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A B S T R A C T

COVID-19 takes a gigantic form worldwide in a short time from December, 2019. For this
reason, World Health Organization (WHO) declared COVID-19 as a pandemic outbreak. In the
early days when this outbreak began, the coronavirus spread rapidly in the community due to
a lack of knowledge about the virus and the unavailability of medical facilities. Therefore it
becomes a significant challenge to control the influence of the disease outbreak. In this situation,
mathematical models are an important tool to employ an effective strategy in order to fight
against this pandemic. To study the disease dynamics and their influence among the people, we
propose a deterministic mathematical model for the COVID-19 outbreak and validate the model
with real data of Italy from 15th Feb 2020 to 14th July 2020. We establish the positivity and
boundedness of solutions, local stability of equilibria to examine its epidemiological relevance.
Sensitivity analysis has been performed to identify the highly influential parameters which
have the most impact on basic reproduction number (𝑅0). We estimate the basic reproduction
number (𝑅0) from available data in Italy and also study effective reproduction numbers based
on reported data per day from 15th Feb 2020 to 14th July 2020 in Italy. Finally, the disease
control policy has been summarized in the conclusion section.

1. Introduction

Several times throughout human history, pandemics and epidemics have ravaged humanity, often resulting in a massive change
n the course of history and the end of civilizations. Nevertheless, for the current coronavirus pandemic, the globe is now facing a
angerous and destructive phenomenon which is crucially threatening the humanity [1,2]. First, it was identified in Wuhan city,
ubei Province of China, on December 31, 2019. The World Health Organization (WHO) declared the disease as a pandemic and
as named SARS-CoV-2 virus (March 11, 2020) [2]. Scientifically it is proven that COVID-19 is an infectious disease that causes

espiratory syndrome and is transmissible from human-to-human [2]. At this stage, more than 210 countries and territories have
een reported to have coronavirus patients and increased the infections exponentially [2,3]. The coronavirus is a zoonotic disease,
here the primary host was animals and transmitted to humans [4]. The patients face more critical illness, primarily who has other
iseases like diabetes, heart disease, asthma, etc. [2].

Till April 20, 2020, according to WHO, COVID-19 infected more than 2.3 million people, and the total death crossed 0.16
illion due to the infection [1,2]. Geometrically, the number of new reported cases is growing, and the dynamics of growth are

atisfied several mathematical growth functions such that Malthusian, logistic and so on which predict the scenario of COVID-
9 outbreak [3,5,6]. Due to the severity, as protection, highly infected counties and territories have announced lockdown, and
heir administrations, including WHO, are encouraging, advising, and even enforcing (some territories) people to stay at home to

∗ Corresponding author.
E-mail addresses: kamrujjaman@du.ac.bd (Md. Kamrujjaman), pritamsaha1219@gmail.com (P. Saha), mshahidul11@yahoo.com (Md.S. Islam),

ttam_math@yahoo.co.in (U. Ghosh).
ttps://doi.org/10.1016/j.rico.2022.100119
eceived 28 January 2022; Received in revised form 16 March 2022; Accepted 30 March 2022
vailable online 6 April 2022
666-7207/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.rico.2022.100119
http://www.elsevier.com/locate/rico
http://www.elsevier.com/locate/rico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rico.2022.100119&domain=pdf
mailto:kamrujjaman@du.ac.bd
mailto:pritamsaha1219@gmail.com
mailto:mshahidul11@yahoo.com
mailto:uttam_math@yahoo.co.in
https://doi.org/10.1016/j.rico.2022.100119
http://creativecommons.org/licenses/by-nc-nd/4.0/


Md. Kamrujjaman, P. Saha, Md.S. Islam et al. Results in Control and Optimization 7 (2022) 100119

e
e
t
n

𝑆

p
t

T
i
p
i
b
o
d

2

T
i
a
i
f
p
t
i
i
t
i
t
c
c

protect their citizens. Experts are suggesting the social distancing to flatten the curve of new cases. As a result, right now, more
than one-third of the global population is a lockdown. The WHO is also spreading awareness and advising people to stay at their
own habitat without their emergency. Meanwhile WHO is providing instructions on protecting oneself from the virus and any
kinds of information regarding the pandemic. The coronavirus pandemic has already started showing immense negative impact on
world politics, socio-economics, education, and other important global aspects [7–9]. Moreover, the state of medical emergency
is becoming more and more gruesome with every passing day. Therefore, it is an emergency to formulate a mathematical model
that effectively describes the transmission of the disease to help policymakers to make important decisions based on the effective
assumptions given by the model. Lack of early measures and ineffective decisions have already been attributed to the massive scale
destruction that the pandemic is causing, so we cannot afford to be any more ignorant in this matter. In mathematical modeling,
some recent studies provided different guidelines introducing basic reproduction number, Education and Socio-Economic Index and
Lockdown strategies (see [10–14] and references therein).

In epidemiology, mathematical modeling is widely used to predict an epidemic’s results successfully. The most commonly used
pidemic models are SIS, SIR, and SEIR etc. The Kermack–Mckendric’s SIR model is very well-established and used widely for various
pidemics [10]. In many cases, there are no visible symptoms of infected individuals such as chickenpox, tuberculosis, etc., and in
hat cases, an SEIR model is mostly used [11]. Therefore, the model with multiple compartments is a valuable tool to predict the
ature of the recent most dangerous disease, COVID-19.

