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Pregnancy and the postpartum period are associated with several physiological changes

that can alter the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs. For

certain drugs, dosing changes may be required during pregnancy and postpartum to

achieve drug exposures comparable to what is observed in non-pregnant subjects. There

is very limited data on fetal exposure of drugs during pregnancy, and neonatal exposure

through transfer of drugs via human milk during breastfeeding. Very few systematic

clinical pharmacology studies have been conducted in pregnant and postpartum women

due to ethical issues, concern for the fetus safety as well as potential legal ramifications.

Over the past several years, there has been an increase in the application of modeling

and simulation approaches such as population PK (PopPK) and physiologically based

PK (PBPK) modeling to provide guidance on drug dosing in those special patient

populations. Population PK models rely on measured PK data, whereas physiologically

based PK models incorporate physiological, preclinical, and clinical data into the model

to predict drug exposure during pregnancy. These modeling strategies offer a promising

approach to identify the drugs with PK changes during pregnancy to guide dose

optimization in pregnancy, when there is lack of clinical data. PBPK modeling is also

utilized to predict the fetal exposure of drugs and drug transfer via human milk following

maternal exposure. This review focuses on the current status of the application of PBPK

modeling to predict maternal and fetal exposure of drugs and thereby guide drug therapy

during pregnancy.

Keywords: maternal, fetal, pharmacology, pregnancy, PBPK

Pregnant women take one to three medications on an average in addition to the routine iron and
vitamin supplements recommended during pregnancy (1). Pregnant women take medications for
acute illnesses such as nausea and vomiting, upper respiratory tract and urinary tract infections or
for chronic conditions such as psychiatric disorders, HIV infection, epilepsy, organ transplantation,
rheumatological conditions, or substance abuse disorder. Pharmacotherapy is also needed for
pregnancy-induced conditions like hypertensive disorder, preterm labor and gestational diabetes
(2). Pregnant women and their fetuses are orphan populations with regards to information on the
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safety and efficacy of drugs. Ninety eight percent of the drugs
approved in the United States between 2000 and 2010 have
insufficient data on drug dosing during pregnancy, while seventy
percent of them have no data on drug use in pregnancy (3).
Pregnant women are excluded from clinical studies due to
ethical, fetal safety and medico-legal concerns. Therefore, there
is limited data available on PK and PD of drugs used in
pregnancy. Table 1 lists the issues and potential confounding
factors contributing to the lack of PK and PD data in pregnancy.
Current dosing recommendations in pregnancy are based on
data obtained from non-pregnant population. In this context,
modeling and simulation techniques like PopPK or PBPK
can provide additional information regarding appropriate drug
dosing in this special population. A summary of ideal studies
that could be conducted during pregnancy and the next best
alternative or alternate approaches that can be used when
a clinical study is not practical to obtain necessary data, is
presented in Table 2.

PHYSIOLOGICAL CHANGES DURING
PREGNANCY

Several physiological changes occur during pregnancy that
help support the growth and development of the fetus. The
absorption, distribution, metabolism and excretion processes of
drugs can be altered during pregnancy and may contribute to
altered PK of drugs. Table 3 summarizes pregnancy mediated
physiological changes that can impact PK processes. Reduced
gastrointestinal motility and delayed gastric emptying time
during pregnancy can reduce drug absorption. There is an
increase in gastric pH during pregnancy which can lead to
changes in absorption of acidic drugs due to increased ionization
(10, 11). A systematic study evaluating the impact of changes
in drug absorption on pharmacokinetics after intravenous vs.

TABLE 1 | Need for designed pharmacological studies performed during

pregnancy, lactation and postpartum.

Scope of the problem Contributors to the problem

• Inadequate pharmacological

studies performed during

pregnancy, lactation and

postpartum

• Limited data on pregnancy

mediated changes in drug

exposure and response

• Optimal dosing for pregnant,

lactating, postpartum women

unclear for most medications

• Impact of drug exposure on fetal

growth and development is unclear

for almost all medications used

during pregnancy

• Limited data on drug transfer

through breast feeding

• Limited incentive for industries

(safety—liability issues)

• Pregnancy is an exclusion in most

clinical trials

• Inadequate funding for clinical

pharmacology research in pregnant,

lactating and postpartum women

• Inadequate number of investigators

qualified to perform or engaged in

such studies

• Inconvenient study designs for

participants

• Need for innovative sampling

techniques and

modeling approaches

oral administration during pregnancy and postpartum is lacking.
Several physiological changes may alter drug distribution such
as increased plasma volume, maternal plasma protein dilution
or organ volume variation (fat) (12–14). The expression and
activity of certain CYP enzymes change during pregnancy
which may lead to change in metabolism of selected substrates.
The metabolism of drugs catalyzed by cytochrome P450
(CYP) isoenzymes CYP3A4, CYP2D6, CYP2C9 and certain
uridine glucuronosyltransferases (UGT) isoenzymes UGT1A4
and UGT1A9 is increased during pregnancy (15) and the
metabolism of CYP1A2 and CYP2C19 substrates is decreased
during pregnancy (15, 16).

