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With the rapid generation and preservation of both genomic and phenotypic

information for many genotypes within crops and across locations, emerging

breeding programs have a valuable opportunity to leverage these resources to

1) establish the most appropriate genetic foundation at program inception and

2) implement robust genomic prediction platforms that can effectively select

future breeding lines. Integrating genomics-enabled1 breeding into cultivar

development can save costs and allow resources to be reallocated towards

advanced (i.e., later) stages of field evaluation, which can facilitate an increased

number of testing locations and replicates within locations. In this context, a

reestablished winter wheat breeding program was used as a case study to

understand best practices to leverage and tailor existing genomic and

phenotypic resources to determine optimal genetics for a specific target
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population of environments. First, historical multi-environment phenotype

data, representing 1,285 advanced breeding lines, were compiled from

multi-institutional testing as part of the SunGrains cooperative and used to

produce GGE biplots and PCA for yield. Locations were clustered based on

highly correlated line performance among the target population of

environments into 22 subsets. For each of the subsets generated, EMMs and

BLUPs were calculated using linear models with the ‘lme4’ R package. Second,

for each subset, TPs representative of the new SC breeding lines were

determined based on genetic relatedness using the ‘STPGA’ R package.

Third, for each TP, phenotypic values and SNP data were incorporated into

the ‘rrBLUP’ mixed models for generation of GEBVs of YLD, TW, HD and PH.

Using a five-fold cross-validation strategy, an average accuracy of r = 0.42 was

obtained for yield between all TPs. The validation performed with 58 SC elite

breeding lines resulted in an accuracy of r = 0.62 when the TP included

complete historical data. Lastly, QTL-by-environment interaction for

18 major effect genes across three geographic regions was examined. Lines

harboring major QTL in the absence of disease could potentially underperform

(e.g., Fhb1 R-gene), whereas it is advantageous to express a major QTL under

biotic pressure (e.g., stripe rust R-gene). This study highlights the importance of

genomics-enabled breeding and multi-institutional partnerships to accelerate

cultivar development.

KEYWORDS

breeding, winter wheat (Triticum aestivum L.), historical data, training populations,
genomic selection, prediction accuracy, yield

1 Introduction

Wheat (Triticum aestivum L.) is a major cereal crop

worldwide as its production ranks third in the US

(49.7 million tonnes) and globally (895.2 million tonnes)

behind maize and soybean. Wheat has a high production

value of US$8.7 billion in the United States and $188.1 billion

globally (FAOSTAT 2022). The effects of climate change,

including warming temperatures, variable precipitation and

more frequent extreme weather events (Simpson and Burpee

2014), as well as diseases (Singh et al., 2016), are challenging

wheat yield potential and causing increased yield instability

across years (Hatfield and Dold 2018). Development of

resilient, high-yielding wheat cultivars with stable grain

production across target population of environments is

essential (Braun et al., 1992; Langridge and Reynolds

2021). Multi-environment trials in major production areas

facilitate yield potential and stability assessment of advanced

breeding lines and provide information to identify and

understand complex genotype-by-environment interactions

(GE) (Dwivedi et al., 2020). However, collecting data in

multiple locations and years for many early-stage breeding

lines has high labor and economic costs, which imposes a

need to integrate genomics-enabled breeding (e.g., genomic

selection) and data-driven methods to accelerate the breeding

process (Rincent et al., 2017; Juliana et al., 2020). Establishing

an alliance of breeding programs that share target

environments is crucial for data sharing, germplasm

exchange, and for conducting advanced regional trials of

candidates for release (Chenu 2015; Spindel and McCouch

2016; Sarinelli et al., 2019).

Genomic selection (GS) is becoming a valuable technology

for modern crop breeding programs, and its implementation for

cultivar development has been shown to accelerate the rate of

genetic gain by shortening the breeding cycle and/or increasing

selection accuracy (Crossa et al., 2017; Voss-Fels et al., 2019).

Genomic selection uses established genotype and phenotype data

of a training population (TP) to calibrate a prediction model,

which is then used to estimate trait genomics breeding values

(GEBVs) of untested new genotypes. Based on GEBVs, superior

breeding lines are selected at preliminary stages prior to

phenotyping (Voss-Fels et al., 2019). Earlier selection allows

breeders increase breeding efficiency and save costs (Crossa

et al., 2017) by reducing the number of promising breeding

lines that need to be evaluated in advanced multi-environment

and replicated field trials (Wartha and Lorenz 2021).

There is increased interest in incorporating historical

datasets into genomic prediction models (Dawson et al.,

2013). Here, historical data refers to preexisting data collected

by breeding programs over time that were not generated

specifically for genomic selection modeling. Using historical

datasets could be beneficial for GS if the target population of

environments have been accurately evaluated within advanced

trials over time, the dataset is large, and the focal trait possesses
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high heritability (Rutkoski et al., 2015). Several studies have

incorporated historical data into genomic prediction models

to predict economically important traits including grain yield

(YLD) in wheat, with reports of moderate-to-high accuracies in

local breeding programs of r = 0.50 in France (Storlie and

Charmet 2013) and r = 0.64 in the US (Sarinelli et al., 2019),

as well as accuracies of r = 0.85 in an international cultivar

development program (Dawson et al., 2013). GS has been used to

enhance the primary target trait YLD, but it is also useful to

predict and select other important traits such as disease

resistance, including stem rust resistance (Rutkoski et al.,

2015) and Fusarium head blight resistance (FHB) (Rutkoski

et al., 2012), agronomic traits such as test weight (TW),

heading date (HD) and plant height (PH) (Gill et al., 2021)

and quality-related traits including protein content, starch

content, and flour yield (Tsai et al., 2020; Sandhu et al., 2022).

Lastly, GS can be applied for selection of low-heritable complex

traits that are expensive or difficult to measure, or by including

high-heritable correlated secondary traits into models (Rutkoski

et al., 2016; Sapkota et al., 2020).