We are motivated by the work of Paul et al. in [15]. Our work is an extension of their work. In [15], Paul et al. considered an
𝐸𝐼𝑅 model where 𝑆 stands for susceptible population, 𝐸 stands for exposed population, 𝐼 stands for infected population and 𝑅

stands for recovered population. They studied the positivity and boundedness of solutions then proved the stability of disease-free
and endemic equilibrium points. In their work, they considered susceptible peoples infected by only infected peoples. Moreover,
they did not consider corona induced death rate in the 𝐼 class. In this paper, we extend their work by replacing exposed class
by exposed & asymptomatic person in same class. Also, we assume susceptible populations are infected by both 𝐸 and 𝐼 classes.
Moreover, we try to give a new orientation in the 𝑆𝐸𝐼𝑅 model by considering panic, tension, or anxiety of 𝑆,𝐸, 𝐼 classes. This
aper discusses the effect of panic, tension, or anxiety on 𝑆,𝐸, 𝐼 classes. People from these three classes can die of surplus panic,
ension, or anxiety. Also, here we consider the corona-induced death rate in the 𝐼 class.

The main findings in this study are outlined in the following lists:

1. In this paper, we formulate an 𝑆𝐸𝐼𝑅 model in which susceptible class (𝑆) has a constant birth rate and 𝐸 class is a
combination of exposed & asymptomatic classes. The effect of panic, tension, anxiety is included in 𝑆,𝐸, 𝐼 compartments.

2. We analyze the stability of the equilibria of the model using the basic reproduction number to understand the severity.
3. Theoretical results are established using local and global model analysis.
4. During these periods of Quarantine, we have studied human behaviors like panic, anxiety, and tensions which are changing

the death rate of individuals.
5. The model is verified considering first wave data of Italy (from 15th Feb 2020 to 14th July 2020) and also first wave data

of Spain (from 24th Feb 2020 to 4th July 2020).
6. Numerical illustration ensures the theoretical results are relevant to control the spread of COVID-19.

he paper is organized as follows: Mathematical Model is elaborately discussed in Section 2. Positivity and boundedness of solution
ncluding auxiliary results are described in sub Section 2.1. Basic reproduction number and existence of different equilibrium
oints have been discussed in Section 2.2. Local stability analysis and bifurcation analysis are prescribed in Section 3. Section 4
s accomplished with the real data analysis in comparison with model solution, as a case study in Italy. Sensitivity analysis has
een discussed in Section 5. Effects of different sensitive model parameters on infected class are shown in Section 5.1. Estimation
f 𝑅0 and effective reproduction number are found in Sections 6 and 7, respectively. Finally, Section 8 outlines the summary and
iscussion of the results.

. Model formulation

We aim to develop a COVID-19 epidemic model, which is simple but relevant enough to produce effective results upon analysis.
he spread of the infection starts with introducing a small group of infected individuals to a large population. The population (𝑁)

s then divided into four classes; the susceptible (𝑆), the exposed & asymptomatic (𝐸), the infected (𝐼) and the recovered (𝑅) at
ny time 𝑡 ≥ 0. An susceptible person may be affected with coronavirus after interacting with corona infected person. After getting
nfected, that infected person may not transmit disease at that time. He/she can transmit disease to a susceptible person after a
ew days (normally 2 to 14 days), i.e., when the patient is in the incubation period, he/she does not show any symptoms. These
eople can affect susceptible people before showing any symptom or even symptom may not appear among them. Therefore, these
ypes of asymptomatic persons can spread disease in the community. Moreover, in the exposed stage, peoples are infected but not
nfectious. There is no particular time duration when exposed people may be infectious. But after some days, exposed persons can
nfect the community. For this reason, we take exposed & asymptomatic class in a single compartment for model formulation. Since
hese peoples move freely in the community, susceptibles may be infected by them [16]. Since as per advisory of WHO [2] the
nfected persons who show symptom will be isolated in the hospital, and hence they will infect only the medical persons. However,
he exposed & asymptomatic class interacts with the common people and spreads disease. To include the above-defined facts, we
onsider the rate of infection in the form 𝛽1𝐸𝑆 + 𝛽2𝐼𝑆. Now, in our considered 𝑆𝐸𝐼𝑅 model, we try to give a new orientation by
onsidering panic, tension, or anxiety in susceptible, exposed & asymptomatic and infected classes. This paper discusses the effect
2
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Table 1
Model parameters and their descriptions.

Notation Interpretations Notation Interpretations

𝜏 Recruitment rate of S class 𝛼 Panic/tension/anxiety rate of S class
𝜇 Natural death rate 𝛾 Panic/tension/anxiety rate of E class
𝑘 Infected rate of E class 𝜂 Panic/tension/anxiety rate of I class
𝜇1 Death rate due to infection 𝛽1 Transmission rate of infection from E class
𝛿 Recovery rate of I class 𝛽2 Transmission rate of infection from I class

Fig. 1. Diagram of the proposed model.

