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Systemic low-grade inflammation can be initiated in vivo after traumatic injury or in chronic

diseases such as neurodegenerative, metabolic, and autoimmune diseases. Inducers of

inflammation trigger production of inflammatory mediators, which alter the functionality of

tissues and organs and leads to harmful induction of different barrier systems in the body,

where the blood-brain barrier, the blood-retinal barrier, blood-nerve barrier, blood-lymph

barrier and the blood-cerebrospinal fluid barrier play major roles. The different barriers are

unique but structured in a similar way. They are equipped with sophisticated junctional

complexes where different connexins, protein subunits of gap junction channels and

hemichannels, constitute important partners. The cells involved in the various barriers

are coupled in networks, are excitable but do not express action potentials and may be

targets for inflammation leading to changes in several biochemical cellular parameters.

During any type of inflammation barrier break-down is observed where any form of injury

can start with low-grade inflammation and may lead to systemic inflammation.

Keywords: blood-brain barrier, blood-retinal barrier, blood-nerve barrier, blood-lymph barrier,

blood-cerebrospinal fluid barrier, low-grade inflammation, systemic inflammation

INTRODUCTION

Neuronal signaling in the central nervous system (CNS) requires a balanced and well-controlled
composition of the microenvironment around glial cells, neurons, and synapses. Loss of optimal
function in the different barriers changes the vascular permeability, resulting in an increased
transport of molecules and cells through the tight junctions into immune-privileged sites, resulting
in destructive inflammation, as observed in many diseases. The body is composed of different
barrier systems, including the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier
(BCSFB), the blood-retinal barrier (BRB), the blood-nerve barrier (BNB), the endothelial-cell
barrier (ECB), and the blood-lymph barrier (BLB). They are all responsible for preventing foreign
matter penetration and protecting normal cell signaling.

The BBB controls the molecular mechanisms and the transport of molecules and cells between
the blood and brain (1, 2). The BCSFB, a barrier including epithelial cells of the choroid plexus
and the arachnoid epithelium as well as tanycytes, prevents fluctuations between the blood and the
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cerebrospinal fluid (CSF) (3). The BRB has well-developed
tight junction complexes that maintain control of proteins
and metabolites, which can enter the neural tissue (4). The
BNB stabilizes the microenvironment around the endothelium
of endoneural vessels, and layers traversing the perineurium
regulate the exchange of materials via the blood-nerve exchange
(5). The ECB is a barrier between the vascular lumen and the
vascular wall that controls vascular tone and permeability and
seems to be important in vascular inflammation (6). Finally,
disturbances in the BLB result in infiltration of lymphoid tissue
in different organs (7).

The present review highlights the different barrier systems
and especially substances, molecules and cells that can affect
and damage their protective mechanisms. Different types of
cellular signaling can be disturbed, which is important in low-
grade inflammation that can establish itself and lead to systemic
inflammation. The brain and the nervous system play a central
role because they can sense all changes that occur in different
types of inflammatory processes.

LOW-GRADE INFLAMMATION CAN LEAD
TO SYSTEMIC INFLAMMATION

Inflammation plays a major role in preserving physiological
homeostasis of an organism and is initiated when pathogens,
bacteria, viruses, etc. are presented. Inflammation is first initiated
on a cellular level, low-grade inflammation, and can from there
expand to inflammation involving different inflammatory
cascades and organs causing systemic inflammation.
Inflammation plays a central role in the body homeostasis and
will, protect the body from illness and disease. On the other hand,
prolonged or chronic inflammation releases proinflammatory
cytokines and may expose the body to unfavorable
conditions (8, 9).

The vertebrate inflammatory system is composed of the
innate and adaptive inflammatory systems, and both are equally
important. The innate immune system consists of macrophages,
dendritic cells, mast cells, etc. Its main function is to detect
bacteria, viruses, and foreign bodies in the organism as well as to
activate the adaptive immune system and complement cascades.
The adaptive immune system is highly specific and has developed
throughout our lives. It consists of T- and B-lymphocytes,
where pattern recognition receptors, including toll-like receptors,
along with the induction of cytokines, play a major role in the
activation of the adaptive immune system. Cytokines, consisting
of small proteins, are produced by a variety of cells, including
T- and B-lymphocytes. Cytokines can be proinflammatory or
anti-inflammatory and may act as triggers for the release of other
cytokines. They are important in chronic inflammation caused by
oxidative stress (10).

