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Abstract

Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the
complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial
explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on
heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on
convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic
gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds
the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of
characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the
constraints and best approximates the objective function given by the user. We evaluated the proposed method in the
design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally
constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales
well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework
for the automated design of biological circuits.
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Introduction

Synthetic biology is a nascent field with transformative potential

to a variety of disciplines, ranging from development of

therapeutics [1] to biofuel production [2]. Although automation

is one of the conceptual pillars of synthetic biology, designs still rely

on a trial-and-error and tinkering approaches. When it comes to

automated biological circuit design, computer-aided design (CAD)

tools have still low penetrance to biological circuit design despite

notable developments in the field. Recent advances include efforts

to adapt electrical engineering concepts, such as Boolean

optimization and Carnaugh maps, to biological circuit design of

digital functions [3], and approaches that build formal high-level

languages to translate from user-defined specifications to genetic

circuits that adhere to digital logic [4], [5], [6].

In the realm of analog synthetic gene design, heuristic methods

such as evolutionary algorithms [7], [8] and simulated annealing

[9] were employed. Relevant approaches include the exploration

of the functionality space of a given library [10], library-agnostic

robustness analysis to determine what mutation sites for achieving

the desired functionality [11]. Notably, a deterministic optimiza-

tion framework was proposed by Dasika and Manaras [12] to find

synthetic constructs by using an outer approximation procedure.

Despite its novelty, the capabilities of that method are limited, as it

targets only steady-state problems and it cannot guarantee

optimality in non-convex problems, which usually is the case in

biological systems.

In this paper, we focus on the problem of optimal part selection:

given a library of biological parts, an objective function (e.g. a

desired temporal protein profile or a dose-dependent protein

expression profile), user-defined constraints (e.g. the maximum

number of coding regions per promoter), and an existing abstract

circuit topology, we try to find the optimal set of parts from the

library so that the final circuit best approximates the objective

function, given the constraints. An overview of the proposed

optimization framework is illustrated in figure 1.

Methods

Nonlinear Model
We first describe a non-linear model that incorporates

regulation, degradation, transcription and translation, and allows

multiple gene copies with distinct regulation to be present in the

genetic circuit. Let pro(i) be the set of all promoters that are

upstream of the one or more copies of gene i. The various

promoters may include transcription factor binding sites (TFBS)

that will be part of the cis-regulatory region of a gene. For each

promoter k in pro(i) the (possibly empty) sets act(k) and rep(k)
contain all activator and repressor proteins that are present in

promoter k, respectively. Using Hill equations (see [13], [14], [15]
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and [16]), the concentration of protein i can be modeled as an

ordinary differential equation (ODE) as follows:

dfi

dt
~

P
k[pro(i)

(a0kzak P
a[act(k)

bakf
gak

a

1zbakf
gak

a

P
r[rep(k)

1

1zbrkf
grk

r

){(dizm)fi:

ð1Þ

where fi(t), fa(t) and fr(t) are the concentration at time point t of

proteins i,a and r, respectively. For each promoter k in pro(i), a0k

and ak are its basal production and protein synthesis coefficient,

gak and grk are the cooperativity coefficients for activator a and

repressor r, bak and brk are the binding affinities of activator a and

repressor r. The degradation of protein i is captured by parameter

di. The growth rate is represented with m, and it is considered to be

zero in stationary phase.

In many cases, gene expression is controlled by exogenously

applied chemicals that induce gene expression through molecular

binding. We can incorporate the effect of inducers by explicitly

modeling the total amount of any protein j in the cell as the sum of

the free (f
free
j ) and inducer-bound protein (f bound

j ), which results in

the following Hill equation model:

fj~f
free

j zf bound
j , ð2Þ

f
free

j ~
hgfj

hgz½inducer�g , ð3Þ

f bound
j ~

½inducer�gfj

hgz½inducer�g , ð4Þ

where ½inducer� is the inducer concentration, g is the Hill

coefficient (cooperativity factor) and h is the dissociation constant.