Accumulating in-vivo and in-vitro data suggests that the
increased levels of steroid hormones during pregnancy might
be responsible for altered metabolism of certain substrates (17).
For example, UGT1A1 up-regulation was seen in progesterone
treated HEPG2 cells co-transfected with PXR as compared to
control cells. An increase in the glucuronidation (UGT1A4) was
observed in 17-beta estradiol treated HEPG2 cells co-transfected
with ERα receptor (18). Progesterone treatment caused up-
regulation of UGT1A in pregnant humanized UGT1A/ PXR
mice as opposed to pregnant humanized UGT1A mice with PXR
knockout suggesting the role of PXR activation leading to the up-
regulation of UGT1A enzymes (19). The renal excretion of drugs
is increased during pregnancy due to a 60–80% increase in renal
blood flow and a 50% increase in glomerular filtration rate (20).
To date there is limited data available elucidating the effect of
pregnancy on intestinal, hepatic and renal transporters involved
in the absorption, distribution, efflux, secretion and reabsorption
of drugs.

PBPK MODELING TO PREDICT DRUG
EXPOSURE DURING PREGNANCY

Model-based approaches can provide some information
regarding drug exposure and drug dosing in various patient
populations when direct clinical data is not available.
PBPK is a tool that can be used to predict drug exposure
in such patient populations. This model-predicted data
can be used to optimize drug dosing in special patient
populations and can be further fine-tuned as more clinical
data becomes available.

PBPK is a mechanistic approach that has been used in the
drug development processes to determine safe and optimal
doses to be used in clinical trials, estimate drug exposure in
special populations and also to predict drug-drug interactions
(21). It can be used as a viable alternative to generate clinical
data in special patient populations. Regulatory agencies such
as the US FDA and the European Medicines Agency have
accepted the use of PBPK modeling to facilitate the decision-
making process for conducting a clinical study in submissions
for Investigational New Drug and New Drug Applications
(22–24). PBPK models are multicompartmental models in
which each compartment corresponds to one or more organ
and is interconnected by the circulatory system. It integrates
important physiological parameters (e.g., blood flow, enzyme
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TABLE 2 | Ideal studies in pregnancy and alternative approaches.

Ideal studies Next best alternatives Alternate approaches

• Drug exposure studies (Pharmacokinetics over a dosing interval)

in first, second, third trimester and post-partum

• Drug response studies over a dosing interval (first, second, third

trimester and post-partum)

• Maternal drug safety assessments (first, second, third trimester

and post-partum)

• Fetal / Neonatal drug safety assessments (monitoring of

neonates and newborn)

• Drug excretion in breast milk (total amount excreted in breast

milk over a dosing interval)

• Surrogate drug exposure studies (limited

sampling strategy or trough level) in first,

second, third trimesters and post-partum

• Limited drug response studies (first, second,

third trimester and post-partum)

• Placental (in vitro) perfusion studies

• Cord blood sampling for fetal exposure

assessments

• Milk to plasma ratio for drugs in lactating

women

• Placental perfusion studies

• Placenta on a chip study

• Predictions based on probe drug studies

for DME and transporters

• Population PK modeling

• PBPK modeling and simulations

TABLE 3 | Physiological changes and potential impact on PK of drugs.

Pharmacokinetic

parameter

Effect of pregnancy Potential impact on

pharmacokinetics

Clinical example

Absorption Decrease in gastrointestinal motility and gastric

emptying time

Increase in gastric pH

Increase in gastrointestinal blood flow

Alterations in enzymes and transporters involved in

absorption of drugs

Increase or decrease in the rate of

absorption

Increase or decrease in bioavailability

Aspirin Cmax decreased by 29% during pregnancy

(4)

Lower Cmax of metoprolol during pregnancy (5)

Distribution Increase in cardiac output

Increase in total body water and fat

Decrease in plasma protein binding

Increase in volume of distribution Increase in volume of distribution of metoprolol

during pregnancy (5)

Metabolism Alterations of CYP and UGT enzyme activity

Increase in hepatic blood flow

Increase or decrease in metabolism

of substrates

Decrease in clearance of caffeine (CYP1A2

substrate) during pregnancy (6)

Increase in Clearance of lamotrigine (UGT1A4

substrate) during pregnancy as compared to

postpartum (7)

Excretion Increase in renal blood flow

Increase in glomerular filtration rate

Alterations of enzymes and transporters involved in

tubular reabsorption and secretion

Increase in renal excretion

Increase or decrease in tubular

reabsorption and secretion

Unbound renal secretion of digoxin increased during

pregnancy due to increased P-gP activity (8)

Increased renal secretion and renal clearance of

amoxicillin during pregnancy as compared

to postpartum (9)

and transporter abundance, cardiac output, glomerular filtration
rate) and drug related parameters (blood-to-plasma ratio, plasma
protein binding, permeability, solubility, in vitro metabolism
or transport) which are known to influence drug PK and
PD (25). Figure 1A represents an example of a minimal
PBPK model (26) and Figure 1B represents an example of
a PBPK model with each tissue/organ in the body being
considered as a separate compartment (27). Pregnancy creates
the need for additional compartments in the PBPK model.
Figure 2 depicts the structure of pregnancy-PBPK (p-PBPK)
model used in three different PBPK modeling software. The
most important compartment in a p-PBPK model is the fetal
unit. This is combined into a single “lumped” compartment
known as the fetoplacental unit in the Simcyp and GastroPlus
software. The fetoplacental unit incorporates the fetus, placenta,
amniotic fluid, membranes and umbilical cord as depicted in
Figures 2A,B. However, in the Open Systems Pharmacology
software package, each of these units are considered discrete
and accounted for separately, along with the inclusion of

myometrium and endometrium, as seen in Figure 2C. Table 4
summarizes the physiological parameters that are considered in
the Simcyp p-PBPK model.