In recent years, research has begun to focus on the roles of
gap junction coupled cells which form networks in different
organs in the body. Examples of cells coupled into networks
include astrocytes, keratinocytes, chondrocytes, synovial
fibroblasts, osteoblasts, connective tissue cells, cardiac and
corneal fibroblasts, myofibroblasts, hepatocytes, and different

types of glandular cells (11). They may be affected by different
types of inflammatory stimuli, the cell signaling is changed
through the connexin linked gap junctions (12), and the cellular
networks become dysregulated (11). An underlying mechanism
to an inflammatory response at the site of the damaged or
affected nerve is the presence of a low-grade inflammation.
Inflammatory substances such as histamine, bradykinin, 5-HT,
glutamate, purines, tryptases, chymases, cytokines, growth
factors, free radicals, nitric oxide (NO), etc are released from
connective tissue cells such as macrophages and mast cells
and are transported by the blood from the injured region and
influence different barrier systems (13). Different inflammatory
substances are also released from neurons located in the
spinal cord and brain, which leads to an overactivation in the
synaptic area. Resting microglia react and release cytokines. The
astrocytes will then be reactive and can turn into dysfunctional
astrocytes (1, 14). A low-grade inflammation can turn into a
pathological state.

Barriers at different sites in the body might be affected and
can cause spread of inflammatory substances affecting other
network-linked gap junction cells in other organs, which can give
rise to systemic inflammation (Figure 1).

Blood-Brain Barrier (BBB)
The BBB is located in the cerebral blood vessels. The blood
vessels consist of endothelial cells and between them are tight
junctions and adherens junctions, which limit the paracellular
diffusion of solutes and ions between the blood and the brain
(3, 15). Thus, transendothelial electrical resistance (TEER), which
measures the resistance of tight junctions, is maintained by
the components of the BBB. Tight junctions are composed of
several proteins, among which the most prominent occludins
and claudins are present (16). The vessels are surrounded by
the basal lamina in which pericytes are found. The astrocytic
perivascular endfeet rest against the basal lamina together
with some microglia, and these cellular structures form the
neurovascular unit (1). The BBB is controlled by intercellular
signaling processes between different compartments that regulate
the exchanges between the CNS and the blood. Small gaseous
molecules, such as oxygen (O2), carbon dioxide (CO2) and
nitric oxide (NO), diffuse through the membranes as well
as small lipophilic agents. Transport systems on luminal and
abluminal membranes regulate the traffic of small hydrophobic
molecules. The combination of intra- and extracellular enzymes
provides a metabolic barrier. The different BBB cell types
and the molecular constituents have been thoroughly discussed
recently (17). The brain is supplied with nutrients conveyed by
endothelial transporters for glucose, amino acids, large neutral
amino acids, and transporters for nucleosides, nucleobases,
etc. (1). The astrocytic endfeet are enriched in water channel
aquaporin 4 (AQP4) and in potassium channels as well as
different cytoskeletal-associated proteins (16).

Blood-Retinal Barrier (BRB)
Two BRBs exist: an inner and an outer BRB. The inner barrier
controls fluid entry into the retina and is formed by retinal
endothelial cells, and the outer barrier is formed by the retinal
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FIGURE 1 | Schematic illustration high-lightening different barriers in the body; the blood-brain barrier, blood-retinal barrier, blood-nerve barrier, blood-lymph barrier,

and blood-cerebrospinal fluid barrier. The left side demonstrates the normal physiological conditions and the right side demonstrates inflammatory conditions. The

illustration is made by Pontus Andersson, ArtProduction, Gothenburg, Sweden.

