSA [52] recommends a dose
of 0.50 mg/kg body weight for children up to the age of 7 years, but information about the presence of
this metal is usually omitted from labels. Sr and Ti are used as food conservative products and are
not considered problematic. The same applies to Al, which is employed as a flocculant [53], but the
EFSA recommends further studies being conducted on the potential risk of being exposed to the
increasing Al levels detected in food [52]. Some products have a high Fe concentration and poisoning
with oral pharmaceutical-like iron preparations can cause mucosal erosion in both the stomach and
intestine, with young children particularly at risk [42,43]. Given the potential pro-oxidant effects of
Fe, extensive research into possible links between Fe and cancer development has been carried out.
Several case-control studies show that the risk of colorectal cancer is positively associated with Fe
intake [43,54,55].

In some cases, a product’s chemical composition is displayed. However, major elements like Na+

are not included, not even when some strains are grown in saline water that increases the probability
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of a high concentration of this ion, which poses a risk for people with heart or hypertension problems,
especially when products with this microalga are considered hypotensive [9].

Overall the most important problem is that daily doses for children are not usually indicated,
which increases this population’s vulnerability, especially when these products have been recommended
for different child illnesses.

4. Conclusions

Microalgae products may contain microcystins that increase the probability of developing cancer,
especially as microcystins are carcinogenic and these products are consumed on a daily basis. The TDI
for adults and children should be clearly indicated on labels and take into account children’s potentially
longer exposure, especially when these products are recommended for several child illnesses.

Anatoxin-a has also been detected, which confirms previous reports urging legislative regulations
being made for this cyanotoxin.

Some products contain other biological contaminants like fungi and bacteria, some of which are
toxic and increase the probability of toxic events.

The presence of heavy metals and other potentially harmful ions was detected in most products,
which poses increasing toxicity risks for consumers.

An international agreement about providing a toxicological analysis of products should be
compulsory, whose results ought to be indicated on labels, together with information about production
and preservation methods and/or elemental analyses.

5. Materials and Methods

5.1. The Analyzed Algae Supplement Products

Products were selected from those containing cyanobacteria and Chlorella by ecological (5) and
non-ecological production (5) (Table 6). All the products were bought in local shops, except for the
Aphanizomenon-containing products, which were purchased on by the Internet.

Table 6. Displayed composition, format, cultivation and country of origin of the analyzed products.

Product
Number

Product
Name

Microalgae
Composition Producer/Seller Ecological Presentation Cultivation Country

of Origin

1 Spirulina 100% Spirulina Ecolife Yes Powder Outdoor
ponds China

2 Chlorella 100% Chlorella Ecolife Yes Powder Outdoor
ponds China

3 Alga
Spirulina

Arthrospira
platensis Drasanvi Yes Powder - Spain

4 Espirulina 71% Limnospira
maxima

Vive+ Salud y
Vida No Capsules - Spain

5 Spirulina Arthrospira
platensis Biogran S.L. No Tablets - -

6 Spirulina 100% Spirulina Raab Vitalfood Yes Tablets
Controlled

biologic
aquaculture

No EU

7 Chlorella 100% Chlorella Raab Vitalfood Yes Tablets
Controlled

biologic
aquaculture

No EU

8 Spirulina Arthrospira
platensis Nature Essential No Tablets - No EU

9
Klamath

and
Spirulina

50%
Aphanizomenon

flos-aquae
50% Arthrospira

platensis

Santiveri No Tables Collected in
nature + ? -

10
Upper

Klamath
Algae

Aphanizomenon
flos-aquae

Blue Green
Planet No Capsules Collected in

nature USA
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5.2. Light Microscopy

All the samples were observed before any later analysis was done under an OLYMPUS BX50F
microscope equipped with a digital camera. Samples (500 mg) were suspended in deionized water
and several stain methods were followed: methylene blue to evidence sheaths or mucilage; lugol (IIK)
to differentiate starch/pyrenoids; Gram to observe bacterial walls. Three slides were prepared per
sample and the microorganisms present in three random traverses from each slide were quantified on
a semiquantitative scale from 1 to 3: 1= 1–20 %, 2= 21–50%, 3>50%.