CURRENT STATUS OF PREGNANCY PBPK
MODELS

Physiological changes during pregnancy are gestational age
dependent. For example, the activity of UGT1A4 increased by
200% during the first and second trimesters and by 300% during
the third trimester leading to increased clearance of lamotrigine
(7). Similarly, the changes in organ blood flow, activity of
certain metabolic enzymes and transporters are dependent on
gestational age. The p-PBPKmodels incorporate these gestational
age-related physiological changes into a normal PBPK model to
simulate pregnant population. These p-PBPKmodels can then be
used to predict the gestational age dependent pharmacokinetics
of different drugs.
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FIGURE 1 | (A) Minimal PBPK model with two tissue compartments (26). (B) Example of a PBPK model (27).
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FIGURE 2 | Basic structure of p-PBPK model in (A) Gatsroplus (B) SimCyp and (C) Open Systems Pharmacology (28).

TABLE 4 | Physiological parameters that are modified for pregnancy prediction in

Simcyp p-PBPK model.

List of parameters

Cardiac output

Total body weight

Total fat

Plasma volume

Red blood cell volume

Hematocrit

Serum albumin

Skin blood flow rate

Adipose blood flow rate

Renal blood flow rate

Fetoplacental unit blood flow rate

Enzyme and transporter activity

Several p-PBPK models have been developed and evaluated
for antiretroviral, anti-malarial, psychoactive drugs, drugs used
for the treatment of substance use disorder and environmental
chemicals. Although these models have been able to predict the
pharmacokinetics of certain drugs during pregnancy reasonably
well, there are still several challenges that remain unresolved.
There is no/limited information available to fully evaluate all
the assumptions that are used in such models. There is paucity
of data on combined effect of pregnancy and disease state
(e.g., diabetes, malaria, hypertensive disorder) on gestational
age-related changes in various physiological parameters and
hence the predictions must be interpreted with caution. Data
for drug elimination kinetics are typically scaled from in-
vitro cell culture experiments and these experiments do not

account for all the physiological changes which necessitates
additional extrapolation factors to be incorporated. There is
lack of information regarding changes in all drug metabolizing
enzyme and transporter activity across gestational ages. Enzyme
or transporter activity determined using probe drug data is
specific to the trimester in which the study was conducted and
cannot be extrapolated to other trimesters.

An exhaustive literature search was conducted using PubMed
with the keywords PBPK and pregnancy. The results from the
search with clinical observations are listed inTable 5with specific
examples discussed below.

REVIEW OF PREGNANCY PBPK MODELS
REPORTED IN THE LITERATURE

PBPK modeling has been used as a tool to guide and optimize
drug dosing in pregnancy for several drugs and scenarios
discussed below.

Drug Based Studies
Ziprasidone is an antipsychotic drug used to treat schizophrenia
and other psychiatric disorders. It is administered orally and
is metabolized by CYP3A4 primarily in the liver. Biesdorf
et al. established a PBPK model to predict drug exposure
during pregnancy using the Simcyp inbuilt pregnancy population
which includes gestational age-related changes in blood flow,
glomerular filtration rate, plasma protein binding etc. Since
the model used the pregnancy population in Simcyp, some
physiological changes that were not very specific to the route of
elimination of Ziprasidone were also incorporated. The model
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TABLE 5 | Review of published p-PBPK models.

Compound Route of

administration

Clinical observations Recommended dose

adjustment based on PBPK

modeling

Software Reference

Acetaminophen IV and oral dosing Lower acetaminophen

concentrations during pregnancy

as compared to non-pregnant

women

No dose adjustments since there

is lack of data on toxicity of the

metabolite NAPQI

Open Systems

Pharmacology®

(29)

Amoxicillin IV bolus and infusion Increased renal clearance during

pregnancy and postpartum

May need increased dosing

No clinical recommendations

Open Systems

Pharmacology®

(30)

Betamethasone IV, IM and oral dosing Increased clearance during

pregnancy

No clinical recommendations Simcyp® (31)

Buprenorphine Sublingual Decreased buprenorphine

exposure during pregnancy as

compared to postpartum

Increased dose/ more frequent

dosing

Simcyp (32)

Caffeine Oral dosing Increased maternal and fetal

exposure during pregnancy due

to reduced CYP1A2 activity

Limit caffeine intake GastroPlus® (33)

Caffeine, Midazolam,

Nifedipine, Metoprolol

Ondansetron,

Granisetron, Diazepam

and Metronidazole

IV and oral dosing Increase in clearance of

CYP2A6, CYP2E1, CYP2D6 and

CYP3A4 substrates and

decreased clearance of CYP1A2

and CYP2C19 substrates

Likely changes in dosing

No clinical recommendations

Open Systems

Pharmacology®

(34)