Note that equations 2 to 4 apply for both activators and repressors,

and in cases where binding of the inducer renders the transcription

factor either active or inactive. For example, when inducer binding

to the transcriptor factor activates transcription (as it is the case

with AraC and arabinose), then the activator concentration fa in

the RHS of equation 1 is given by f bound
a from equation 4.

Figure 1. System overview of the proposed optimization framework. The software requires access to a library of characterized parts (such as
a subset of the parts available in Parts Registry) that will be used as fundamental blocks in the synthetic circuit. The user will have to supply a specific
design (static connectivity), together with a set of constraints and a specific objective function to be optimized. The software will translate this system
to a set of linear constraints that it will subsequently solve. The result of the optimization framework will be the set of parts that have to be used, and
at what position. The system will have the ability to simulate the proposed design, and provide candidate synthetic circuits for experimental
construction in the laboratory.
doi:10.1371/journal.pone.0035529.g001

Automatic Design of Synthetic Gene Circuits

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e35529



Equation 1 provides a non-linear representation of protein

concentration, which can be combined with binary variables that

correspond to the presence/absence of a specific promoter in the

synthetic circuit to formulate an optimization design problem. We

introduce the following equation to express the concentration of

protein i as a function of the available promoters and proteins:

dfi

dt
~
Pm

k~1

yik(a0kzak P
a[act(k)

bakf
gak

a

1zbakf
gak

a

P
r[rep(k)

1

1zbrkf
grk

r

){(dizm)fi,

ð5Þ

where m is the number of all promoters and binary variables yik

represent the presence or absence of promoter k upstream of gene i:

yik~

1 if promoter k is up stream

of protein i

0 otherwise:

8>>><
>>>:

ð6Þ

Linear Model
The non-linear model formulation works well when the

objective function is to approximate a steady-state expression profile

since setting the derivative in equation 1 to zero results in a

polynomial equation. However, approximating temporal profiles

through a system of non-linear differential equations that

incorporate integer variables (e.g., yik) lead to a mixed integer

dynamic optimization (MIDO) problem, which cannot be solved

efficiently [17].

To overcome this challenge, we introduce a linearization of the

non-linear model that was given in (5) by using a linear

approximation around a steady-state point [18]. Approximating

the model through taking the first terms of its Taylor expansion,

and then incorporating the binary selection variables yik that we

introduced in eq. 6 yields:

dfi

dt
~
Xm

k~1

yik(ckz
X

a[act(k)

Kakfa{
X

r[rep(k)

Krkfr){(dizm)fi ð7Þ

where Kak,Krk are coefficients of first order terms in the Taylor

expansion over variables fa and fr in equation 5, and ck is the

residual constant. Assuming m promoters and n proteins total in

the library, we can reformulate the above expression (eq. 7) by

introducing the parameter aijk as the regulatory effect of protein j

to the expression of gene i when j is bound on the upstream

promoter k of i (i.e., aijk~Kjk if j is an activator of k, aijk~{Kjk

if j is a repressor of k, and aijk~0 if j is neither an activator nor a

repressor of k):

dfi

dt
~
Xm

k~1

Xn

j~1

yikaijkfj{(dizm)fizbi ð8Þ

where

bi~
Xm

k~1

yikck ð9Þ

Equation 8 described the protein production rate for any

protein in a closed protein set f ~(f1,f2,:::,fn). To solve this linear

system, we re-write it in its matrix form, as follows:

_ff ~Af zb ð10Þ

where the elements of the A matrix are defined as:

Aij~

Pm
k~1 aijkyik if i=jPm

k~1 aijkyik{di{m if i~j

�
ð11Þ

and b is given by

b~(b1,b2, . . . ,bn)T

Assuming that matrix A is invertible, the analytical solution of this

equation is as follows [19]:

f ~eAt(f0zA{1b){A{1b, ð12Þ

where f0~(f 0
1 ,f 0

2 , . . . ,f 0
n ) are the initial concentrations of the

proteins fi in the closed set f . In cases where matrix A can be

diagonalized, then the term eAt in equation 12 is given by:

eAt~SDS{1, ð13Þ

where S is the matrix which columns are the eigenvectors of A,

each corresponding to a distinct eigenvalue li, and D is the

diagonal matrix, where the diagonal elements are equal to eli t.