pigment epithelium, Bruch’s membrane and the choriocapillaris
(18). The endothelial cells of retinal vessels are equipped with
tight junctions, adherens junctions, and gap junctions of retinal
capillary endothelial cells. There are no fenestrations, and the
TEER is similar to that in the BBB. The most prominent
proteins in tight junction endothelial cells are occludins and
claudins, but other proteins are present (18). The transport across
endothelial cells in the inner barrier is regulated by membrane
transporters and vesicular transport. At the abluminal side of the
vascular retina, pericytes are present. They share the basement

membrane together with the endothelial cells and contribute to
the regulation of the inner barrier. The endfeet or processes from
glial cells, astrocytes, Müller cells and microglia wrap around
the vascular basement membrane of the retina, forming glial
limitans (19).

The outer BRB is an intercellular junction complex created by
tight junctions of retinal pigment epithelial cells that separates
the neurosensory retina by the retinal pigment epithelium
(RPE) from the blood supply of the choroidal circulation (20).
Alterations and disturbance of the BRB are, among others, seen
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in diabetic retinopathy and age-related macular degeneration
(AMD). Diabetic retinopathy is initiated by an alteration in the
inner BRB (19, 21), and neovascular AMD is a result of an
alteration in the outer BRB (22).

Blood-Cerebrospinal Fluid Barrier (BCSFB)
The BCSFB encases the choroid plexus, the CSF-producing
structure, and is localized within the brain ventricles. The barrier
is formed by the epithelial cells of the choroid plexus as well as
the arachnoid epithelium and tanycytes in the other parts that
take care of the CSF (3). Between the endothelial cells from the
capillaries and the epithelial cells, tight junctions and adherens
junctions are the structural components that regulate of the influx
and efflux of molecules across the BCSFB. It functions as an
immunomodulatory gate.

Blood-Nerve Barrier (BNB)
The endoneurial microenvironment supports the blood-nerve
exchange composed of endoneurial vessels and the perineurium.
Therefore, the endoneurial microenvironment is protected from
substances that can be harmful to Schwann cells and axonal
functions (5).

Blood-Lymph Barrier (BLB)
Lymph-to-plasma exchange depends on the pore size of the
capillary permeability and the resistance in the endothelial
capillary wall (23).

Low-Grade Inflammation Causes Barrier
Damage
All barriers in the nervous system, as well as in the rest of the
body, are important for maintaining physiological homeostasis.
During any type of inflammatory process in the body, structural
alterations occur, resulting in decreased TEER and increased
permeability of the barriers (Figure 1; Table 1). Inflammatory
mediators from different tissues and cells have direct access to
the nervous system via the circulatory system via blood and
lymph. Macrophages, microglia, astrocytes and the astrocytic
endfeet are activated. Cells in the nervous system will thereby
be negatively affected, allowing the production of cytokines such
as tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-
1β), interleukin-6 (IL-6), reactive oxygen species (ROS), and
NO, and the increased sensitivity for inflammatory receptors
by upregulating the toll-like receptors (TLRs), which activate
transcription factors such as nuclear factor-kappa B (NF-κB).
Low-grade inflammation also leads to downregulation of the
Na+/K+-ATPase pump and disturbed Ca2+ signaling through
gap junction-coupled cells. The different barriers are dynamic
structures where nutrients penetrate the barriers by passive
diffusion or by transporters that supply the nervous system with
necessary nutrients. Barrier disruption causes an increase in
the migration of leukocytes through the barriers, and excessive
ROS production occurs as well as the activation of matrix
metalloproteases (MMPs) (1, 28).