Caffeine, Metoprolol,

Midazolam

IV Bolus, Oral dosing 100% increase, 30% decrease

and a 35% decrease in the

exposure of caffeine, metoprolol,

and midazolam respectively

during pregnancy

Decreased dose for caffeine and

increased dose for metoprolol

and midazolam

Simcyp® (35)

Cefazolin, Cefuroxime,

Cefradine

IV and oral dosing Increased clearance of the three

drugs during pregnancy

Increased dose during

pregnancy

Open Systems

Pharmacology®

(36)

Ceftazidime,

Cefuroxime,

Fluconazole,

Aztreonam, Imipenem,

Ceftriaxone

IV and Oral dosing Decrease of in vivo drug

exposure (for all 6 drugs) in

pregnant women due to

increased renal clearance

No dose changes Simcyp® (37)

Cefuroxime, Cefazoline IV infusion, IV bolus or

infusion

Model accurately predicts

changes in renal clearance for

both drugs, however inclusion of

postpartum data is necessary for

fine tuning

No clinical recommendations GastroPlus® (38)

Darunavir boosted with

ritonavir

Oral dosing Decreased Darunavir exposure

during second and third trimester

of pregnancy

Increased dose or dosing

frequency during pregnancy

Simcyp® (39)

Dolutegravir Oral dosing Dose of 50mg q.d Dolutegravir

provides sufficient fetal exposure,

resulting in 90% viral inhibition

No dose changes Berkeley Madonna (40)

Dolutegravir, Raltegravir Oral dosing Decreased exposure during

pregnancy

No dose changes Open Systems

Pharmacology®

(41)

Emtricitabine and

Acyclovir

Oral dosing Lower emtricitabine and

acyclovir concentrations during

pregnancy with the lowest

concentrations during the third

trimester

No dose changes Open Systems

Pharmacology®

(42)

Emtricitabine,

Dolutegravir, Raltegravir

Oral dosing Neonatal washout kinetics

observed for all three drugs

No clinical recommendations Open Systems

Pharmacology®

(43)

Indomethacin Oral dosing Higher indomethacin clearance

during second trimester as

compared to non-pregnant

women.

Higher dosing requirement

during pregnancy

Gastroplus® (44)

(Continued)
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TABLE 5 | Continued

Compound Route of

administration

Clinical observations Recommended dose

adjustment based on PBPK

modeling

Software Reference

Indomethacin Oral dosing Decrease in indomethacin

exposure by 14, 24, and 32% in

the first, second and third

trimester respectively, compared

to non-pregnant women.

Additional clinical studies

warranted to provide optimal

dosing recommendations

Simcyp® (45)

Metformin, digoxin,

emtricitabine,

midazolam

Oral dosing Decreased exposure during

pregnancy due to increased

clearance

No clinical recommendations GastroPlus® (46)

Metformin, Tacrolimus,

Oseltamivir

Oral dosing Increased renal clearance of

metformin during pregnancy as

compared to postpartum. 20 %

decrease in AUC of tacrolimus

between 1st and 3rd trimester.

AUC of parent drug (oseltamivir)

similar but AUC of metabolite

(oseltamivir carboxylate) 30%

lower during pregnancy.

No clinical recommendations Simcyp® (47)

Methadone, Glyburide,

Phenytoin

Oral dosing Increased clearance of

methadone and glyburide during

pregnancy as compared to

postpartum

No clinical recommendations Simcyp® (48)

Midazolam, Nifedipine,

Indinavir

Oral dosing Increased clearance during

pregnancy

No clinical recommendations MATLAB (49)

Midazolam,

Theophylline,

Zidovudine, Nevirapine,

Emtricitabine,

Lamivudine,

Ondansetron,

Diazepam,

Metronidazole,

Cefuroxime

IV and oral dosing Increase in fetal exposure with

pregnancy age for all drugs

No clinical recommendations GNU MCSim (50)

Piperaquine Oral dosing Pharmacokinetics unchanged as

compared to non-pregnant

women

No need for dosage adjustment Simcyp® (51)

Quetiapine Oral dosing Decreased concentrations

during pregnancy

Dose increase during pregnancy Simcyp® (52)

Quetiapine, Aripiprazole Oral and IV dosing Progressively decreased plasma

concentrations throughout

pregnancy

Dose for both drugs needs to be

increased in the second and

third trimesters.

Open Systems

Pharmacology®

(53)

Tenofovir, emtricitabine,

lamivudine

IV and Oral dosing Increase in renal clearance of

drugs during pregnancy

No need for dosage adjustment Simcyp® (54)

Theophylline,

Paroxetine, Clonidine,

Dextromethorphan

Oral dosing Increased concentration of

theophylline during third

trimester. 100–200% induction of

CYP2D6 during third trimester

adequately describes the

pharmacokinetics of paroxetine,

clonidine and dextromethorphan

during pregnancy.