This study was conducted to understand how new or

reestablished breeding programs should leverage existing

historical genomic, and multi-environment and multi-trait

phenotype data of elite breeding lines. The Clemson

University winter wheat breeding program was reestablished

in 2017 and used as a case study to understand the

foundational genetics and requirements to maximize

predictive ability of genomic models to successfully develop

cultivars adapted to a target population of environments. To

accomplish this, historical genotypic and phenotypic

information for advanced soft red winter (SRW) wheat

breeding lines, evaluated as part of the Southeastern

University small grains (SunGrains) breeding alliance, was

used to predict YLD, TW, HD and PH using optimized TPs

for a set of untested SC-derived breeding lines. Two validation

strategies were completed to assess and compare fitted models’

prediction accuracy. Finally, QTL-by-environment (QE)

interaction analysis was completed using 18 major effect QTL

to identify whether there was a favorable effect on yield across

three major testing regions. The use of comprehensive datasets

and genomic models have great value to securing the needed

increases in genetic gain and enhance the efficiency of cultivar

development.

2 Materials and methods

2.1 Plant materials

Annually, advanced SRW wheat lines entered into the Gulf

Atlantic wheat nursery (GAWN) and advanced wheat nursery

(SunWheat) are evaluated across the greater southeastern US,

which is coordinated by SunGrains and partnering public wheat

breeding programs. The SunGrains cooperative includes seven

land-grant university breeding programs (Clemson University,

NC State University, Louisiana State University, Texas A&M

University, University of Arkansas, University of Florida, and the

University of Georgia) having very strong collaborations for field

evaluation and unfettered distribution of adapted germplasm and

data exchange. As part of this historical cooperative, a total of

1,285 lines were tested in 19 locations (Figure 1 and

Supplementary Table S1) from 2008 to 2021. On average,

108 breeding lines (ranging from 56 in 2011 and 161 in 2021)

along with several commercial checks were evaluated annually in

field trials. The MapCustomizer2 web plotting tool was used to

generate a map with trial locations. Data from 2008 to 2020 was

used for GS analysis, and data from 2008 to 2021 was used for QE

analysis.

2.2 Historical phenotype data

Historical phenotypic data consisted of a multi-location,

multi-year and multi-trait dataset generated and maintained

by SunGrains. A total of 1,285 elite SRW wheat breeding lines

were tested in two regional nurseries (GAWN and SunWheat) in

19 trial locations in the southeastern US (Figure 1 and

Supplementary Table S1). The number of observations for

YLD (kg ha−1), TW (kg hl−1), HD (Julian days) and PH (cm)

was 17,645, 14,942, 11,092 and 8,678, respectively. The number

of replications ranged from one to three, depending on location-

year combination.

Two analyses were performed to determine appropriate

subsets of location-year combinations to include in the

phenotypic dataset for optimizing the GS model for the target

population of environments. First, the historical phenotypic

dataset was used to display principal component (PCA) plots

from Pearson’s correlation matrix using the ‘princomp’, ‘cor’ and

‘corrplot’ packages in R; second, biplots showing the relationship

among environments (Yan et al., 2000) were obtained using a

genotype plus genotype-by-environment (GGE) model using the

‘gge’ (Wright and Laffont 2018) and ‘GGEBiplots’ (Dumble et al.,

2017) packages in R. This analysis was repeated for the GAWN,

SunWheat, and combined (GAWN + SunWheat) phenotypic

datasets to select eight, four and ten subgroups of trial locations,

respectively (Supplementary Table S1).

For each of the subsets of locations (except for one group that

had low number of datapoints for estimation of genetic values),

the following linear model (Yao et al., 2018) was fitted using the

function ‘lmer’ of the ‘lme4’ package in R (Bates et al., 2015) to

estimate genetic values for YLD, TW, HD, and PH:

2 https://www.mapcustomizer.com/
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Yijk � µ + Gi + Ej + Rk(j) + GEij + eijk

Where Yijk represents the phenotypic observation of

genotype i in environment j and replication k, µ is the overall

mean; Gi is the effect of genotype i, Ej is the effect of environment

(location-year combination) j; Rk(j) the effect of replication k

nested in environment j; GEij the G × E interaction between

genotype i and environment j; and eijk the residual effect

associated with genotype i in environment j and replication k.

All terms except genotype were set as random effects. Genotype

was defined as fixed effect (Lado et al., 2017) to estimate marginal

means (EMMs) using the ‘emmeans’ package in R, and as random

effect (Yao et al., 2018) to calculate best linear unbiased

predictors (BLUPs) using the ‘coef’ and ‘ranef’ functions of the

‘lme4’ package in R. Pearson’s correlations between EMMs and

BLUPs were analyzed with the ‘corrplot’ packages in R (Wei and

Simko 2017). Variance components of the linear models fitted

with the ‘lme4’ package were used to estimate broad-sense

heritability (H2) with the ‘H2cal’ function of the ‘inti’ R

package (Lozano-Isla 2022). The Cullis method (Cullis et al.,

2006), recommended for unbalanced, multi-environment

datasets (Covarrubias-Pazaran 2019), was used according to

the following equation where genotype was a random effect:

H2
Cullis � 1 − �V

BLUP
Δ

2pσ2G

where �VBLUP
Δ is the mean variance of genotypic BLUPs and σ2G

represents the genetic variance (ΔG, genetic gain).

2.3 Genotype data

Genotyping was performed similarly to methods

previously described (Sarinelli et al., 2019; Winn et al.,

2022). DNA was extracted using sbeadex plant maxi kits

FIGURE 1
Map indicating the three major target population of environments (regions) (Boyles et al., 2019). In red indicating the Atlantic coastal plain
correlated trial locations (region 1), in blue Georgia and Florida locations (region 2) and in green the gulf coast locations (region 3). Pinpointed are the
19 locations in eight states of the Southeastern US region were SunGrains breeding lines are evaluated annually.
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(LGC Genomics, Middlesex, United Kingdom) according to

the manufacturer’s instructions. Genotyping-by-sequencing

(GBS) was performed as previously described (Poland JA.

et al., 2012) and libraries were sequenced on an Illumina

HiSeq 2500 or NovaSeq 6000 at the USDA-ARS Eastern

Regional Small Grains Genotyping laboratory (Raleigh,

NC). Reads were mapped to the wheat genome assembly

(RefSeq 1.0) (Appels et al., 2018) using the Burrows-Wheeler

aligner (BWA) (v.0.7.12) (Li and Durbin 2009) and single

nucleotide polymorphism (SNP) discovery was completed

with Tassel-5GBSv2 (v.5.2.35) (Glaubitz et al., 2014). Data

was filtered by removing taxa with >85% missing data, while

retaining SNPs with ≥5% minor allele frequency

(MAF), ≤10% of heterozygous proportion and missing data

of ≤20%. Finally, missing data was imputed with Beagle v5.1

(Browning and Browning 2007; Browning et al., 2018).