The metabolic and energy state in the body is affected by
dysregulation of glucose levels. A decrease in extracellular glucose
leads to a reduced ability of ATP to properly maintain the activity

of the Na+/K+-ATPase pump (29). Signaling systems between
gap junction-coupled cells, such as astrocytes, are changed.
This includes intercellular Ca2+ waves (30) and intercellular
Na+ waves (31). If glucose uptake does not work properly,
glucose degradation (glycolysis), an important function that
supports signaling mechanisms in the brain, is reduced (32).
This mechanism is important because lactate is formed from
glycolysis and is utilized by neurons, playing an essential
role in learning and learning-related long-term potentiation
(LTP) (33). Glutamate induces glucose transporter (GLUT)
activity and thereby uptake rates in astrocytes (34). For this
astrocytic metabolism, which consumes ATP, Na+/K+-ATPase
activity is increased. Increased lactate release as a result of
increased glucose uptake and glucose flux through the glycolytic
pathway might contribute to anti-inflammatory cellular actions
by inhibiting glutamate release (35). Glucose transport in low-
grade inflammation and in autoimmune diseases is changed.
Organs other than the brain enhance glucose uptake, but brain
cells react differently. Whether reduced glucose uptake is a result
of reduced blood flow or insufficient glucose uptake due to
subnormal glucose transport has been debated (36).

Low-grade inflammation can be initiated in vivo and can by
damaged barriers and dysregulated gap junction coupled cellular
networks spread by signals, today unknown, to other organs in
the body. Signaling can spread or propagate from gap junction
coupled cells in one organ to organs on either the contralateral
or ipsilateral side (37). The complexity of actions evoked by
endogenous or exogenous mediators has recently been discussed
(38). During an inflammatory process a disruption of epithelial
junctions can lead to increased transepithelial permeability by
secreting pro-inflammatory cytokines or other inflammatory
inducers that mediate epithelial barrier dysfunction (39). A
consequence of inflammatory signaling is mucosal inflammation
in the gut, airway epithelium, renal tubular epithelial cells,
retinal epithelial cells, epithelium in the pancreas to mention
some (39). Coexisting diseases, comorbidity, might be a
consequence with barriers not working in a proper way (40).
Metabolic disturbances can induce low-grade inflammation in all
metabolically active organs such as the liver, adipose tissue and
heart. Low-grade inflammation can occur in any organ which
causes damage to various barriers. This in turn, can lead to
comorbidity which can cause systemic inflammation.

Network-Coupled Cells
Cells taking part in any barriers are connected to each other
via gap junctions and thereby build networks (11, 41). Gap
junctions are composed of members of the connexin family,
which consists of proteins that play important functions in
inflammatory diseases. Astrocytes, which are morphologically
and functionally heterogeneous cells (42), play the greatest role in
providing metabolic support for neurons and thereby represent
a rate-limiting step in the complex homeostatic activity in brain
health and disease. The intersignaling of small molecules through
the supporting gap junction-coupled networks is accompanied
by energy challenge and high energy consumption (29). The
Na+/K+-ATPase pump detects the energy products in the
glycolytic cycle where ATP plays a prominent role (29, 43, 44).
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TABLE 1 | Characteristics for the blood-brain barrier, blood-retinal barrier, blood-nerve barrier, blood-lymph barrier and blood-cerebrospinal fluid barrier in physiological

and inflammatory conditions.

BLOOD-BRAIN BARRIER (BBB)

Cells and organelles: Capillary endothelial cells, pericytes, perivascular endfeet of astrocytes, basal lamina, microglia, neuronal

processes. Tight junctions between the endothelial cells (1, 2, 13).

Inflammatory changes: Tight junction alterations, upregulation of GLUT1 transporter, increase of inflammatory mediators;

histamine, bradykinin, 5-HT, glutamate, purines, cytokines, growth factors, complement-derived

polypeptides, free radicals, NO, lipids etc., (1).

Barrier breakdown at pathological disorders: Infectious or inflammatory processes; autoimmune diseases, MS, EAE, NMO; trauma; epilepsy;

Parkinson’s disease; neurodegenerative diseases, etc. see (1, 13).

BLOOD-RETINAL BARRIER (BRB)

Inner barrier

Cells and organelles: Retina vessel endothelial cells, astrocyte endfeet, Müller glial cells, pericytes, smooth muscle cells. Tight

and gap junctions between endothelial cells (14).

Inflammatory changes: Tight junction alterations, transendothelial transport, changes of cells taking part in the barrier (14).