The diagonalization of matrix A can be achieved in many special

cases (e.g., when the characteristic polynomial is simple, the

eigenvalues can be explicitly calculated). For the scenarios when

this is not feasible, we can approximate eAt by taking its Taylor

expansion, although this can be computationally intensive if high

accuracy is needed [20]:

eAt~
X?
i~0

(At)i

i!
ð14Þ

The linearization of the non-linear model, as described in this

section, provides an efficient method to approximate non-linear

temporal dynamics. However, it may perform poorly when the

dynamics of the system to optimize are highly non-linear

(oscillatory behavior, bi-stability, etc.). In such cases, we can

divide the desired temporal profile into multiple domains/

intervals, under which the linear system can better approximate

the non-linear dynamics. By solving the optimization problem

over multiple intervals, the algorithm is able to compute candidate

solutions with higher accuracy, at the cost of higher time and space

complexity. To ensure continuity during optimization of calculat-

ed protein concentration in successive intervals, the initial

concentration f 0
i of protein i at any interval can be set to be

equal to the final protein concentration in the preceding interval.

In this paper, we use this setup for the temporal profile

optimization of the toggle switch design.

Steady state optimization
In the case of steady-state optimization, our task is to design a

genetic circuit in which one or more proteins operate at a specific

concentration values, that may be given as a function of an

exogenous parameter (e.g., inducer concentration). In the context

of MINLP, the formulation of the problem is as follows:

Minimize

Automatic Design of Synthetic Gene Circuits
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error~
X

C[Conditions

(fp,C{f �p,C)2 ð15Þ

Subject to

dfi,C

dt
~0 Vi~1, . . . ,n, C[Conditions ð16Þ

Xm

k~1

yik§xi Vi~1, . . . ,n ð17Þ

Xm

k~1

yikƒM1xi Vi~1, . . . ,n ð18Þ

Xn

i~1

yikƒM2 Vk~1, . . . ,m, ð19Þ

where Conditions is the set of the desired input/output value pairs

that are given, fp,C and f �p,C are the estimated and the desired

steady state concentration of a protein p in condition C,

respectively. The binary variable xi captures the presence or

Table 1. Parameter values.

Description Notation Min Max Value Units References

Duality gap threshold (COUENNE) e 10{5 10{15

Protein synthesis coefficient

Constitutive promoters apCONST 0.1 25.5 au/h [27] [30]

LAC promoters apLAC 0.3 7.1 au/h [26] [30] [23]

TET promoters apTET 0.3 9.2 au/h [26] [30]

BAD promoters apBAD 2.8 3.4 au/h [28]

Basal production

LAC promoters a0pLAC 0.003 0.2 au/h [26] [30]

TET promoters a0pTET 0.003 0.03 au/h [26]

BAD promoters a0pBAD 0.002 0.005 au/h [28]

Binding affinity

LacI & LAC promoter bLacI{pLAC 1296 au{2 [30]

CRP & LAC promoter bCRP{pLAC 27 au{1 [31]

TetR & TET promoter bTetR{pTET 720 au{2 [30]

AraC & BAD promoter bAraC{pBAD 10800 au{2 [28]

Cooperativity coefficient

LacI gLacI{pLAC 2 [23]

CRP gCRP{pLAC 1 [31]

TetR gTetR{pTET 2 [32]

AraC gAraC{pBAD 2 [12]

IPTG gIPTG{LacI 2 [25]

aTc gaTc{TetR 2 [25]

L-arabinose gLarabinose{AraC 2 [28]