Exported VCF file containing 1,149 elite lines tested in

advanced trials from 2008 to 2020 and the 1,133 breeding

lines from SC sequenced in 2020 and 2021 was filtered. SNPs

with MAF of less than 5% were discarded and a maximum

heterozygous proportion of 10% was allowed (Juliana et al.,

2020). A total of 15,077 SNPs for 9,137 genotypes were

exported as a HapMap file and converted into a numerical

matrix (0,1,2) using GAPIT (v.3.1.0) with default parameters

in R (Lipka et al., 2012).

2.4 Training population selection

Training population optimization was performed to target

strategic production environments within the southeastern US. A

total of 998 (361 from 2020 to 637 from 2021) new SC breeding lines

were used to identify the best TP using each of the subsets of trial

locations (Supplementary Table S1). The best TPs of 400 individuals

were selected from the 1,149 SunGrains breeding lines based on the

genetic relatedness (Norman et al., 2018) to the 998 lines in the

prediction set. The R ‘STPGA’ package (Akdemir et al., 2015;

Akdemir 2017) was utilized using the historical high-density

genotype dataset with the following parameters: the genetic

algorithm was GenAlgForSubsetSelection’, the optimality criteria

was ‘PEVmean’, ‘nelite’ was set to 10, population size was set to

400 (Isidro et al., 2015; Michel et al., 2017; Sarinelli et al., 2019), and

other parameters were set with default values (Sarinelli et al., 2019).

The first 100 principal components calculated from the genotype

data were chosen for prediction of error variance. Optimal TPs were

selected after 300 iterations and 10 replications.

The frequency and percentage (%) of breeding lines by

breeding program selected by STPGA was calculated for each

TP and normalized by number of lines by program. A stacked

barplot was displayed with ‘ggplot’ package in R (Wickham 2016).

A heatmap was obtained with ‘pheatmap’ package (Kolde 2012),

and PCAs using genotypic data were calculated with ‘prcomp’

package and plotted with ‘ggplot’.

2.5 Genomic selection and cross-
validation

Genomic best linear unbiased prediction (GBLUP) mixed

models were fitted to estimate GEBVs for YLD, TW, TW and PH

with the following equation:

y � Xβ + Zμ + e

Where y represents the vector of BLUEs for each genotype; X

and Z represent the design matrices for fixed and random effects,

respectively; β is the vector of fixed effects; μ is the vector for

random genotypic effects; and e is a vector of residuals (Sarinelli

et al., 2019). EMMs and BLUPs of each of the 22 TPs selected by

STPGA (Supplementary Table S2) and the SNP dataset were

entered into the ‘mixed.solve’ function of the R ‘rrBLUP’ package

(Endelman 2011) for marker-based predictions. The restricted

maximum-likelihood method (REML) was used, and other

parameters were set as default.

Two types of validation were implemented to assess and

compare each model’s prediction ability using each TP for each

trait. First, five-fold cross-validation (CV) is a procedure that

randomly divides the TP into five groups of approximately equal

size (20%). One random group is masked and GEBVs are

calculated for the masked set using the remaining four folds

(80% of lines) (Lozada and Carter 2019). After completing this

step for all five folds, the correlations between observed values

(EMMs/BLUPs) and the predicted values (GEBVs) were used to

assess the accuracy of prediction by averaging the five

correlations. Second, a validation was performed using data

from 58 advanced breeding lines that were selected and

developed in SC for regional testing in 2021; six lines tested

in GAWN, 14 in SunWheat, 19 in SunGrains preliminary early

(SPE) nursery and 19 in SunGrains preliminary late (SPL)

nursery. For GAWN and SunWheat nurseries, YLD was

measured in nine locations (Warsaw, VA; Kinston, NC;

Clemson, SC; Florence, SC; Plains, GA; Citra, FL; Marianna,

AR; McGregor, TX, Winnsboro, LA.). SPE and SPL included

phenotypic data from seven locations (Marianna, AR; Plains, GA;

Gainesville, FL; Winnsboro, LA; Kinston, NC; Florence, SC; and

McGregor, TX.). EMMs and BLUPs were calculated for data

collected in all locations, as well as data collected exclusively in

Florence, SC and its most similar trial location Kinston, NC

(Boyles et al., 2019). These two datasets were used for comparison

with GEBVs calculated with the 22 TPs selected by STPGA.

Four-quadrant plots showing the correlation between observed

and predicted values were displayed with the ‘ggplot’ package in

R. Means of observed and predicted values were calculated to

divide the plot into four quadrants: A (upper-right) and B (lower-

left) for correctly classified lines, and C (lower-right) and D

(upper-left) for wrongly categorized genotypes.

Furthermore, GBLUP mixed models were fitted to estimate

GEBVs for the 998 breeding lines developed by the Clemson
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University breeding program. Using the EMMs and BLUPs of the

TP with highest prediction accuracy, predictions of YLD, TW,

HD and PHwere performed with the ‘mixed.solve’ function of the

R ‘rrBLUP’ package as previously described. With the aim to

select a subset of lines as the foundation for the breeding program

as well as first year advanced field testing, one hundred and five

superior lines were identified based on GEBVs for YLD, and

20 low-ranked lines were identified for comparison. Advanced

field evaluation for these lines is in progress (data not shown).

2.6 QTL-by-environment

SunGrains’ elite breeding lines have been evaluated every

year with Kompetitive allele-specific PCR assays (KASP, LGC

Biosearch Technologies, Hoddesdon, United Kingdom) to

generate composite calls for major effect genes at the Eastern

Regional Genotyping Small Grains Laboratory (Raleigh, NC).

Over the course of 14 years (2008–2021), 4,426 breeding lines

were tested for 75 molecular markers associated with disease/

pest resistance, photoperiod, vernalization, dwarfing, grain

texture and kernel color (Díaz et al., 2012; Guedira et al.,

2016; Mason et al., 2018; Sarinelli et al., 2019). For this study,

18 of the 75 major genes were selected due to a given

association with one or more of the following: FHB

(Fusarium graminearum) resistance, leaf rust (Puccinia

triticina) resistance, stem rust (P. graminis) resistance,

stripe rust (P. striiformis) resistance, Hessian fly

(Mayetiola destructor) resistance, powdery mildew

(Blumeria graminis) resistance, septoria nodorum blotch

(Parastagonospora nodorum) susceptibility, or photoperiod

sensitivity (Supplementary Table S3). In addition to their

association with important traits, these genes were also

selected because of their high frequency among regional,

SRW wheat lines and their perceived value to resiliency

and productivity.