Barrier breakdown at pathological disorders: Macular edema, hyperglycemia, diabetic retinopathy, oxidative stress (14).

Outer barrier

Cells and organelles: Retinal pigment epithelial cells. Tight, adherens and gap junctions between the epithelial cells, Bruch’s

membrane, choriocapillaris (14, 16).

Inflammatory changes: Tight, adherens and gap junction alterations

Barrier breakdown at pathological disorders: AMD (18).

BLOOD-CEREBROSPINAL FLUID BARRIER (BCSFB)

Cells and organelles: Cubodial choroid plexus epithelial cells. Tight, adherens and gap junctions between the epithelial cells (3).

Inflammatory changes: Tight, adherens and gap junction alterations (3).

Barrier breakdown at pathological disorders: Neurodegenerative diseases, cerebral amyloid angiopathy, ischemia, tumors, HIV (24, 25).

BLOOD-NERVE BARRIER (BNB)

Cells and organelles: Endothelial cells, endoneural space, schwann cells, fibroblasts collagen fibrils. Tight junctions between

endothelial cells (5).

Inflammatory changes: Tight junction alterations (5).

Barrier breakdown at pathological disorders: Diabetic neuropathy, lead neuropathy (5)

BLOOD-LYMPH BARRIER (BLB)

Cells and organelles: Lymphatic endothelial cells, basal lamina. Tight junctions between the endothelial cells [(5, 26)].

Inflammatory changes: Tight junction alterations (5).

Barrier breakdown at pathological disorders: Inflammation, obesity, metabolic syndrome, inflammatory bowel disease (27).

NO, nitric oxide; MS, multiple sclerosis; EAE, experimental autoimmune encephalomyelitis; NMO, neuromyelitis optica; AMD, age-related macular degeneration.

The connexin-based gap junction channels and the connexin-
based hemichannels transmit electrical signals through their
cellular networks to chemical synapses, which are regulated by
neurotransmitters and second messenger pathways (45). These
stimuli evoke intracellular increases in Ca2+ in single cells and
passed to adjacent cells through connexin-based gap junction
channels that can propagate intercellular Ca2+ signaling over
long distances (46–48). Stimuli that evoke intracellular increases
in Ca2+ concentration can also pass to adjacent cells through the
connexin-based hemichannels via extracellular Ca2+ signaling
(49). Intercellular and extracellular Ca2+ signaling result in
the release of gliotransmitters such as glutamate, ATP and
neuropeptides (50).

Upon inflammatory processes, astrocytes become reactive
(51) and are affected by an overactivation of Ca2+ signaling
that induces the release of ATP to the extracellular medium
through connexin-based hemichannels (52). The released ATP
activates the purinergic receptors in astrocytes, which further
increases intracellular Ca2+ release. Therefore, downregulation
of Na+ transporters and disruption of the cytoskeleton occur.

Furthermore, proinflammatory cytokine release, neuronal
excitability, and glutamate release all increase. Astrocyte uptake
of excessive extracellular glutamate occurs through glutamate
transporters, and ionotropic and metabotropic glutamate
receptors are activated (14, 51, 53).

The plasma membrane can be discussed as a barrier because
it is a dynamic entity that separates the extracellular and
intracellular environments and is also a structure composed of
proteins and lipids, which both control and are controlled by
biological processes.

The actin cytoskeleton and microtubules are intimately
associated with the plasma membrane (54). Inflammatory
stimuli can trigger plasma membrane transduction and protein
recruitment, which may result in alterations to the cytoskeletal
structure. Actin is the most abundant cytoplasmic protein and
regulates cellular and immune functions through a complex
cytoskeleton-dependent process (55). Actin appears in two
forms, globular actin (G-actin) and filamentous actin (F-actin),
and the transition between these two forms is a dynamic
process driven by polymerization and depolymerization (56).