of panic, tension, or anxiety on these three classes. Panic. tension, or anxiety are injurious to health. Tension or anxiety can increase
insulin level, which may affect heart condition, diabetes, blood pressures [17,18]. At the same time, stress can wreak havoc on our
immune system. Excessive stress can hamper immunity, and stress lasts for an extended time; it can put in danger a serious health
issue, like depression or anxiety. People with panic anxiety are at high risk of infection, and the infected population mortality rate
also increases [19,20]. For this reason, we assume some number of susceptibles, exposed & asymptomatic and infected, are reducing,
i.e., moving to death for panic, tension, or anxiety. Fig. 1 shows the flow diagram of the proposed model and the corresponding
model equations are given below:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑆
𝑑𝑡 = 𝜏 − (𝜇 + 𝛼)𝑆 − (𝛽1𝐸 + 𝛽2𝐼)𝑆
𝑑𝐸
𝑑𝑡 = (𝛽1𝐸 + 𝛽2𝐼)𝑆 − (𝑘 + 𝜇 + 𝛾)𝐸
𝑑𝐼
𝑑𝑡 = 𝑘𝐸 − (𝜇 + 𝜇1 + 𝛿 + 𝜂)𝐼
𝑑𝑅
𝑑𝑡 = 𝛿𝐼 − 𝜇𝑅

(2.1)

ith the initial conditions 𝑆(0) > 0, 𝐸(0) ≥ 0, 𝐼(0) > 0, 𝑅(0) ≥ 0, where the interpretation of parameters is presented in Table 1.

.1. Positivity and boundedness of solutions

An essential feature of an epidemiological model is the positivity and boundedness of the solutions. Therefore, it is important
o prove that all the variables are non-negative for all time 𝑡 ≥ 0 which implies that any solution with positive initial values will
emain positive for all time 𝑡 ≥ 0. Biologically, positivity implies the population will survive a long time. Therefore to check the
alidity of the proposed model biologically, we have to prove the positivity of the proposed model.

heorem 1. The closed region 𝛺 =
{

(𝑆,𝐸, 𝐼, 𝑅) ∈ R4
+ ∶ 0 < 𝑁 ≤ 𝜏

𝜇

}

is positively invariant set for the system (2.1).

Proof. Let 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) then
𝑑𝑁
𝑑𝑡

= 𝑑𝑆
𝑑𝑡

+ 𝑑𝐸
𝑑𝑡

+ 𝑑𝐼
𝑑𝑡

+ 𝑑𝑅
𝑑𝑡

o, from model (2.1):
𝑑𝑁
𝑑𝑡

= 𝜏 − 𝜇𝑁 − (𝜇1 + 𝜂)𝐼 − 𝛼𝑆 − 𝛾𝐸 (2.2)

hich yields
𝑑𝑁
𝑑𝑡

≤ 𝜏 − 𝜇𝑁 (2.3)

t implies that 𝑑𝑁
𝑑𝑡 < 0 whenever 𝑁(𝑡) > 𝜏

𝜇 . Thus, the right-hand side of Eq. (2.2) implies that 𝑑𝑁
𝑑𝑡 is bounded by 𝜏

𝜇
.

Integrating the inequality (2.3), using initial condition, we obtain

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 + 𝜏
𝜇
[

1 − 𝑒−𝜇𝑡
]

.

Letting 𝑡 tends to infinity, asymptotically we get 𝑁(𝑡) ≤ 𝜏 . We can also prove this result using comparison lemma [21]. □
𝜇

3
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Therefore, 𝛺 is positively invariant set of the model (2.1) so that no solution path leaves through any boundary of 𝛺. This proves
hat the formulated model is relevant both mathematically and epidemiologically.

The model is considered in the biologically feasible region i.e. the proposed model is defined in positively bounded region. We
eed to show that any phase trajectory that started anywhere in the non-negative region R4

+ of the phase space eventually enters
he feasible region 𝛺 and remains in 𝛺 thereafter. It can be done by proving that 𝛺 is a positively invariant set and global attractor
f the system.

.2. Basic reproduction number, DFE and EE

The basic reproduction number is an important threshold quantity for analyzing an infectious disease. It determines whether the
isease will die out or persist in the population as time increases. It is defined as the number of secondary infections produced by one
rimary infection in a population where everyone is susceptible and is denoted by 𝑅0. Suppose 𝑅0 > 1, and one primary infection can
roduce more than one secondary infection. This implies that the disease-free equilibrium (DFE) is unstable. As a result, an epidemic
reaks out. If 𝑅0 < 1, the situation is under control. In this case, the disease-free equilibrium (DFE) will be locally asymptotically
table, and the disease cannot persist in the population. So, when a pandemic breaks out, an effective strategy should be developed
o that the reproduction number reduces to less than one as soon as possible [13,16,22,23].

Since the considered model has DFE (𝐸0) =
(

𝜏
𝜇 + 𝛼

, 0, 0, 0
)

(see Appendix A), hence 𝑅0 can be found analytically. Using next
generation matrix method [22], the reproduction number for the COVID-19 model given by (2.1) can be calculated from the relation
𝑅0 = 𝜌(𝐹𝑉 −1), that is the spectral radius of 𝐹𝑉 −1 [22] where

𝐹 =

[

𝛽1𝜏
𝜇+𝛼

𝛽2𝜏
𝜇+𝛼

0 0

]

nd

𝑉 =
[

𝑘 + 𝜇 + 𝛾 0
−𝑘 𝜇 + 𝜇1 + 𝛿 + 𝜂

]

.