No clinical recommendations Simcyp® (55)

Ziprasidone Oral dosing No significant difference in

exposure as compared to

non-pregnant women

No dose adjustment necessary Simcyp® (56)

predicted exposures correlated well with the clinical data and
exposure of ziprasidone during pregnancy at 6, 20, and 34 weeks
of gestation. Since the exposure of ziprasidone during pregnancy

was comparable to non-pregnant women, no dose adjustment
is recommended during pregnancy for this drug (56). Ke et al.
developed a PBPK model to evaluate maternal exposure of
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the antenatal corticosteroids dexamethasone and betamethasone
which are primarily metabolized by CYP3A4. In this model,
the fraction of dexamethasone metabolized by CYP3A4 was
obtained from a clinical DDI study with itraconazole. However,
for betamethasone, an in-vitro study was conducted to investigate
the role of CYP3A4 in its metabolism. Ideally a clinical DDI study
should be conducted to verify the fraction of betamethasone
metabolized by CYP3A4 (31).

Quetiapine, an antipsychotic drug metabolized mainly by
CYP3A4 and CYP2D6, shows decreased exposure during
pregnancy possibly due to known increase in the activity of these
two enzymes. A PBPK modeling approach was used to optimize
the dosing regimen to target a predetermined therapeutic range
(52). Though the model recommended a dose increase during
pregnancy, information about the pregnancy mediated changes
on PD is also needed to implement the recommended change in
the dose during pregnancy.

Probe Drug-Based Studies
PBPK models developed previously have been also modified/
refined to determine the exposure of substrates during
pregnancy. Ke et al. refined a previously published PBPK
model to include CYP3A4 activity changes during the third
trimester based on data from the probe drug midazolam and
used it to predict the exposures of nifedipine and indinavir
in pregnancy. The site of CYP3A4 induction during the third
trimester was proposed to be mainly the liver (49). However,
subsequent models were not able to reproduce these findings.
The model by De Sousa Mendes et al showed that a 90–100%
CYP3A4 induction is required to capture the PK changes in third
trimester for drugs metabolized by CYP3A4 (57). Whereas the
model by Dallmann et al. using Open Systems Pharmacology
suggested that a 60% induction in liver and intestine CYP3A4 is
enough to describe the observed PK changes (58). There is still
ongoing discussion regarding the magnitude and site of CYP3A4
induction in pregnancy and there are several shortcomings
with using probe drug data for CYP3A4 assessments of CYP3A
activity for other drugs. The models developed cannot be applied
to predict the pharmacokinetics of other drugs and also for
evaluating the pharmacokinetics across different trimesters.

Renally Cleared Drugs
Liu et al. developed a p-PBPK model for emtricitabine and
acyclovir which are antiviral drugs primarily excreted unchanged
in the urine by glomerular filtration and tubular secretion
(42). The model had several limitations such as not accounting
for potential changes in gastrointestinal absorption due to
pregnancy. Additionally, since intravenous data for acyclovir in
women was not available, observed drug concentrations were
extrapolated based on PK data frommen. A previously developed
PopPK model for ganciclovir, a drug in the same class as
acyclovir, has shown higher ganciclovir clearance in women
than men after correcting for individual body surface area and
glomerular filtration (59). Therefore, it is likely that there may
be a significant underestimation of acyclovir as well in the model
developed by Liu et al.

Pregnancy and Genotype Impact
A limited number of PBPK models in the literature have
evaluated the impact of genotype on pharmacokinetics of drugs
during pregnancy. Efavirenz which is used for the treatment
of human immunodeficiency virus (HIV) is metabolized by
the highly polymorphic enzyme CYP2B6. Though both 400mg
and 600mg doses show similar efficacy, a 400mg dose is
suggested to avoid dose related toxicities. However, there is
limited data on the PK of 400mg dose in pregnancy. p-PBPK
model developed by Chetty et al. using Simcyp evaluated the
pharmacokinetics after a reduced dose of 400mg in CYP2B6
extensive metabolizers. The model predicted that approximately
57% of extensivemetabolizers would show trough concentrations
below the therapeutic target during third trimester, suggesting
dose reduction during pregnancy may lead to therapeutic failure
in extensive metabolizers (60). The utility of this model to predict
drug exposure in rapid and ultra-rapid metabolizers during
pregnancy remains unknown. Additionally, evidence suggests
that race and ethnicity have an impact on CYP2B6 activity. The
model by Chetty et al. has been developed and evaluated only
for the Caucasian population and therefore the generalizability
of the model to other populations is questionable. Models
incorporating other inbuilt populations such as in Simcyp (e.g.,
Japanese, Chinese etc.) can be used to optimize drug dosing in
the non-Caucasian populations (61).

Pregnancy and Drug Response
p-PBPK models have also been extended to determine the PD
effect of drugs used in pregnancy. Darakjian et al. developed
a PBPK-PD model for caffeine in pregnancy. The PD model
evaluated the effect of caffeine on phosphodiesterase enzyme
(PE), cyclic adenosine monophosphate (cAMP) and epinephrine
levels, which are factors associated with increased miscarriage
risk. Increased caffeine plasma levels due to reduction in CYP1A2
activity during pregnancy led to greater inhibition of the PE
enzyme, higher cAMP and greater increase of epinephrine levels
which could increase the risk of pregnancy loss. Despite not
being validated, the model was able to predict the increased
concentration of caffeine in the fetoplacental compartment
indicating its potential utility (33). Alqahtani et al. developed
a PBPK-PD model to estimate concentrations of indomethacin
in the second trimester of pregnancy and to support dose
adjustment based on PD rationale in the pregnant population.
Although the PBPK-PD model suggested a higher indomethacin
dosing requirement during pregnancy, it cannot be directly used
in clinical practice without further in-vivo validation (44).