Degradation rate

LacI dLacI 0.9 8.3 0.9 1/h [33] [23] [30]

TetR dTetR 1.5 8.3 1.5 1/h [33] [30]

AraC dAraC 0.69 1/h [34]

CRP dCRP 0.7 1/h [35]

GFP dGFP 0.7 4.2 1.04 1/h [36] [23]

yEFP dyEFP 0.9 1/h [30]

Dissociation constant

IPTG hIPTG{LacI 30 mM [25]

aTc haTc{TetR 26.3 mM [8]

L-arabinose hLarabinose{AraC 2.8 mM [28]

Parameter values that were used for the evaluation, and literature reference where they are reported. In the case where values are normalized, arbitrary units (‘‘au’’) are
used.
doi:10.1371/journal.pone.0035529.t001
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absence of gene i in the circuit. M1 and M2 are the maximum

number of promoters at the upstream of each gene copy, and the

maximum number of genes downstream of each promoter,

respectively. The first constraint (eq. 16) represents the steady

state condition by setting the LHS of equation 5 to be zero for all

conditions (e.g., different inducer concentrations). The next two

constraints ensure that there will be at least one promoter for each

gene (eq. 17), but none for a gene that is not a part of the genetic

circuit (eq. 18). The last constraint is optionally given by the user

and it is used to limit the maximum number of genes in an operon

(eq. 19).

Temporal profile optimization
In the case of finding the components of the genetic circuit that

best approximates a temporal profile, the MINLP problem is

formulated as follows:

Minimize

error~
X
t[T

(fp(t){f �p (t))2 ð20Þ

Subject to

(7–12)

(13) or (14)

(17–19)

where T is the set of time points, fp(t) and f �p (t) are the

estimated and the desired concentration of a protein p at a time

point t.

Results

Both the steady-state and the temporal profile optimization

problems can be solved by using global mixed-integer non-linear

solvers that rely on linearization, convexification, and application

of branch and bound methods. Here, we used the COUENNE

0.4.0 open-source platform [21], which we extended in scope to

handle the problems that we focus on: we decoupled termination

conditions for the primal-dual gap, and modified the updating

condition in the bound tightening procedure by introducing

threshold parameters. To evaluate the capacity of our optimiza-

tion framework to yield synthetic circuits with the desired

characteristics, we assessed its performance in three synthetic

circuits that have been constructed experimentally: a band

detector system [22–23], a transcriptional cascade [24], and a

toggle switch [25]. For all designs, we used parameter values that

were previously reported in literature (Table 1), and the initial

protein concentrations where assumed to be zero. Regarding the

experimentally characterized part mutant libraries that we used

[26–28], all promoter mutants differ in their basal level of

production a0k and the protein synthesis coefficient ak. In order to

evaluate the scalability of the framework, we constructed synthetic

Figure 2. Band-pass filter design. A) The system will only express the reporter when the concentration of the input signal (L-arabinose) is in a
specific range. In this design, pCONST1 and pCONST2 are constitutive promoters, while pBAD1, pBAD2 and pLAC are the promoters where AraC and
LacI bind, respectively. There are two coding regions of TetR which are put on the downstream of promoters pBAD2 and pLAC. In the absence of L-
arabinose, AraC activates TetR production by de-repressing the pLAC promoter. In high L-arabinose concentrations, TetR is again produced through
the de-repression of the pBAD2 promoter. In significant, but not high inducer concentrations, however, none of the pathways are active enough,
which in turn results in lower TetR levels and subsequent expression of the reporter GFP output. B) Reporter protein concentration (output) versus L-
arabinose levels (input). The output of the synthetic circuit becomes high only at moderate values of L-arabinose. Green circles denote desired values
(fluorescence measurements) that act as input to our optimization platform. C) Temporal expression profile of the band-pass filter. Temporal profile
of the resulting optimal synthetic gene circuit, for a L-arabinose level of 30 mM. The GFP concentration of the optimization-derived circuit (cyan solid
line) matches well the desired input values (yellow solid dots).
doi:10.1371/journal.pone.0035529.g002
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libraries that consisted of synthetic promoter parts with parameter

values within the experimentally measured range, with a sampling

distribution that varied from uniform to gamma (more details

below).