Therefore, the basic reproduction number is the spectral radius of 𝐹𝑉 −1 which is given by

𝑅0 = 𝜌(𝐹𝑉 −1) =
𝜏𝛽1(𝜇 + 𝛿 + 𝜇1 + 𝜂) + 𝜏𝛽2𝑘

(𝜇 + 𝛼)(𝑘 + 𝜇 + 𝛾)(𝜇 + 𝛿 + 𝜇1 + 𝜂)
. (2.4)

or disease free equilibrium point, we have 𝐸 = 0, 𝐼 = 0. But for endemic equilibrium point both 𝐸 ≠ 0, 𝐼 ≠ 0.
To find the endemic equilibrium state of the model we set

𝑑𝑆
𝑑𝑡

= 0, 𝑑𝐸
𝑑𝑡

= 0, 𝑑𝐼
𝑑𝑡

= 0, 𝑑𝑅
𝑑𝑡

= 0.

Solving the above system, we get the endemic equilibrium (EE) state

𝐸∗ =
(

𝑆1, 𝐸1, 𝐼1, 𝑅1
)

where

𝑆1 =
𝜏(𝜇 + 𝛿 + 𝜇1 + 𝜂)

𝑘𝛽2𝐸1 + (𝜇 + 𝛼 + 𝛽1𝐸1)(𝜇 + 𝛿 + 𝜇1 + 𝜂)
, 𝐼1 =

𝑘𝐸1
𝜇 + 𝜂 + 𝛿 + 𝜇1

𝐸1 =
(𝜇 + 𝛿 + 𝜇1 + 𝜂)(𝜇 + 𝛼)(𝑅0 − 1)

(𝛽1(𝜇 + 𝛿 + 𝜇1 + 𝜂) + 𝑘𝛽2)
, 𝑅1 =

𝛿𝑘𝐸1
𝜇(𝜇 + 𝜂 + 𝛿 + 𝜇1)

.

It is obvious from the expressions of the 𝐸1 the endemic equilibrium point EE will exists only when 𝑅0 > 1. For further analysis,
the Jacobian matrix of the system (2.1) at any equilibrium point (𝑆,𝐸, 𝐼, 𝑅) is given by

𝐽 =

⎛

⎜

⎜

⎜

⎜

⎝

−𝜇 − 𝛽1𝐸 − 𝛽2𝐼 − 𝛼 −𝛽1𝑆 −𝛽2𝑆 0
𝛽1𝐸 + 𝛽2𝐼 𝛽1𝑆 − (𝑘 + 𝜇 + 𝛾) 𝛽2𝑆 0

0 𝑘 −(𝜇 + 𝛿 + 𝜇1 + 𝜂) 0
0 0 𝛿 −𝜇

⎞

⎟

⎟

⎟

⎟

⎠

.

3. Stability and bifurcation of the equilibrium states

In this section we shall establish the stability and bifurcation condition if the equilibrium point exists. In Theorem 2, we shall
establish nature of the disease free equilibrium point 𝐸0 and in Theorem 4 nature of endemic equilibrium point 𝐸∗.

.1. Stability of disease-free equilibrium state (𝐸0)

In this section, first, we prove the local stability of disease-free equilibrium point (𝐸0) for 𝑅0 < 1. Biologically, the disease will
ie out from the population when the basic reproduction number is less than unity.
4
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Theorem 2. The disease free equilibrium point (𝐸0) is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.

Proof. The Jacobian of the system at the disease free equilibrium point is

𝐽 (𝐸0) =

⎛

⎜

⎜

⎜

⎜

⎝

−𝜇 − 𝛼 − 𝛽1𝜏
𝜇+𝛼 − 𝛽2𝜏

𝜇+𝛼 0

0 𝛽1𝜏
𝜇+𝛼 − (𝑘 + 𝜇 + 𝛾) 𝛽2𝜏

𝜇+𝛼 0
0 𝑘 −(𝜇 + 𝛿 + 𝜇1 + 𝜂) 0
0 0 𝛿 −𝜇

⎞

⎟

⎟

⎟

⎟

⎠

The characteristic roots of the Jacobian matrix at 𝐽 (𝐸0) are −𝜇 − 𝛼, −𝜇, and other two roots are roots of the following equation

𝜆2 + 𝑎1𝜆 + 𝑎2(1 − 𝑅0) = 0

where 𝑎1 = (𝜇 + 𝛿 + 𝜇1 + 𝜂) + (𝜇 + 𝑘 + 𝛾)
(

𝜏𝛽2𝑘
(𝜇+𝛼)(𝑘+𝜇+𝛾)(𝜇+𝛿+𝜇1+𝜂)

+ 1 − 𝑅0

)

and 𝑎2 = (𝜇 + 𝛿 + 𝜇1 + 𝜂)(𝑘 + 𝜇 + 𝛾). If 𝑅0 < 1 then 𝑎1 > 0,
𝑎2 > 0, therefore no positive root exists in this case. Hence all the roots will be negative if 𝑅0 < 1. If 𝑅0 > 1 then 𝑎2 < 0 and hence
one root must be positive for 𝑅0 > 1. Therefore, the disease-free equilibrium state (𝐸0) is locally asymptotically stable if 𝑅0 < 1 and
unstable if 𝑅0 > 1. □

It is clear from the above analysis when 𝑅0 = 1 then above analysis fails. The term 𝑅0 = 1 is equivalent to 𝛽2 =

𝛽[𝑇𝐶]
2 =

(

(𝜇 + 𝛼)(𝑘 + 𝜇 + 𝛾) − 𝜏𝛽1
)

(𝜇 + 𝛿 + 𝜇1 + 𝜂)
𝑘𝜏

, in the next theorem we shall show model system (2.1) experiences Transcritical
bifurcation at disease free equilibrium point (𝐸0) when model parameter 𝛽2 passes through its critical value 𝛽2 = 𝛽[𝑇𝐶]