Pregnancy and Drug Interactions
PBPK models can be potentially used to predict drug-drug
interactions in pregnancy when it is difficult to conduct
clinical studies in vulnerable populations. Piperaquine is an
antimalarial drug used during pregnancy. Approximately 1
million pregnancies in sub-Saharan Africa are complicated
with co-infection of human immunodeficiency virus (HIV) and
malaria, however there is paucity of data on anti-HIVmedication
mediated exposure changes of piperaquine during pregnancy
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(62). Olafuyi et al. developed a PBPK model to predict the drug-
drug interaction potential between piperaquine and anti-HIV
drugs (ritonavir and efavirenz) for Thai, Papua New Guinean,
and Sudanese populations. The model showed no change in
piperaquine PK due to co-administration of anti-HIV drugs and
indicated no need for a change in the dose (51).

CURRENT STATUS OF p-PBPK MODELS
USED TO DETERMINE FETAL EXPOSURE

The p-PBPK model becomes more complex upon addition of the
fetoplacental unit since the model requires inclusion of placental
transfer parameters, fetus and placental enzyme and transporter
kinetics and blood flow to various additional anatomical units to
predict exposure in fetus.

The in-vitro placental perfusion model is one of the tools
used to study transplacental transfer of drugs (63). It can also
be used to investigate the effect of exogenous and endogenous
chemicals on maternal and fetal perfusion and transfer. It offers
several advantages as the placental barrier is maintained and
separate perfusion of the maternal and fetal side can be achieved.
However, information about transplacental drug transfer and
expression of enzymes and transporters during different stages of
pregnancy cannot be obtained as the tissue for perfusion studies
is normally available only at the time of delivery. The placenta
is in a metabolically static state during these experiments as
compared to the metabolically changing state during different
stages of pregnancy (63, 64). Transplacental transfer parameters
like diffusion, clearance index, elimination constant and placenta
partition coefficient can be obtained from these experiments and
incorporated in a PBPK model to predict fetal exposure later
in pregnancy. The placental perfusion has been instrumental in
developing PBPK models and has been used for predicting fetal
exposure of dolutegravir, tenofovir, emtricitabine, and nevirapine
(40, 57, 65).

Another approach is to incorporate data from in-vitro
experiments using placental tissue, microsomes or human
placental cell lines.Mian et al. developed a PBPKmodel to predict
fetal exposure of acetaminophen. Different methods to estimate
the placental transfer (ex vivo cotyledon perfusion experiments
or scaling based on Caco-2 cell permeability experiments,
physicochemical properties in MoBi) were incorporated in the
model and the predictions show a comparable fetal exposure.
Maturation of enzymes in the fetal liver was accounted for to
determine the molar dose fraction of acetaminophen converted
to N-acetyl-p-benzoquinone imine. The model incorporating
the ex-vivo perfusion model data showed the best correlation
with observed cord blood data for acetaminophen but may not
hold true for all compounds (29). There is limited information
available on placental enzymes and transporters in particular
at various stages of pregnancy and further studies in this area
would be helpful in developing IVIVE for placental clearance
across various trimesters. Data obtained from primary placental
cells, human choriocarcinoma cells or placenta-on-a-chip model
may be more physiologically relevant to obtain transplacental
parameters (66, 67). Protein abundance information for placental

transporters which is available from recent reports can be
incorporated into maternal-fetal PBPK models to further
improve the model predictions (68).

Animal models offer another promising approach but
differences in hemodynamics and placental structure can pose
challenges in extrapolation of animal data to humans. The
gestational age and the associated changes in physiology differ
substantially between animals and humans requiring correction
factors while extrapolating these data to humans. A PBPK model
to predict fetal exposure of a brominated flame retardant, BDE-47
was developed by parameterizing the model with concentrations
of BDE-47 from the literature and previous pharmacokinetic and
toxicokinetic studies. This model was able to predict the fetal
concentrations of BDE-47 in rats after maternal exposure within
one standard deviation of the experimental data indicating its
potential to be extrapolated to other species including humans
after careful consideration of anatomical and physiological
differences in placental structure and function (69).

Abduljalil et al. reviewed the literature for studies evaluating
changes in fetal parameters (e. g., body weight, body surface
area, body water, abdominal circumference, body fat) during fetal
growth. This data was used to create mathematical algorithms to
describe changes in these fetal parameters with gestational age
which can potentially be added to the fetal PBPK model (70).

Transplacental transfer parameters from in silico models, in
vitro and ex vivo studies have been incorporated into p-PBPK
models. Codaccioni et al. developed p-PBPK model for ten
compounds using four different models of placental exchange
based on in vitro, ex vivo, and in silico information. The non-
pregnant and pregnant as well as fetal PK simulations were
compared with observed profiles at delivery for each of the
ten compounds. A comparison of the model predictions across
different trimesters of pregnancy yielded inconclusive results.
These models can be optimized and potentially be used based on
the purpose of the study and type of data and resources available
(50). In the absence of clinical data to evaluate the fetal PBPK
models, umbilical cord concentrations observed at delivery were
used. Zhang et al. developed a maternal-fetal PBPK model which
incorporated gestational age-related changes in fetal physiologic
parameters such as fetal serum albumin, liver volume, uterus
blood flow etc. Sensitivity analysis identified that a single time-
point umbilical venous/ maternal plasma ratio is not reflective
of the fetal exposure (71). The various gaps in knowledge
for modeling maternal-fetal pharmacology are summarized in
Table 6.