Historical phenotype data from 1,285 breeding lines was used

to assess the effect on agronomic traits when the expression of a

major effect QTL differs under different environmental pressure

(e.g., low or high pest/disease pressure) across production

locations (Lowry et al., 2019). The historical dataset was

compartmentalized into two different ways: 1) target

population of environments (Boyles et al., 2019), which was a

set of three mega-environments herein referred to as regions

based on testing location; and 2) breeding line origin which

considered potential genetic background bias. Region 1 included

all data collected in states located in the Atlantic Coastal Plain

(NC, SC, VA), Region 2 comprised data from GA and FL

locations, and Region 3 represented data from Gulf Coast

states (TX, AR, LA) (Figure 1 and Supplementary Table S4).

Breeding line origin was categorized using the same three groups.

A total of 1,172 lines shared between this historical phenotypic

dataset and the Eastern Regional Marker Report were selected for

QE analysis.

For each of the 18 major genes, only absent/present calls were

considered for analysis by discarding heterozygous, null, and

failed calls. The following linear mixed model was calculated to

test the significance of QTL-by-environment (region/origin)

interactions for YLD, TW and HD using the function ‘lmer’

of ‘lme4’ package in R:

Yijk � μ + Gi + Ej + Rk(j) + GEij +QE + eijk

Where Yijk represents the phenotypic observation of

genotype i in environment j and replication k, µ the overall

mean; Gi is the effect of genotype i, Ej is the effect of environment

(location-year combination) j; Rk(j) the effect of replication k

nested in environment j; GEij the G x E interaction between

genotype i and environment j; QE the QTL-by-environment

interaction effect; and eijk the residual effect associated with

genotype i in environment j and replication k. QE effect was

considered fixed and all the remaining effects were considered

random.

Using the mixed model, EMMs were calculated using the

‘emmeans’ function in R for the fixed effect of the interaction

between major gene (absent/present) and region (1, 2 and 3). To

estimate the significant difference at 0.05, p-values were

calculated using pairwise comparisons between groups with

the option ‘pairwise’ and adjusted with the Tukey correction

method. Plots for EMMs and p-values were displayed with

‘ggplot’ in R. The same analysis was performed for YLD using

the classification of locations by origin to assess for genetic

background bias.

3 Results

3.1 Summary of historical phenotype data

The historical phenotypic dataset was used to calculate

biplots and PC plots showing the relationship among

environments (Supplementary Figure S1). These plots allowed

for the classification of locations by similarity of line performance

into 22 subsets as follows: eight groups using data collected in

GAWN nursery, four groups using data from SunWheat nursery

and ten groups using the whole dataset. For 22 subgroups, EMMs

and BLUPs were estimated in R (Supplementary Table S1).

Histogram plots for the four traits using the full dataset

revealed a normal distribution of EMMs and BLUPs

(Supplementary Figure S2). Correlation plots exhibited strong

positive relationships between predictors for each trait

(Supplementary Figure S3). Because there was complete

correlation (r = 1) between BLUPs calculated with ‘coef’ and

‘ranef’ R functions, hereinafter only results using BLUPs

estimated with ‘coef’ function are presented.
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Broad-sense heritability (H2) using the Cullis method was

moderate to high for YLD (r2 = 0.56), TW (r2 = 0.74), HD (r2 =

0.85) and PH (r2 = 0.83).

3.2 Training population selection

A genotypic dataset of 15,077 SNPs and 9,137 genotypes,

which included 998 SC lines and 1,149 SunGrains advanced

breeding lines, was used to establish optimal TPs. Subsetting was

based on genetic relatedness calculated using the ‘STPGA’ R

package. TPs containing 400 SunGrains advanced breeding lines

that most represented the SC prediction population were

selected, with the exception of three TPs (Set11_TP and

Set13_TP with 350 and Set15_TP with 300 lines) where fewer

lines were selected due to a lower number of available entries. The

normalized frequency of lines selected by breeding program

showed that overall representation of breeding

programs within TPs was LA (µ = 13.9%), NC (µ = 13.8%),

AR (µ = 13.3%), GA (µ = 13.2%), TX (µ = 12.9%), FL (µ = 12.5%),

FIGURE 2
PCA plot of first two principal components is showing the genetic relationship between SunGrains’ elite lines (gray, green and red dots), the SC
new breeding lines (light blue) and SC lines used for validation (dark blue). Lines selected in the combined TP (SetAll_TP) are indicated in green and
lines present in at least 20 TPs (Supplementary Figure S5) are highlighted in red. Percentage represent the proportion of variance explained by each
principal component.
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VA (µ = 11.7%), and SC (8.8%). After normalizing the number of

lines included from each program by the total lines available from

each program (n included/t available * 100 = normalized %), it

was apparent that STPGA included approximately one-third of

individuals from every program, with a mean over all 22 sets

ranging from a high of 36.3% (LA) to a low of 24% (SC)

(Supplementary Figure S4 and Supplementary Table S2). The

heatmap showed the lines selected by STPGA across TPs (within

nursery clustering), and that 12 lines were selected in at least

20 TPs (Supplementary Figure S5). The SunGrains’ elite breeding

lines and SC lines were genetically compared using PCA plots

(Figure 2). STPGA selected SunGrains’ lines (Figure 2, in green)

that best captured the genetics present in the new SC lines

(Figure 2, in blue). The PC1 that explained 10.3% of the

variation divides the genotypes into two distinct

subpopulations associated with the presence/absence of the

t2BS:2GS·2GL:2BL translocation derived from T. timopheevii

(Sarinelli et al., 2019).

3.3 Genomic selection and cross-
validation

GBLUPmixed models were fitted to predict GEBVs for YLD,

TW, HD and PH using the selected 22 TPs. Using five-fold CV, a

mean accuracy of r = 0.42 was observed across the 22 TPs when

TABLE 1 Five-fold CV using estimated values (EMMs and BLUPs) of 22 TPs (Supplementary Table S2) and the prediction accuracy to predict GEBVs for
YLD, TW, HD and PH.