2 .

heorem 3. Model (2.1) undergoes through Transcritical bifurcation at disease free equilibrium point (𝐸0) when model parameter 𝛽2 passes
hrough its critical value 𝛽2 = 𝛽[𝑇𝐶]

2 .

roof. At 𝛽2 = 𝛽[𝑇𝐶]
2 , one of the eigenvalue vanishes and classical eigenmethod analysis fails. Then we have to use the Sotomayer

heorem [24–26] to investigate the nature of the disease free equilibrium point. Let 𝑉 and 𝑊 be the eigenvector corresponding to
he zero eigenvalue of 𝐽 (𝐸0) and [𝐽 (𝐸0)]𝑇 respectively then

𝑉 =

⎛

⎜

⎜

⎜

⎜

⎝

−(𝛿+𝜂+𝜇+𝜇1)(𝛾+𝑘+𝜇)
𝑘(𝜇+𝛼)

𝜇+𝛿+𝜇1+𝜂
𝑘
1
𝛿
𝜇

⎞

⎟

⎟

⎟

⎟

⎠

and 𝑊 =

⎛

⎜

⎜

⎜

⎜

⎝

0
2

(𝛼+𝜇)(𝛾+𝑘+𝜇)−𝛽1𝜏
𝑘(𝜇+𝛼)
0

⎞

⎟

⎟

⎟

⎟

⎠

.

Let 𝐹 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜏 − (𝜇 + 𝛼)𝑆 − (𝛽1𝐸 + 𝛽2𝐼)𝑆
(𝛽1𝐸 + 𝛽2𝐼)𝑆 − (𝑘 + 𝜇 + 𝛾)𝐸

𝑘𝐸 − (𝜇 + 𝛿 + 𝜇1 + 𝜂)𝐼
𝛿𝐼 − 𝜇𝑅

⎞

⎟

⎟

⎟

⎟

⎠

then

𝑊 𝑇𝐹𝛽2 |𝐸0 ,𝛽2=𝛽
[𝑇𝐶]
2

= 0,

𝑊 𝑇𝐷𝐹𝛽2 |𝐸0 ,𝛽2=𝛽2[𝑇𝐶]𝑉 = −
𝜏(𝜇 + 𝛿 + 𝜇1 + 𝜂)

𝑘(𝜇 + 𝛼)
≠ 0,

𝑊 𝑇𝐷2𝐹𝛽2 |𝐸0 ,𝛽2=𝛽
[𝑇𝐶]
2

(𝑉 , 𝑉 ) =
−2(𝜇 + 𝛿 + 𝜇1 + 𝜂)2(𝛾 + 𝑘 + 𝜇)𝛽1

𝑘2(𝜇 + 𝛼)
≠ 0.

Hence the system experiences Transcritical bifurcation when the rate of infection by the 𝐼 class (𝛽2) crosses the critical value
𝛽2 = 𝛽[𝑇𝐶]

2 . There is a critical value of the rate of infection by the 𝐼 class below of which the disease is easy to control but above of
which the society will experience endemic disease spreading. □

It is clear from Fig. 2 that for 𝑅0 < 1, the system (2.1) has only stable disease-free equilibrium point and for 𝑅0 > 1 a stable
ndemic equilibrium point arises, the disease free equilibrium (DFE) becomes unstable i.e. here exchange of stability of the disease
ree equilibrium points occurs with the endemic equilibrium point at 𝑅0 = 1. Therefore if model parameter 𝛽2 passes through its
ritical value 𝛽[𝑇𝐶]

2 , then disease free equilibrium changes its stability from stable to unstable i.e. Transcritical bifurcation occurs at
isease free equilibrium points occurs for 𝑅0 = 1.

.2. Stability of endemic equilibrium state

Now we prove local stability of endemic equilibrium point if 𝑅0 > 1. Biologically, the disease will persist in the population if
he basic reproduction number is greater than unity.

heorem 4. The endemic equilibrium state 𝐸∗(𝑆 ,𝐸 , 𝐼 , 𝑅 ) is stable if 𝑅 > 1.
1 1 1 1 0

5
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Fig. 2. Transcritical bifurcation analysis using the dynamics of 𝑅0: The blue line corresponds the stable branch and the red line corresponds to unstable branch.

roof. Recall the Jacobian of the system (2.1) at any equilibrium point (𝑆,𝐸, 𝐼, 𝑅) and we have

𝐽 =

⎛

⎜

⎜

⎜

⎜

⎝

−𝜇 − 𝛽1𝐸 − 𝛽2𝐼 − 𝛼 −𝛽1𝑆 −𝛽2𝑆 0
𝛽1𝐸 + 𝛽2𝐼 𝛽1𝑆 − (𝑘 + 𝜇 + 𝛾) 𝛽2𝑆 0

0 𝑘 −(𝜇 + 𝛿 + 𝜇1 + 𝜂) 0
0 0 𝛿 −𝜇

⎞

⎟

⎟

⎟

⎟

⎠

.

t the endemic equilibrium point 𝐸∗, calculating the Jacobian matrix 𝐽 (𝐸∗) and then solving 𝑑𝑒𝑡(𝐽 − 𝜆𝐼) = 0, we get one roots of
he characteristic equations corresponding to 𝐽 (𝐸∗) is 𝜆1 = −𝜇 < 0 and other three satisfies the following quadratic equation