An exhaustive literature search was conducted using PubMed
with the keywords PBPK and fetal exposure. The publications
from the search describing the development and validation
of p-PBPK models to determine fetal exposure are presented
in Table 7.

EXAMPLES OF p-PBPK MODELS TO
PREDICT FETAL EXPOSURE OF DRUGS

Fetal drug exposure is normally important from a fetal safety
perspective. From efficacy point of view while normally one is
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interested in maternal drug exposure, there are conditions where
fetal exposure is also important to maximize efficacy. Darunavir,
an anti-HIV drug, primarily metabolized by CYP3A4 is routinely
administered with CYP3A4 inhibitor ritonavir to maintain
higher plasma concentrations during pregnancy. p-PBPK model
was developed by incorporating information from ex vivo human
placental perfusion studies to simulate fetal exposure after
different dosing regimens (72). The model was validated by
comparing maternal, fetal and amniotic fluid concentrations.
The fetal concentration was compared with the single time-point
umbilical cord concentration obtained at delivery. Themodel was
able to capture the observed clinical data thus indicating that the
placental perfusion data can be successfully integrated into p-
PBPK models to predict fetal blood concentration at term. This

TABLE 6 | Current gaps in modeling maternal-fetal pharmacology.

Maternal pharmacology Fetal pharmacology

1. Lack of data on time course of

changes in expression and

activities of various phase 1 and 2

enzymes during pregnancy and

postpartum

2. Lack of data on Time course of

changes in various transporters

during pregnancy and postpartum

3. Lack of data from same person

during and post-delivery

4. Lack of PD

measures—Relationship between

exposure and response

5. Lack of information on potential

impact of other comorbid

conditions on PK/PD

6. Lack of PBPK models of biologics

1. Actual fetal exposure / blood and

tissue concentration prediction not

available—need for validation with

meaningful clinical data

2. Lack of data on exposure response

relationship in fetus

3. Placental enzymes and transporter

expression data to incorporate

transplacental transfer in PBPK

model

4. Maternal-placental-fetal drug

partitioning—factors impacting this

such as plasma protein binding in

mother, fetus, and role of

placental transporters

approach is especially beneficial in the case of anti-HIV drugs to
ensure that the half-maximal effective concentration is achieved
in the fetus and the mother.

Zhang et al. developed a model to predict the placental
transfer of passively diffusing drugs. The transplacental transfer
parameters for zidovudine and theophylline were obtained
using midazolam as the calibrator. The model was validated
using single time-point maternal plasma and umbilical cord
concentrations and the model was able to successfully predict
the concentrations observed in patients. However, this model
can only be used for drugs that undergo passive diffusion across
the placenta. The use of a more sensitive calibrator that can
predict placental transfer of a wide range of drugs with different
physiochemical properties can enhance the utility of this model
to predict fetal exposure of other drugs (82).

PBPK modeling has also been used to predict the fetal
exposure to environmental chemicals (83). Bisphenol A (BPA)
is an environmental chemical ingested through dietary and
non-dietary sources. It is rapidly converted to nontoxic
conjugates BPA-glucuronide (BPAG) and BPA-sulfate (BPAS) via
glucuronidation and sulfation pathways. Sharma et al. developed
a PBPK model for predicting the fetal exposure of bisphenol A
which was evaluated against the observed BPA concentrations
in cord blood, fetus liver and amniotic fluid following exposure
from maternal blood (76). Parametrization of glucuronidation
in fetus was done by scaling of in-vitro adult hepatocyte data
in the absence of data from fetal hepatocytes which could
have been a valuable addition to the model. Additionally,
incorporating information on conjugation and deconjugation of
BPA in placenta and fetus could lead to better prediction of the
fetal exposure using this model.

Physiologically based toxicokinetic (PBTK) models are
mathematical models that integrate absorption, distribution,
metabolism and excretion processes for chemicals in biological

TABLE 7 | List of published p-PBPK models to predict fetal exposure.

Compound Species in which model was

developed and validated

Software References

Darunavir Humans Simcyp® (72)

Dolutegravir Humans Berkeley Madonna (40)

Dolutegravir Humans-neonates SimBiology® (73)

Zidovudine, Theophylline Humans Simcyp®/ Matlab (74)

Acetaminophen Humans Open Systems Pharmacology® (75)

Nevirapine Humans R (57)

Tenofovir, emtricitabine Humans Simcyp®, R (65)

BDE-47 (polybrominated diphenyl ether) Male, female (pregnant and

non-pregnant rats)

ACSL® (Advanced Continuous Simulation Language) (69)

Bisphenol A Humans R (76)

Perfluorooctanoic acid (PFOA) and

Perfluorooctane sulfate (PFOS)

Humans ACSL® (Advanced Continuous Simulation Language) (77)

Manganese Humans ACSL® (Advanced Continuous Simulation Language) (78)