Nursery TP YLD
EMMs

YLD
BLUPs

TW
EMMs

TW
BLUPs

HD
EMMs

HD
BLUPs

PH
EMMs

PH
BLUPs

GAWN Set01_TP 0.53 0.42 0.34 0.33 0.46 0.45 0.54 0.53

GAWN Set02_TP 0.44 0.35 0.30 0.26 0.37 0.35 0.43 0.45

GAWN Set03_TP 0.55 0.45 0.36 0.28 0.51 0.53 0.43 0.37

GAWN Set04_TP 0.47 0.37 0.30 0.24 0.45 0.43 0.46 0.45

GAWN Set05_TP 0.47 0.41 0.36 0.31 0.34 0.37 0.42 0.44

GAWN Set06_TP 0.46 0.36 0.37 0.33 0.33 0.33 0.38 0.39

GAWN Set07_TP 0.47 0.42 0.34 0.27 0.40 0.43 0.45 0.47

GAWN Set08_TP 0.46 0.35 0.37 0.30 0.37 0.40 0.52 0.53

SunWheat Set09_TP 0.37 0.27 0.26 0.21 0.48 0.39 0.37 0.42

SunWheat Set11_TP 0.29 0.13 0.17 0.17 0.37 0.32 0.38 0.40

SunWheat Set12_TP 0.47 0.28 0.22 0.17 0.49 0.45 0.39 0.42

SunWheat Set13_TP 0.29 0.20 0.23 0.17 0.41 0.30 0.48 0.47

GAWN + SunWheat Set14_TP 0.52 0.44 0.45 0.36 0.55 0.54 0.50 0.51

GAWN + SunWheat Set15_TP 0.16 0.15 0.03 0.05 0.45 0.45 0.34 0.35

GAWN + SunWheat Set16_TP 0.21 0.11 0.12 0.13 0.39 0.39 0.45 0.49

GAWN + SunWheat Set17_TP 0.36 0.21 0.42 0.28 0.38 0.44 0.40 0.44

GAWN + SunWheat Set18_TP 0.41 0.25 0.39 0.29 0.49 0.50 0.38 0.42

GAWN + SunWheat Set19_TP 0.49 0.34 0.39 0.27 0.43 0.46 0.44 0.45

GAWN + SunWheat Set20_TP 0.40 0.29 0.38 0.23 0.44 0.45 0.47 0.46

GAWN + SunWheat Set21_TP 0.50 0.38 0.40 0.30 0.45 0.46 0.43 0.43

GAWN + SunWheat Set22_TP 0.42 0.31 0.41 0.33 0.43 0.44 0.51 0.52

GAWN + SunWheat SetAll_TP 0.45 0.35 0.37 0.33 0.45 0.46 0.48 0.49

Average 0.42 0.31 0.32 0.26 0.43 0.42 0.44 0.45

Notes: Accuracies between 0.4–0.5 highlighted in light green and accuracies higher that 0.5 in dark green. Here presenting analysis was completed using BLUPs estimated with ‘coef’

function (BLUPs calculated with ‘coef’ function and ‘ranef’ function resulted in the same accuracies).
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TABLE 2 Validation using estimated values (EMMs and BLUPs) of 22 TPs (Supplementary Table S2) and the prediction accuracy to predict GEBVs for
YLD of 58 lines developed in Florence, SC.

Nursery Pred. GEBVs
calculated using
TP (predicted
values)

YLD (Obs.
EMMs)

YLD (Obs.
BLUPs)

YLD (Obs.
EMMs SC
& NC
only)

YLD (Obs.
BLUPs SC
& NC
only)

GAWN Set01_TP (EMMs) 0.48 0.42 0.26 0.23

Set01_TP (BLUPs) 0.41 0.34 0.26 0.19

GAWN Set02_TP (EMMs) 0.31 0.26 0.26 0.22

Set02_TP (BLUPs) 0.09 0.04 0.17 0.12

GAWN Set03_TP (EMMs) 0.26 0.24 0.10 0.10

Set03_TP (BLUPs) 0.09 0.05 −0.01 −0.04

GAWN Set04_TP (EMMs) 0.23 0.18 0.02 −0.02

Set04_TP (BLUPs) 0.08 0.03 −0.08 −0.12

GAWN Set05_TP (EMMs) 0.24 0.21 0.29 0.23

Set05_TP (BLUPs) 0.15 0.10 0.21 0.14

GAWN Set06_TP (EMMs) 0.22 0.17 0.22 0.15

Set06_TP (BLUPs) 0.12 0.06 0.08 0.01

GAWN Set07_TP (EMMs) 0.27 0.22 0.21 0.15

Set07_TP (BLUPs) 0.14 0.10 0.15 0.09

GAWN Set08_TP (EMMs) 0.19 0.13 0.14 0.07

Set08_TP (BLUPs) 0.06 0.01 0.05 −0.03

SunWheat Set09_TP (EMMs) 0.48 0.43 0.16 0.11

Set09_TP (BLUPs) 0.46 0.41 0.16 0.11

SunWheat Set11_TP (EMMs) 0.23 0.18 −0.01 −0.01

Set11_TP (BLUPs) 0.26 0.20 0.04 0.02

SunWheat Set12_TP (EMMs) 0.31 0.25 0.06 −0.01

Set12_TP (BLUPs) 0.30 0.22 0.03 −0.04

SunWheat Set13_TP (EMMs) 0.26 0.23 0.04 0.09

Set13_TP (BLUPs) 0.07 0.08 0.02 0.09

GAWN + SunWheat Set14_TP (EMMs) 0.34 0.32 0.32 0.29

Set14_TP (BLUPs) 0.37 0.33 0.26 0.23

GAWN + SunWheat Set15_TP (EMMs) 0.52 0.53 0.37 0.39

Set15_TP (BLUPs) 0.51 0.51 0.37 0.38

GAWN + SunWheat Set16_TP (EMMs) 0.21 0.21 0.06 0.11

Set16_TP (BLUPs) 0.15 0.14 0.04 0.10

GAWN + SunWheat Set17_TP (EMMs) 0.41 0.35 0.09 0.05

Set17_TP (BLUPs) 0.45 0.41 0.17 0.16

GAWN + SunWheat Set18_TP (EMMs) 0.43 0.39 0.10 0.10

Set18_TP (BLUPs) 0.41 0.37 0.13 0.14

GAWN + SunWheat Set19_TP (EMMs) 0.45 0.41 0.15 0.13

Set19_TP (BLUPs) 0.44 0.39 0.15 0.12

GAWN + SunWheat Set20_TP (EMMs) 0.49 0.45 0.14 0.12

Set20_TP (BLUPs) 0.47 0.44 0.15 0.14

GAWN + SunWheat Set21_TP (EMMs) 0.47 0.41 0.19 0.16

Set21_TP (BLUPs) 0.45 0.39 0.2 0.17

GAWN + SunWheat Set22_TP (EMMs) 0.39 0.34 0.21 0.15

Set22_TP (BLUPs) 0.37 0.32 0.25 0.18

GAWN + SunWheat SetAll_TP (EMMs) 0.62 (Figure 3A) 0.56 0.34 0.29

SetAll_TP (BLUPs) 0.59 (Figure 3B) 0.52 0.38 0.30

Notes: In parenthesis the estimated values used for predictions. Accuracies between 0.4–0.5 highlighted in light green and accuracies higher that 0.5 in dark green. In bold the higher