𝜆3 + 𝐶1𝜆
2 + 𝐶2𝜆 + 𝐶3 = 0 (3.1)

here

𝐶1 = −(𝑐3 + 𝑏2 + 𝑎1), 𝐶2 = −(−𝑎1𝑏2 − 𝑎1𝑐3 + 𝑎2𝑏1 − 𝑏2𝑐3 + 𝑐2𝑘), 𝐶3 = −𝑎1𝑏2𝑐3 + 𝑘𝑐2𝑎1 + 𝑎2𝑏1𝑐3 − 𝑎2𝑐1𝑘

nd 𝑎1 = −𝜇 − 𝛽1𝐸1 − 𝛽2𝐼1 − 𝛼, 𝑏1 = −𝛽1𝑆1, 𝑐1 = −𝛽2𝑆1, 𝑎2 = 𝛽1𝐸1 + 𝛽2𝐼1, 𝑏2 = 𝛽1𝑆1 − (𝑘 + 𝜇 + 𝛾), 𝑐2 = 𝛽2𝑆1, 𝑐3 = −(𝜇 + 𝛿 + 𝜇1 + 𝜂).
It can be easily shown that for 𝑅0 > 1 coefficients of (3.1) will satisfy the Routh–Hurwitz criterion [24] and hence all the roots

f Eq. (3.1) will have negative real part. Thus for 𝑅0 > 1 endemic equilibrium point will be locally asymptotically stable. □

In the following section, we will estimate the parametric values to illustrate the numerical results for further applications.

. Parameter estimation, model validation

The nonlinear system in (2.1) can be fitted to the real infected data of Covid-19 using the numerical methods and then we can
ive proper predictions about the disease spreading from the model. To numerically solve the data we estimate the parameters using
he methodology as described in [24,27].

.1. Case study: Italy

The best way to fit the proposed model with real reported data is least squares method [24]. The principle of the least square
ethod is to fit the model with real infected data with minimum sum of square error. The fitness of the model is good if the sum

f squares of vertical distances among real data and model predicted data is as smaller as possible. To fit the model, we consider
he formula of sum of the squares error as

𝑓 (𝜙, 𝑛) = 𝛴𝑛
𝑗=1

(

𝑌𝑗 − 𝐼(𝑡𝑗 )
)2 ,

here 𝜙 represents set of all model parameters, 𝑌𝑗 represents cumulative number of the real reported data for 𝑗th observation, 𝐼(𝑡𝑗 )
epresents model predicted cumulative data for 𝑗th observation and 𝑛 represents total number of available data. The number of
umulative model predicted infected data satisfies the formula

𝑑𝐼(𝑡𝑗 ) = 𝑘𝐸.

𝑑𝑡

6
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Table 2
Parameters estimation for Italy.

Parameter Value References

𝜏 0.05812 [28]
𝛽1 3.565207228818550 × 10−09 Estimated
𝛽2 1.042634849127262 × 10−07 Estimated
𝜇 0.01 [28]
𝑘 1∕14 Assumed
𝛾 8.658193552394484 × 10−04 Estimated
𝜇1 0.12 [1]
𝛿 0.515825936950256 Estimated
𝛼 0.031441013505254 Estimated
𝜂 0.808967250951627 Estimated

Fig. 3. (a) Fitting model to cumulative cases in Italy (b) Residuals of the fit (c) Bar diagram for 151 days from 15th February to 14th July.

Analytically minimization of 𝑓 (𝜙, 𝑛) is very difficult, here we use matlab minimization software fmincon package to estimate the
important model parameters using the Italy infection cases from 15th February to 14th July 2020, which are given in Table 3. To
execute the Matlab package, we have considered the initial population size as

𝑆(0) = 60461826, 𝐸(0) = 150, 𝐼(0) = 3, and 𝑅(0) = 0

where 𝐸(0) is estimated and rest of them are collected from [1]. Another way to verify the fitness of the model can be justified by
finding residuals. Therefore here the fitness of the model with the real data is verified computing the residuals. The residuals are
defined as

residuals =
{

𝑌𝑗 − 𝐼(𝑡𝑗 )|𝑗 = 1, 2, 3..., 𝑛
}

where 𝑌𝑗 is the 𝑗th day cumulative infection data and 𝐼(𝑡𝑗 ) model predicted cumulative infected data of same day. If the residuals
are randomly distributed then we can say that the fitness is reasonably good [24].

The estimated model parameters are given in Table 3. To validate the model, we consider the actual case of COVID-19 infection
of Italy from 15th February to 14th July 2020, i.e., the real cases for 151 days. The model is fitted to the cumulative number of
infected cases, presented in Fig. 3(a). The fit residuals are presented in Fig. 3(b), which shows that the residuals are small and
random. In Fig. 3(c), we plot a bar diagram of the infected population for 151 days. The randomness of the residuals shows that
the fitness is best.

We have also verified the proposed model for the first wave (from 24th February 2020 to 4th July 2020) in Spain (see
Appendix B). From the model fitting, it is obvious that our model is well fitted i.e. the proposition of the model is well defined as
we observe that the considered model is verified by real reported data of first wave (from 24th February 2020 to 4th July 2020) in
Spain. Also, we have seen that residuals are randomly distributed. From the residuals, we can conclude that the fit of the proposed
model is good.