Thalidomide, Efavirenz Humans Simbiology® (79)

Napthalene Humans CFD-PBPK (80)

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Pregnant female rats ACSL® (Advanced Continuous Simulation Language) (81)
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systems. These models can serve as a tool to inform health
risk assessments. They are traditionally based on extrapolating
simulations in animal model to predict human exposure.
For instance, Gingrich et al. developed a pregnancy specific
p-PBTK model to predict bisphenol A and bisphenol S
exposures in fetus (84). The model was calibrated using
pregnant sheep data and results were extrapolated to
assess the risk in humans However, this latter step remains
uncertain due to major differences in placental physiology
and structure between the species. More recently, high
throughput toxicokinetic (HTTK) modeling has been used
as an alternative in which models are parametrized with
in vitro data, structure-derived physicochemical properties
(e.g., QSAR) or species specific physiological data for several
chemicals (85).

PBPK Modeling to Predict Drug Exposure
in Neonates
Bunglawala et al. built a neonatal PBPK model for dolutegravir
using pediatric clinical data with assumptions that solubility,
body composition and transporter expression were similar to
adults (73). However, development and age-related changes are
known but were not accounted in the model. Further, the
possibility of drug exposure through maternal breast milk or
placenta was not considered, though it is known that dolutegravir
readily crosses the placenta.

In contrast to the approach described above, Liu et al.
developed a PBPK model to link prenatal and postnatal
pharmacokinetics using previously published p-PBPK models
for emtricitabine, dolutegravir and raltegravir (43). The total
drug amounts in fetal compartments at term delivery were
predicted and incorporated as initial conditions in the neonatal
PBPK model to predict drug concentrations in neonatal
elimination phase after birth. Emtricitabine is eliminated
unchanged in the urine by glomerular filtration and active
tubular secretion mediated by Organic Cation Transporter
2 (OCT2). The OCT2 ontogeny applied in this model is
based on data obtained from one term newborn only (86).
Hence, additional in-vitro and clinical data are needed to
further incorporate the ontogeny of OCT2 in the neonatal
PBPK models. Additionally, the model should be tested and
verified with information from other compounds as well as
coupled maternal-fetal-neonatal PBPK models to understand
early neonatal pharmacokinetics.

PBPK Modeling to Predict Transfer of
Drugs Through Human Milk and Infant
Exposure
Maternal milk is a rich source of nourishment and breast-
feeding is encouraged by the U.S. Department of Health
and Human Services due to the beneficial effects for the
mother as well as the infant. Maternal factors such as age,
parity, breastfeeding patterns, milk composition and volume
and physicochemical properties of the drug such as protein
binding, molecular weight and lipophilicity affect the amount
of drug transferred into human milk. Clinical studies focusing

on quantifying the human milk exposure of drugs are needed.
In the absence of clinical data, PBPK models have attempted
to quantify infant exposure through human milk by integrating
a breast tissue compartment. Loccisano et al. successfully
developed a PBPK model to determine exposure of PFOA and
PFOS in fetus and in infant through milk by extrapolating
a previously developed and evaluated model in rats (77).
As additional information on drug elimination kinetics in
fetus and infant becomes available, it could be incorporated
in to the model for better prediction of drug exposure in
neonates (87).

Two differing approaches implemented in the prediction of
infant exposure using PBPK are based on the method of drug
uptake into human milk from plasma. One approach considers
diffusion from drug in plasma via the breast tissue as done
in PBPK modeling for lactational transfer of methylmercury
(88). The other approach considers the direct passage of drug
into the breast milk without considering the breast tissue as in
the PBPK model to determine the infant exposure of organic
pollutants (89).

Merrill et al. developed a PBPK model to predict perchlorate
and iodide kinetics and subsequent perchlorate induced
inhibition of iodide uptake in lactating mothers. The model
was parameterized using data from previous models in male
rat, lactating rat and non-pregnant women. However, this
model has not been evaluated for perchlorate kinetics in
humans due to lack of available clinical data (90). Isoniazid
exposure to infant through breast milk was predicted
using a validated PBPK model which accounted for the
polymorphic expression of isoniazid metabolizing enzyme,
N-acetyltransferase 2 (fast and slow metabolizers). Drug
exposure was highest in slow metabolizing infants of slow
metabolizing mothers, but the observed levels were still less than
the infant exposure limit which is 10% of the maternal dose.
The model was developed using information from ICRP reports
which are generated based on data mainly from Caucasian
population and should be cautiously extrapolated to other
populations (82).

CONCLUSIONS

There has been tremendous progress over the past few years
in the use of PBPK modeling to predict maternal and fetal
exposure of drugs. By integrating physiological data, preclinical
data, and clinical data, PBPK can be used to predict maternal
and fetal exposure and guide optimization of maternal dosing
during pregnancy when pharmacokinetic studies cannot be
readily performed. Even though validation of these models
is challenging due to limited clinical data, in-vitro and ex-
vivo experimental data can be utilized to help predict fetal
exposure of drugs. PBPK modeling can also serve as a tool
to guide drug dosing during breastfeeding based on drug
transfer through human milk. In summary, PBPK modeling
offers promise as a potential tool to predict maternal and
fetal exposure of drugs and thereby guide therapy in this
special population.
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