prediction accuracies. Here presenting analysis was completed using BLUPs estimated with ‘coef’ function (BLUPs calculated with ‘coef’ function and ‘ranef’ function resulted in the same

accuracies).
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using EMMs as the observed data for YLD. When using BLUPs,

the average prediction accuracy was reduced to r = 0.31. For TW,

mean prediction accuracies ranged from r = 0.26 to 0.32 when

using BLUPs and EMMs, respectively. Prediction accuracies

oscillated from r = 0.42 to 0.45 for HD and PH (Table 1).

A smaller set of 58 new breeding lines, developed by the

reestablished Clemson breeding program and evaluated for YLD

in several locations in the 2020–2021 growing season, were used

for additional validation. Observed and predicted values were

compared to assess the predictive ability of each TP

(Supplementary Table S5). Overall, YLD predictions generated

from EMMs of the combined TP (historical phenotypic data-

SetAll_TP) had the greatest correlation with observed data

(Table 2). A prediction accuracy as high as r = 0.62 was

obtained when comparing predicted GEBVs (predicted with

the EMMs of the combined TP) and EMMs of observed YLD

data. The four-quadrant plot for this comparison, where 69%

(40 of 58) of breeding lines were accurately categorized into the

proper quadrant (A and B) and 31% of the breeding lines were

categorized in quadrants C and D (Figure 3A). A prediction

accuracy of r = 0.59 was obtained by comparing the GEBVs

(predicted with the BLUPs of the combined TP), versus the

EMMs of YLD. In this case, 74.1% of the breeding lines with high

or low observed YLD were categorized in quadrants A and B,

whereas 25.9% of the breeding lines fell into quadrants C and D

(Figure 3B). Finally, GEBVs demonstrated low correlations with

observed data collected only in Florence, SC and its nearest trial

in Kinston, NC (Table 2).

The TP that was optimized with historical data and possessed

the highest prediction accuracy (r = 0.62) (Figure 3 and Table 2)

was used for calculating GEBVs of YLD, TW, HD and PH for

998 breeding lines developed in SC (Supplementary Table S6).

Based on YLD, the 105 most promising breeding lines predicted

to have a superior performance (4691–5036 kg ha−1) were

selected for field testing. This set of lines had predicted values

of 73.8–74.6 kg hl−1, 100–104 Julian days and 82.9–88.9 cm for

TW, HD and PH, respectively (Supplementary Table S6, in

green). Additionally, 20 lines with low predicted yield

(3899–4056 kg ha−1) were included for comparison. These

lines had predicted values for TW, HD and PH of

72.6–73.5 kg hl−1, 103–105 Julian days and 84.9–86.8 cm,

respectively (Supplementary Table S6, in red).

3.4 QTL-by-environment

The historical phenotypic dataset containing YLD, TW, HD and

PH measurements from many location-years (19 locations and

14 years, 2008–2021) (Figure 1 and Supplementary Table S4),

along with information for presence/absence of 18 major effect

QTL (Supplementary Table S3) for 1,172 for elite breeding lines,

was used to study whether or not it was advantageous to harbor QTL

FIGURE 3
Four-quadrant plots showing the correlation between predicted (GEBVs, x-axis) and observed yield (EMMs, y-axis) for 58 SC advanced breeding
lines using the combined TP data (SetAll_TP). Correlation between observed and predicted values for YLD using TP EMMs (A) and TP BLUPs (B). Mean
of observed and predicted values is dividing the plot into 4 quadrants, A (upper-right section in red), B (lower-left section yellow), C (lower-right
section in green) and D (upper-left section in blue). Percentage (%) of total lines classified in each quadrant is displayed.
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under variable abiotic and biotic pressures across geographic space

(Lowry et al., 2019). Using a linear mixed model, EMMs were

calculated for six pairwise combinations of QTL (absent/present)

and regions (1, 2 and 3) (Supplementary Table S7), and p-values

(Supplementary Table S8) for nine pairwise comparisons across

combinations. To consider genetic background bias, EMMs for

YLD and p-values (p < 0.05) were also calculated based on origin

of the breeding lines (Supplementary Tables S7, S8).

For each of the studied QTL (Supplementary Table S7), lines

tested in region 1 had the highest EMMs of observed YLD followed

by region 2, with region 3 demonstrating the lowest YLD potential.

For each QTL, significant differences in YLD between regions 1 and

3 were most frequent. In most QTL-by-environment combinations,

there were no significant differences in EMMs of YLDwithin regions

when carrying or not carrying the major QTL (Supplementary Table

S8). For test weight, region 2 showed the lowest EMM values

(Supplementary Table S7); however, there were no significant

differences with regions 1 and 3, nor within regions when

comparing major effect QTL presence/absence (Supplementary

Table S8). According to EMMs, heading date was later in region

1 (Supplementary Table S7) as expected, which was significantly

different from regions 2 and 3 (Supplementary Table S8). Refer to

Supplementary Tables S7, S8 for detailed information for each

comparison of all 18 QTL and three testing mega-environments.

Five genes that are relevant for target population of

environments across the southeastern US were more

rigorously assessed individually for YLD trends within testing

regions and by breeding program (e.g., region 1 observed data

only included breeding lines developed and selected from a

program located within region 1):

• Fhb1
The FHB resistance gene Fhb1 (Yao et al., 1997), which

first originated from ‘Sumai 3’, is located on chromosome 3BS

had an overall frequency of 7.3% among 1,147 breeding lines.

We found that wheat breeding lines harboring this gene had

lower grain yield in all testing environments; however, this

difference was only significant in the Gulf Coast (region 3)

(Figure 4A).