In the next section, first we shall perform sensitivity analysis for finding most influential model parameters to control the corona
outbreak considering the estimated values of the parameters as given in Table 2. Here, we also show the effect of different model
parameters on the model dynamics. Further we shall estimate the value of basic reproduction number (𝑅0) from actual data in
Section 6. To estimate basic reproduction number from actual data, we shall use the methodology as described in [29]. Finally,
we shall find per day basis reproduction number i.e. effective reproduction number from the real infected data and considering the
same estimated model parameters.

5. Sensitivity analysis

Sensitivity analysis reveals the influence of the model parameters, which have the most significant impact on the basic
reproduction number of the COVID-19 model system. By such analysis, epidemiologists can predict the critical parameters playing
7



Md. Kamrujjaman, P. Saha, Md.S. Islam et al. Results in Control and Optimization 7 (2022) 100119

v
p
o
f
c
c
o

(
t

5

o
𝑆
o

5

6

w

Table 3
Sensitivity index of each model parame-
ter.

Parameter Sensitivity index

𝜏 1.000000000
𝛽1 0.4105292448
𝛽2 0.5894707555
𝜇 −0.3668737257
𝑘 −0.2784932788
𝛾 −0.1052100085
𝜇1 −0.4862305599
𝛿 −0.2090086119
𝛼 −0.7586931608
𝜂 −0.3277871661

a crucial role in disease-spreading dynamics. To prevent or control the influence of the disease, we need to determine the values of
sensitivity indices by which we have a clue about the model parameters which should be maintained or checked.

In the present scenario, the Novel coronavirus spreads worldwide gigantically at a high rate of infection, and this dangerous
irus highly threatens the human population. In order to dominate the spreading of the infection, we need to identify which model
arameters play a vital role in disease spreading. In order to identify such model parameters, we need to estimate the variation
f the basic reproduction number 𝑅0 concerning different model parameters; in other words, we need to determine normalized
orward sensitivity index of the basic reproduction number 𝑅0 concerning different model parameters. Using sensitivity index, we can
alculate the changing rate of variables when the parameter changes. Here our objective is to estimate significant model parameters
ontrolling basic reproduction number 𝑅0. For studying sensitivity analysis here we use normalized forward sensitivity index [30]
f basic reproduction number 𝑅0 with respect to model parameter 𝜙 which is denoted by 𝛤𝜙

𝑅0
=

𝜕𝑅0
𝜕𝜙

.
𝜙
𝑅0

.
The parameter with higher sensitive index is the more sensitive parameter on basic reproduction number 𝑅0. The positive sign

of sensitive index of the model parameter implies basic reproduction number 𝑅0 increases with parameter increases and vice-versa.
We put sensitive index on 𝑅0 with respect to each parameter in Table 3. In our findings, most significant model parameters are
recruitment rate of susceptible population(𝜏), disease transmission rate due to exposed & asymptomatic stage population(𝛽1) and
disease transmission rate due to infected population(𝛽2), disease induced death rate (𝜇1), panic/tension/anxiety of susceptible class
𝛼), disease induced death rate (𝜇) and panic/tension/anxiety of infected class (𝜂). Sensitivity index of each parameter is given in
he Table 3.

.1. Effect of the different sensitive parameters on infected population

For realizing the sensitive effect of the different model parameters on the proposed model numerically, we plot time series
f infected population (𝐼(𝑡)) at any time 𝑡 for different values of the model parameter as given in Table-2 with initial condition
(0) = 60461826, 𝐸(𝑡) = 150, 𝐼(𝑡) = 3, 𝑅(𝑡) = 0. In the following we will discuss the effect of the different sensitive model parameters
n the infected population 𝐼(𝑡).

.1.1. Effect of disease transmission rate of both exposed & asymptomatic and infected population (𝛽1 & 𝛽2) on the infected population
From Fig. 4(a) it is clear that the number of infected population (𝐼(𝑡)) increases with the rate of disease transmission rate of

exposed & asymptomatic class (𝛽1) increases and vice-versa. On the other hand from Fig. 4(b) it is clear that the number of infected
population (𝐼(𝑡)) increases when rate of disease transmission of infected class (𝛽2) increases and vice-versa. Therefore we observe
that infected population increases with increase of disease transmission rate 𝛽1 and 𝛽2 which means infected population is highly
affected by increasing the rate of disease transmission rate 𝛽1 and 𝛽2.

5.1.2. Effect of natural death rate and disease induced death rate (𝜇&𝜇1) on disease spreading
Figs. 5(a) and 5(b) show that the disease is spreading decreases when the natural death rate 𝜇 and disease-induced death rate

𝜇1 increases. From the discussion, it is clear that the number of infected decreases if the natural death rate 𝜇 and disease-induced
death rate 𝜇1 increases. Therefore, we have seen that the density of the infected population is highly affected by both parameters
𝜇&𝜇1.

. Estimation of 𝑹𝟎 from actual data

In this part of the manuscript, we shall find the estimated value of 𝑅0 from the reported data up to which time series of the
infected data stay exponential. To estimate 𝑅0 from the initial growth phase of the disease, we have used the methodology used
in [29]. We assume at the beginning of disease, cumulative case (𝑄(𝑡)) varies as 𝑒𝑥𝑝(𝛬𝑡) that means 𝑄(𝑡) ∝ 𝑒𝑥𝑝(𝛬𝑡). Similarly number
of exposed & asymptomatic, infected population varies as 𝑒𝑥𝑝(𝛬𝑡). Therefore

{

𝐸 ∼ 𝐸0𝑒𝑥𝑝(𝛬𝑡)
𝐼 ∼ 𝐼0𝑒𝑥𝑝(𝛬𝑡)

(6.1)

here 𝐸 and 𝐼 are constants.
0 0

8
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Fig. 4. The effect of model parameters 𝛽1 and 𝛽2.