Band Detector Design
We used the MINLP optimization framework to find the

optimal combination of promoters for a six-promoter bandpass

design that acts as a filter: the output is high only when the input

is within a specific range or ‘‘band’’. The first bandpass synthetic

design was used to detect acyl-HSL signal in a population of

bacteria [22–23]. In [12], a simpler design to detect L-arabinose

within a bacterium was introduced (Fig. 2A). The mode of

operation for this circuit is the following: The output, a GFP

reporter protein is only high when TetR protein is not present.

There are two pathways that produce TetR, one directly

through activation of the pBAD promoter, and another through

the LacI de-repression of the Lac promoter. When the

concentration of L-arabinose is high, L-arabinose will bind to

AraC and prevent it binding to pBAD and repress its expression.

This results in TetR expression through the pBAD-TetR

pathway. At the same time, LacI will also be expressed and it

will repress the pLAC-TetR production pathway. Similarly, the

opposite is observed at low concentrations of L-arabinose, where

the pLAC-TetR pathway is activated and the pBAD-TetR

pathway repressed. Therefore, TetR will be expressed for both

cases: low or high concentration of L-arabinose. However,

because of the difference in the regulation of pBAD and pLAC,

there will be a value interval of L-arabinose that the expression

level of TetR is low, and the GFP reporter protein is expressed

(Figure 2A).

A dataset with experimentally characterized promoters [27–

29] of various strengths and types (constitutive, pBAD, LacI,

TetR) was used as the library of parts available. Model

parameters were set on literature reported values for E. coli

and are summarized in Table 1. In the original band-detector

circuit, the objective function is a steady-state I/O characteristic

between the input (inducer L-arabinose) and the output

(reporter GFP), with no specification on the transient charac-

teristics of the system. The MINLP optimization method was

able to find the optimal combination of parts for the steady-state

case within minutes (Figure 2B). Similar results were obtained

for temporal profile optimization at a L-arabinose concentration

of 30 mM by using the linear model described above (Fig. 2C).

The optimality of the solution was verified by running

exhaustive search.

Transcriptional cascade design
Next, we used the MINLP optimization framework to identify

optimal part combinations for the temporal profile of a

transcriptional cascade design that was proposed in [24].

According to this design, TetR is under a constitutive promoter

and it represses LacI expression, which in turns represses yEFP.

(Fig. 3A). At normal conditions, TetR will be created and bind to

the pTET promoter to prohibit LacI production and thus the

expression level of yEFP is high. When the inducer aTc is added,

this inducer will bind to TetR proteins and prevent them binding

to the pTET promoter and thus the production of LacI from this

promoter will be maximized and the expression level of yEFP is

low. If the inducer aTc is washed away, the system returns to the

initial condition and the expression level of yEFP is high.

Figure 4. Toggle switch design, where two genes (LacI and
TetR) negatively regulate each other. A) The system is externally
controlled through the addition of two inducers, IPTG and aTc, which
bind to the repressors and decrease their regulatory potential. B)
Expression profile of the resulting synthetic circuit: The desired profile
(input, depicted with purple dots) and actual profile (red line) for the
TetR protein is shown. The temporal profile was split into four phases,
based on changes in the inducer concentrations. Phase 1: IPTG high,
aTc low; Phase 2: IPTG low, aTc low; Phase 3: IPTG low, aTc high; Phase
4: IPTG low, aTc low.
doi:10.1371/journal.pone.0035529.g004