• Fhb_1BJ
Fhb_1B (Wright 2014), an additional FHB resistance

QTL derived from the cultivar ‘Jamestown’ (Griffey et al.,

2010), had an overall frequency of 23.8% among

689 breeding lines. Lines carrying the resistance allele

exhibited significantly lower YLD in region 2. Yields were

similar for Fhb_1B carrying or non-carrying lines in regions

1 and 3 (Figure 4B).

• Fhb_1AN
This third FHB resistance QTL under study (Petersen et al.,

2016) was derived from the cultivar ‘NC-Neuse’ (Murphy et al., 2004)

and is located on chromosome 1A. The resistance allele at Fhb_1A

exhibited a relatively high frequency of 34.3% among 664 breeding

lines. Comparisons between lines with or without Fhb_1A mirrored

Fhb_1B, where only region 2 exhibited a significantly lower YLD for

lines possessing the resistance allele (Figure 4C).

• Yr17_Lr37_Sr38
The multi-functional rust resistance QTL is located in the

2NVS:2A translocation segment derived from Aegilops ventricosa

(Gao et al., 2021). This QTL showed a consistently high

introgression frequency of 53.9%, based on data from

1,072 breeding lines. The favorable allele for rust resistance

had a consistent, positive effect on YLD (Figure 4D),

especially in regions 2 and 3 where rust often threatens wheat

production (Aboukhaddour et al., 2020).

• H13
This effective Hessian fly resistance gene was introgressed

from Aegilops tauschii and is located on 6DS (Liu et al., 2005).

H13 displayed an overall frequency of 11.0% among

1,104 breeding lines. Assessing its impact on productivity

across the regions, the resistance allele at H13 had a

significantly positive effect on YLD (Figure 4E).

When narrowing phenotypic data by only including breeding

lines that originated within region, similar trends between presence/

absence of these five major effect QTL and YLD were observed

(Supplementary Figure S5). In other words, YLD trends largely held

true to suggest genetic background was not impacting this analysis. A

notable exception was lines that originated in region 1 and carried the

Yr17_Lr37_Sr38 introgression segment yielded significantly greater

than lines not harboring this QTL for rust resistance (Supplementary

Figure S6).

4 Discussion

4.1 Application and benefits of genomic
prediction in cultivar development
programs

Integration of GS and molecular breeding technologies into the

cultivar development pipeline has enabled established programs to

accelerate the rate of genetic gain for complex traits and speed up the

breeding process (Voss-Fels et al., 2019), while helping to minimize

costs (Crossa et al., 2017). Implementation of GS into existing

breeding programs that once fully relied on phenotypic selection

comes with the challenge of restructuring the breeding pipeline to

efficiently deploy genomics-enabled breeding (Merrick et al., 2022).

Merrick et al. (2022) reviewed the specific aspects to consider that

affect a given model’s predictive ability in GS including: 1)

establishment of optimum TPs where size, structure and

composition, and genetic relatedness to the target population
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impact accuracy (Isidro y Sánchez and Akdemir 2021); 2)

genotyping and incorporation of major genes into the GS

models; 3) speed breeding to reduce generation time and double

haploids for accelerated fixation of traits; 4) leveraging phenotypic

data by conducting multi-environment (multiple locations and

years) trials and accounting for genotype-by-environment

interaction of complex traits (e.g., yield); 5) incorporating

multiple, high-heritable correlated traits to improve prediction

accuracy for low heritable complex traits (Merrick et al., 2022);

6) incorporating new technologies to aid GS models, such us high-

throughput phenotyping of secondary traits to select complex traits

(Rutkoski et al., 2016); and 7) utilizing machine (Montesinos-López

et al., 2018) or deep learning (Montesinos-López et al., 2021) for

model building to increase statistical power.

The Clemson University winter wheat cultivar development

program was recently reestablished in 2017 and served as a case

study. New or reestablished breeding programs often have limited

resources and must make difficult decisions on how to best adopt

genomics-enabled breeding. Though challenging, these programs

have a unique flexibility in deploying technology to inform critical

decisions such as sourcing initial germplasm to establish the genetic

foundation, determining crossing combinations for greatest

population variance, and capturing genotype-by-environment

interaction for a specific target population of environments.

FIGURE 4
QTL-by-environment plots for YLD when five major genes are present or absent within three major testing regions (target population of
environments or mega-environments). Fusarium head blight (FHB) (F. graminearum) resistance genes, Fhb1 (A), Fhb_1B derived from ‘Jamestown’
cultivar (B), Fhb_1A derived from ‘Neuse’ cultivar (C), stripe rust (P. striiformis) resistance gene Yr17_Lr37_Sr38 (D) and hessian fly (M. destructor)
resistance gene H13 (E). Three regions in x-axis and EMMs calculated for YLD in y-axis. p-values are indicated for each pairwise comparison.
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Existing historical genomic and phenotypic resources formany lines

tested across locations and years could significantly benefit emerging

or re-emerging breeding programs. These comprehensive datasets,

previously shown to enhance prediction accuracy (Tomar et al.,

2021; Zhao et al., 2021), were leveraged through the SunGrains

multi-institutional collaborative program, which continues to

successfully develop and release commercial cultivars for the

southeastern US. This study utilized historical data generated and

compiled by SunGrains to identify best practices for leveraging

available genomic and phenotypic data to determine optimal genetic

foundation for a specific target population of environments, and to

incorporate robust GS models with high prediction accuracy. Here,

grain yield data was used to cluster locations by correlated line

performance (Boyles et al., 2019) into 22 groups, and optimization of

TPs was implemented for each set with STPGA. Selecting TPs

genetically related to new lines being evaluated should lead to an

increase in prediction accuracy (Norman et al., 2018). In addition, it

has been shown that accuracy in wheat increases with the increase of

TP size, with 300 individuals (Isidro et al., 2015; Michel et al., 2017)

or even greater (Sarinelli et al., 2019) being reported as the optimal

number. As such, 400 individuals were selected for each TP in this

winter wheat case study (based on unpublished tests).