Frontiers in Neurology | www.frontiersin.org 5 May 2019 | Volume 10 | Article 533

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Rönnbäck and Hansson Cellular Barrier Systems

The cytoskeleton controls the plasma membrane microdomains
and the endoplasmic reticulum complex. The adaptor protein
ankyrin B is associated with Na+/K+-ATPase and with
endoplasmic reticulum proteins such as the inositol 1,4,5-
trisphosphate receptor (IP3). The main cytoplasmic matrix
of proteins, spectrin and actin, are attached to ankyrin B.
An intact cytoskeleton is required for the propagation of
astrocytic Ca2+ waves (49), and cytoskeletal disruption abolishes
Ca2+ oscillations by changing the balance between the Ca2+-
regulating processes (57). Actin filaments are normally organized
in stress fibers, but after exposure to inflammatory stimuli,
the actin filaments can be disorganized and appear as ring
structures (51, 53). During destruction and tissue remodeling
caused by inflammation, the actin cytoskeleton plays an
important role. The F-actin filaments may be responsible for
the loss of junctions in inflamed cells due to the effects of
microbial toxins and inflammatory mediators (39). Involvement
of the cytoskeleton in controlling the plasma membrane
microdomains and the endoplasmic reticulum complex seems to
be important.

Signaling That Affects Cellular Barriers
Searching for molecular mechanisms to explain how
inflammatory processes develop in different cells, tissues
and organs and how they can be spread through different
systems may be one important task for the treatment of
low-grade inflammation that can lead to prolonged pain.
The extracellular matrix is an important part of all biological
barriers, and it modulates the interchange through these barriers.
It controls the migration of leukocytes from the blood, a
process that is altered in inflamed tissues in which different
extracellular matrix components are involved that influence the
inflammatory response. The development of nanotechnology
and the application of nanoparticles have led to new research
aimed to solve the question of inflammatory processes (58).
Endothelial cells with microvascular compartments are sensitive
to signals generated in the blood and control the substances or
particles that will pass different barriers.

Mast cells and glial cells show endogenous homeostatic
mechanisms that can be upregulated in response to ongoing
inflammation (59). Mast cells originate from the bone marrow
and circulate in the blood as precursor cells. They complete
their differentiation in tissues they are meant to stay in, on the
abluminal side of blood vessels. Thereby, they can communicate
with cells, the extracellular matrix, and blood vessels and
probably have a large influence on different barrier systems.

Mast cells can migrate from the blood to the brain through the
barriers both during normal and pathological situations, thereby

disrupting tight junction proteins (60). Additionally, a mast
cell-glia communication exists (61). Mast cells can be the first
responders to injury/inflammation because they are effector cells
of the innate immune system. These cells produce a multitude
of substances, including biogenic amines, cytokines, enzymes,
lipid metabolites, ATP, neuropeptides, growth factors, NO, and
heparin (59). The tryptase and chymase enzymes are the major
proteins stored and can be released upon inflammatory signals,
which can promote matrix destruction and tissue remodeling
(13). The tryptase receptor proteinase-activated receptor 2
(PAR2), which is present on most supporting cells, including
glial cells, is activated upon inflammation (59, 62). Nerve
growth factor (NGF) is rapidly released during inflammation and
activates its nociceptors tropomyosin-related kinase A (TrkA)
and p75 neurotropin receptor present on most supporting cells,
including glial cells. The cells respond in a paracrine/autocrine
fashion to NGF and thereby promote the recruitment of other
cells. The contribution of activated mast cells is complex because
immediate activation can limit cellular disturbances and thereby
brain damage as they produce cytotoxic molecules as well as
growth and repair factors. An ongoing activation of mast cells
can lead to more destructive changes.

CONCLUSION

Functional barriers such as the BBB, BRB, BCSFB, BNB, and
BLB enable physiological homeostasis within tissues and organs.
The barriers can resist acute inflammation, while prolonged
inflammation and oxidative stress may lead to systemic
inflammation affecting the nervous system and retina, cartilage,
blood vessels, and nerve endings. It is of great importance to
understand the different barriers, their functionality and how
they act. Although there are still many unsolved questions,
understanding why some people are more affected by diseases
than others are remains of critical importance.
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