Figure 3. Transcriptional cascade design. A) The system is
controlled by the inducer aTc which can bind to TetR and reduce the
concentration of free TetR molecules. This concentration change will be
propagated through the cascade to the change of the reporter yEFP. B)
Temporal profile of a cascade design: The desired output (yEFP, red
dots) and the actual output (green line) of the optimal synthetic gene
circuit are showed. The temporal profile was split into two phases,
based on changes in the inducer concentration. In the first phase (0 h–
9 h), 2.16 mM aTc (blue line) is added and in the second phase (9 h–
24 h) aTc is washed out (setting as the experiment in [24]).
doi:10.1371/journal.pone.0035529.g003
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Previously, we used the promoter library from [26] and [27] as

inputs to our optimization framework. The time course is divided

into 2 phases, based on the presence of the inducer aTc. The

characteristic function of the resulting optimal design is showed in

figure 3B.

Toggle switch design
Toggle switches, also known as flip-flops, are fundamental

memory blocks that have two stable attractor points, where one of

the outputs is high and the other is low. As a test case we used the

toggle switch design from [25]. As shown in figure 4A, the design

has two genes, LacI and TetR, that negatively regulate each other.

This is possible through the addition of a LacI promoter in front of

the TetR gene (denoted as pLAC), and a TetR promoter in front

of the LacI gene (denoted as pTET). In addition, the system can be

controlled by the chemical inducers IPTG and aTc that can shut

down the repressing effect of LacI and TetR, respectively.

The toggle switch has two-attractor dynamics, as shown in

Figure 4B: The system initially is in one of the two steady states,

with either LacI or TetR overexpressed. When the system is

induced with IPTG, the inducer binds to LacI and it suppresses its

regulatory activity upon the TetR production (phase 1). This leads

to the overexpression of TetR gene (which is now de-repressed, in

the absence of LacI), that in turn shuts down the LacI production,

by binding to its promoter and acting as a repressor. So, even

when IPTG is washed away from the system (phase 2), LacI

remains repressed. Subsequent addition of the aTc inducer results

to its binding to TetR protein, changing it conformation and thus,

de-repressing the LacI protein, which now is free to start

repressing the TetR expression (phase 3). Once this reaches a

steady state, it remains at that state, even at the removal of the

inducer aTc (phase 4). A mutant library for the Tet and Lac

promoters was used as before [26]. The objective function was set

to be the transient dynamics of a toggle switch with respect to the

TetR protein, as shown in figure 4B. As discussed in the methods

section, in order to better approximate the temporal profile of this

circuit, its profile was split in four phases as dictated by the various

inducer concentrations.

Method evaluation: approximation error, running time
and scalability analysis

Approximation error and running time. Table 2

summarizes the approximation error and running time of

exhaustive search (ES), a genetic algorithm heuristic (GA) and

the proposed mixed-integer non-linear programming (MINLP)

approach on all three design problems. To increase the likelihood

that the GA will find the globally optimal solution, we performed a

number of initial point randomizations and kept the heuristic

running time within the same order of magnitude as the MINLP

method. For the latter, we allowed the solution to be near-optimal

with a duality gap (i.e., a guaranteed upper bound on the

approximation error) of less than 10{7. As it is shown in Table 2,

both the GA and MINLP method were able to find optimal or

near-optimal solutions much faster than exhaustive search. In

addition, MINLP outperforms the GA heuristic in all steady-state

cases, and it performs on par or better in all temporal optimization

cases. However, we stress again that the major advantage of

MINLP is that it can guarantee the optimality of the solution, or its

maximum deviation from such optimal point, something that

heuristics are unable to provide.

Scalability and sensitivity analysis. In order to measure

the scalability of MINLP approach, we have evaluated it on the

cascade design with different input library sizes as in figure 5. As

shown in the table, the ratio between ES to MINLP running time

increases considerably as the library size scales up. In addition,

since the MINLP problem is solved by a branch-and-bound

algorithm, the distribution of part values may affect the running

time of the algorithm. To check the sensitivity of our MINLP

framework on the distribution of parts in the library, we generated

three synthetic libraries. In the first, the part values were uniformly

distributed within the parameter range. In the second, the parts

where gamma distributed with a mean near the parameters of the

optimal solution (identified by the previous experiment). Similarly,

in the third library, the part values are gamma distributed with a

mean that is far from the optimal part parameters. As it is evident

from figure 5, high density of parts in the region of the optimal

solution leads to inferior performance (about an order of

magnitude for all library sizes), since the existence of many near-

Table 2. Comparison of the approximation error and running time.