When correlating GEBVs with observed phenotypic data,

validation using 58 SC breeding lines demonstrated that using

the combined TP (complete data from all regional trials and

years) produced the highest prediction accuracy for grain yield

(as high as r = 0.62), and outperformed predictions made with TPs

with reduced data. The complete dataset not only included more

high-quality data for predictions, but also TPs selected from a

historical pool of lines tested in multiple years and geographic

regions aids in capturing a broader range of environmental

conditions when compared to newly generated, population-

specific TPs. In this case study, it was apparent that the historical

phenotypic dataset using all data (combined GAWN + SunWheat

over 14 years) effectively captured environments that were

representative of the collection of locations in 2021 where the

58 SC breeding lines were tested. Specifically, grain yield GEBVs

for 40 of the 58 lines (69%) used for validation correctly grouped

with observed data (Figure 3A). This result reinforces the utility and

value of preserving and using historical data for building genomic

selection models for new programs, as well as the importance of

having strong regional alliances to share data across breeding

programs. These collaborative networks enable genomics-enabled

breeding to reach its theoretical potential for enhancing genetic gain

(Spindel and McCouch 2016; Xu et al., 2020). A separate GS

validation study leveraging historical winter wheat data reported

a similar prediction accuracy of r = 0.64, which consisted of 483 lines

grown over a 9-year period (Sarinelli et al., 2019). Meanwhile, lower

accuracies (r = 0.28–0.50) were observed when using training data of

318 lines collected over 11 years at six locations in France (Storlie

and Charmet 2013) and data from 254 lines tested inMexico during

2010 (Poland J. et al., 2012). Although quality of phenotype data was

high, and GS has the potential to improve grain yield, these results

also imply that the complex nature of this trait with a moderate

broad-sense heritability (r2 = 0.56) is highly affected by genotype-by-

environment interactions (Crossa et al., 2017).

4.2 Assessment of the presence/absence
of major effect QTL on regional
productivity

Grain yield remains the primary target trait for winter wheat

improvement, but there are other agronomic, quality (Tsai et al., 2020;

Sandhu et al., 2022) and resiliency traits that undergo intensive

selection (Singh et al., 2016; Laidig et al., 2021; Langridge and

Reynolds 2021). In this study, trends between grain yield and allele

presence at major effect QTL were examined using existing PCR-

based markers (Díaz et al., 2012; Guedira et al., 2016; Mason et al.,

2018) and historical multiyear, multi-location phenotypic data. For

this specific case study in southern SRW wheat, selection for broad

adaptation is of interest as seed companies desire covering large

market regions with fewer products. Thus, determining the best

combination of major effect QTL would be a valuable selection

tool to guide future breeding decisions. Broad adaptation for

winter wheat in the southeastern US is elusive because there are

myriad diseases and pests that threaten yield but often to various levels

across the entire region. This study sought to provide evidence for the

most appropriate combination of resistance QTL with high yield

potential in absence of any biotic stress.

Several major effect QTL conferring resistance to FHB were

examined because the primary threat fromF. graminearum infection is

reduced grain quality and deoxynivalenol (DON) toxin

contamination, with FHB not known to severely hinder yield

unless present at epidemic levels (Rod et al., 2020). Thus, there was

interest in determining whether yield drag was observed from

introgression of exotic (e.g., Fhb1) or native (‘Jamestown’ Fhb_1B

and ‘Neuse’ Fhb_1A) resistance QTL and assessing how environment

influenced the yield/QTL relationship. Although Fhb1 is widely used

in many breeding programs, it was present at very low frequency

(~7%)within the SunGrains’wheat lines, and genotypes harboring this

gene exhibited lower yield regardless of testing region. Fhb1 is derived

from an unadapted cultivar (Yao et al., 1997), and progenies using this

source of resistance could inherit undesired agronomic traits due to

linkage drag. Therefore, breeding lines harboring this QTL might be

discarded by breeders in the field when looking and selecting for

outstanding performance and adaptation. Marker-assisted

backcrossing using adapted recurrent parents is a strategy to break

the linkage and develop lines that combine the Fhb1 resistance gene

with desired agronomic traits (Jin et al., 2013). Otherwise, use of native

FHB resistance genes, present at higher frequency (Fhb_1Bwith ~24%

and Fhb_1A ~34%) and without yield penalty, is highly

recommended. For instance, one of the most productive and

adapted SRW wheat lines in the southern US, ‘Hilliard’, harbors

FHB resistance derived from ‘Jamestown’ (Griffey et al., 2020). Further

opportunities to improve and provide durable FHB resistance is the
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pyramiding of native resistance genes with complimentary (or novel)

QTL (Castro Aviles et al., 2020).

The recent study by Gao et al. (2021) found a positive yield effect

of Yr17_Lr37_Sr38 in the USGreat Plains and across an international

performance trial led by the International Maize and Wheat

Improvement Centre (CIMMYT). Indeed, this same trend was

observed in SRW wheat adapted to the southeastern US,

irrespective of region, where lines that possessed the introgression

segment from A. ventricosa exhibited significantly higher mean yields

than lines not carrying this introgression. As such, it was not

surprising to observe that approximately 50% of breeding lines in

the study carried Yr17_Lr37_Sr38. Fixing this QTL in a breeding

program would be suggested, given its multi-purpose rust resistance

benefit and purported linkage to favorable yield gene(s). For H13, the

QTL that confers strong resistance to the local biotype L Hessian fly,

was present at much lower frequency (11%). Because of the tendency

of Hessian fly biotype L to be more frequent and impactful along the

Atlantic Coastal Plain (regions 1 and 2, Figure 1), it was not surprising

to see that lines harboring the resistance allele at H13 had higher yield

than non-H13 lines in these regions, especially given thatHessianfly is

a yield-threatening pest. In region 3, whereHessian fly biotype L is less

common, there were no yield differences between lines with or

without H13 (Ratcliffe et al., 1994; Ratcliffe et al., 2000; Onstad

and Knolhoff 2014).

Conclusion

Formostmajor food crops, there are extensive resources available,

including in the public domain, that can be leveraged to rapidly scale

new or reestablished breeding programs that do not have direct access

to valuable germplasm, data, or selection tools at program inception.

This study examined the reestablished soft red winter wheat breeding

program at Clemson University to establish processes for integrating

available resources to accelerate the time from program inception to

cultivar release. These steps included 1) utilizing a combination of

historical phenotype data and genome-wide SNP markers to build a

reliable GS model for predicting best lines for a target population of

environments, and 2) identifying major effect QTL using existing

PCR-based marker reports that were favorable, within the context of

region and biotic pressure. This study highlights the importance of

cooperative efforts between breeding programs that share a target

population of environments to not only perform extensive multi-

environment field trials but also to compile genotypic and phenotypic

datasets that are key to enhancing genetic gain through robust

genomic prediction models.
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