5.3. Extraction

Samples were ground in a mortar with a Teflon tissue grinder and were weighed on a precision
balance. The recorded weights are found in Tables 2 and 3. Three replicates were prepared per sample.

Protocols [56] and [57] were followed for extraction purpose. Samples were transferred to glass tubes
and left in a freezer at −20 ◦C for 1 h before being transferred to a freezer drier (Christ Alpha 1-2 LD)
for 2 h. The extraction process was repeated three times at 60 ◦C in 2.5 mL 75% methanol-25% Millipore
water (v/v). Extracts were dried in a Speedvac (Savant SPD 121P, Waltham, MA, USA), reconstituted in
900 mL methanol, transferred to 2 mL Eppendorf vials with a cellulose-acetate filter (Corning Costar
Spin-X centrifuge tube filters) and centrifuged for 5 min at 16,000× g (Optima L-100 XP de Beckman
Coulter, Brea, CA, USA). Filtrates were transferred to amber glass vials for the HPLC/MS analysis.

5.4. Cyanotoxins Characterization and Quantification

5.4.1. ELISA Test

Extracts were analyzed following the recommendations of Abraxis (Los Ángeles, CA, USA)
Microcystins (ADDA-DM ELISA kit PN522015 Microtiter Plate). The results were obtained after
reading with a plate reader BMG Labtech FLUOstar Omega at 450 nm. The detection limit of the kit
was 0.10 µg/L for MC-LR.

5.4.2. HPLC-MS

All the extracts were later analyzed by HPLC Agilent 1290 Infinity II coupled to a hybrid mass
spectrophotometer Agilent Q-TOF 6550, with an ionization source JetStream electrospray + i-Funnel.
Samples were analyzed for eight MC variants ([Dhb7]-MC-LR, MC-RR, MC-YR, MC-LR, MC-LW,
MC-LF, anatoxin-a (ANA) and nodularin (NOD) from SIGMA-ALDRICH). Compounds were separated
in an Agilent Eclipse XDB-C18 4.6 × 150 mm, 5 mm column by Millipore water with 0.1 % formic
acid (v/v, eluent A) and acetonitrile with 0.1% formic acid (v/v, eluent B). The elution program was
0–2 min 30% B, 6–12 min 90% B, with a linear increase of B between 2 and 6 min, and a 5-min post
run at 30% B. The injection volume, flow and column temperature were 20 mL, 0.5 mL/min and 40 ◦C,
respectively. MS operated in the positive mode and nitrogen was used as the drying and collision gas.
The quadrupole was operated in the unit mode and four spectra/sec were recorded. Samples were
quantified against a calibration curve and subsequently corrected for recovery (Table 7). Two replicas
were obtained per sample and each replica was injected once.

Table 7. Technical characteristics of the HPLC-MS analysis.

Toxin Formula Theoretical
m/z

Standard
m/z

Standard
Rt(min)

Experimental
m/z

Experimental
Rt(min)

Anatoxin-a C10H15NO 166.1226 166.1221 0.52 166.1219 0.58
Nodularin C41H60N8O10 825.4505 825.451 2.39 - -

[Dhb7]-MC-LR C48H72N10O12 981.5404 981.5404 3.39 - -
MC-LR C49H74N10O12 995.556 995.5567 3.31 995.5528 3.3
MC-LW C54H72N8O12 1025.5342 1025.5342 4.71 - -
MC-RR C49H75N13O12 1038.5731 1038.5731 4.70 - -
MC-YR C52H72N10O13 1045.5353 1045.5353 3.16 - -
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The presence of phenylalanine was discarded because its theoretical m/z was 166.0863 and the
employed method could separate it easily from anatoxin [58].

5.5. Elemental Composition (ICP-OES)

The ground samples (500 mg) were digested in an ultraclave microwave digestor (Milestone
Inc. Shelton, USA) and then analyzed with an ICP-OES ICAP 6500 DUO Thermo in the CEBAS-CSIC
Ionomic Laboratory. The detection level was 0.01 µg/g.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/9/552/s1,
Table S1: Complete elemental analysis of microalgae supplements analysed with ICP/OES (Detection level
0.01 µg/g).
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