Design Library Running Optimal Running DError DError Running DError

Size Time Error Time Min Max Time Final

(ES) (ES) (GA) (GA) (GA) (MINLP) (MINLP)

Band detector

Steady state 106 1.2|104 1.3|10{2 1.2|103 0 1.9|10{1 1.5|103 0

Temporal 106 5.0|104 3.3|10{4 2.0|103 1.0|10{5 2.3|10{2 2.0|103 1.6|10{3

Cascade

Steady state 1003 7.3|103 3.8|10{7 8.2|101 5.6|10{6 1.4|10{3 7.1|101 4.0|10{6

Temporal 1003 8.7|103 1.5|10{2 1.2|102 0 1.5|101 1.8|102 4.4|10{3

Toggle Switch

Steady state 10002 2.5|104 8.2|10{4 1.0|103 3.2|10{3 4.7|10{1 9.9|102 0

Temporal 10002 3.2|104 1.8|10{3 1.3|102 0 5.0|10{1 7.7|103 1.7|10{2

A comparison of the running time (seconds) and the optimality of the exhaustive search (ES) method, the genetic algorithm (GA) heuristic and the proposed mixed-
integer non-linear programming approach (MINLP). ‘‘Optimal error’’ refers to the squared difference between the desired protein value and the optimal circuit value,
when the later was found through exhaustive search. ‘‘DError’’ refers to the difference between the optimal error and the heuristic or MINLP error. Since the genetic
algorithm solution depends on the initial conditions, ‘‘DError Min’’ and ‘‘DError Max’’ are given.
doi:10.1371/journal.pone.0035529.t002
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optimal solutions render the branch-and-bound task difficult.

Similarly, the inverse is observed when the part values are not

close to the optimal solution. Nevertheless, the performance of the

algorithm was in all cases orders of magnitude better than the

exhaustive case.

Discussion

In this paper we introduced a global mixed-integer non-linear

programming framework for the automatic construction of

synthetic gene circuits with either steady-state or temporal

objectives. Profiling, scalability and sensitivity analysis on three

synthetic circuits that have been experimentally constructed in the

past, show that the method compares favorably to both exhaustive

search and heuristic methods. In addition, in contrast to all other

techniques so far, the method presented is able to provide

guarantees on the global optimality of the solution.

There are several extensions of this work that warrant further

investigation. First, we will systematically investigate how the

circuit topology affects the performance of this and other methods.

Although our results were similar for all three topologies that we

analyzed, we expect that the topological characteristics of the

synthetic circuits (e.g., the number of feedback loops present)

together with the parameter distribution of the parts library will

play a significant role on the performance of any automatic circuit

construction method. In addition, we can extend the current

framework to include in the optimal set of other part types

(operator sites, ribosomal binding sites, gene mutants, etc.) during

the optimization procedure. Although we are currently lacking

well-characterized libraries of such components, recent initiatives

(such as the Biofab project) will increase the availability of such

components. One formidable technical challenge is to come up

with an automatic way to determine the threshold values that are

related to the optimization method and tools used. For example,

COUENNE uses an error threshold for bound tightening that we

found to have significant effect on the number of infeasible cases

that the tool reports. By adjusting this threshold we were able to

decrease the number of infeasible cases to zero, at the cost of

computational time. Currently there is no way to estimate the

threshold value, and an adaptive iterative method may produce

interesting results. Finally, the proposed framework can be

extended towards ab initio synthetic circuit design where the circuit

topology is not known. The method presented here, provides a

stepping stone towards building highly efficient, pragmatic tools

for synthetic circuit design.
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