Fig. 5. The effect of model parameters 𝜇 and 𝜇1.

The constant number of susceptible population is given by 𝑆0 =
𝜏
𝜇

. Substituting (6.1) in Eq. (2.1), we get
(

𝛬 + 𝑘 + 𝜇 + 𝛾 −
𝛽1𝜏
𝜇

)

𝐸0 =
𝛽2𝜏
𝜇

𝐼0 (6.2)

utting the value of 𝛽2 from (6.2) in Eq. (2.4), we obtain the expression of basic reproduction number 𝑅0 as in the form

𝑅0 =
𝜏𝛽1

(𝜇 + 𝛼)(𝑘 + 𝜇 + 𝛾)
+

𝑘𝜇
(

𝛬 + 𝑘 + 𝜇 + 𝛾 −
𝛽1𝜏
𝜇

)

(𝛬 + 𝜇 + 𝜇1 + 𝛿 + 𝜂)

(𝜇 + 𝛼)(𝑘 + 𝜇 + 𝛾)(𝜇 + 𝜇1 + 𝛿 + 𝜂)
(6.3)

or estimating 𝑅0, first we have to estimate force of infection (𝛬). Number of new cases per day (𝑞(𝑡)) varies with number of
umulative cases per day (𝑄(𝑡)) as 𝑞(𝑡) ∼ 𝛬𝑄(𝑡).

Plotting daily new cases with daily cumulative cases, we estimate the force of infection (𝛬). From the diagram (Fig. 6) we get
he threshold value of the cumulative case for which a new number of cases shows exponential growth. By the least square method,
he linear regression curve is fitted [31,32]. The force of infection (𝛬) is the slope of the regression line. Based on slope of regression
ine, we have 𝛬 = 0.1232352602014 𝑑𝑎𝑦−1. Using the expression (6.3) with the estimated value of 𝛬 and other estimated parameters
nlisted in Table 2, we get estimated value of basic reproduction number 𝑅0 = 1.4669387723 with lower value 1.3581601558 and
pper value 1.5757511687.

Thus we get a range of 𝑅0 from the initial phase of the corona infection. From the range of 𝑅0, we see that the values of 𝑅0 lies
lways greater than unity. But to eradicate corona virus from the community, we should keep its value less than unity. Therefore, it
s clear from the range of 𝑅0, corona virus emerges among the population. Moreover corona virus persists in the community since

alue of 𝑅0 lies greater than unity always.

9
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Fig. 6. (a) Time series of new cases of COVID-19 from 15th Feb to 14th July (b) Daily number of cases against cumulative number of cases from 15th February
to 14th July.

7. Effective reproduction number 𝑹(𝒕)

Basic reproduction number is an important factor in spreading disease dynamics. Basic reproduction number is the average
number of secondary infections produced by an infected person as an infected host during its lifespan. At the beginning stage, the
disease spreads quickly among the population but after attending peak position, it starts to decrease. Therefore reproduction is
not always constant. Now we aim to study time-varying reproduction numbers, which means reproduction number per day basis.
This type of reproduction number is known as adequate reproduction number 𝑅(𝑡) [33–35]. Depending on effective reproduction
umbers, researchers can give information about the disease and provide suitable preventive measures to control the disease. We
se the formula

𝑅(𝑡) =
𝑐(𝑡)

∫ ∞
0 𝑐(𝑡 − 𝜆)ℎ(𝜆)𝑑𝜆

(7.1)

or estimating effective reproduction number where 𝑐(𝑡) denotes new cases at 𝑡th day and ℎ(𝜆) denotes generation interval
istribution. Let exposed & asymptomatic, infected class leave at the rate 𝑏1 = 𝑘 + 𝜇 + 𝛾, 𝑏2 = 𝜇 + 𝜇1 + 𝛿 + 𝜂 respectively. Let

𝑏1𝑒−𝑏1𝑡, 𝑏2𝑒−𝑏2𝑡 be the combination of generation interval distribution, then formula is given by

ℎ(𝑡) = 𝛴2
𝑖=1

𝑏1𝑏2𝑒𝑏𝑖𝑡

𝛱2
𝑗=1,𝑗≠𝑖(𝑏𝑗 − 𝑏𝑖)

(7.2)

ith mean 𝑇 = 1
𝑏1

+ 1
𝑏2

. The above formula is valid when 𝛬 > min
{

−𝑏1,−𝑏2
}

. Using new cases and Eq. (7.1), effective reproduction
number can be estimated using formula (7.2). The value of effective reproduction number is presented by Fig. 7. From the figure,
value of 𝑅(𝑡) oscillates around unity. 𝑅(𝑡) is dropped from 5.354 to 0.4934.

Thus we have obtained the basic reproduction number for per day. At the initial stage, the reproduction number was very high
and with the increase of time, the values of reproduction number per day basis decrease. After 80 days the value of reproduction
number lies around unity. To control the spread of corona virus, we have to keep its value less than unity.

8. Conclusion

In this paper, we have proposed a 𝑆𝐸𝐼𝑅 epidemic model for pandemic COVID-19 in Italy where 𝑆, 𝐸, 𝐼, 𝑅 represent susceptible
population, exposed & asymptomatic population, infected and recovered population respectively. First, we study the proposed
model’s basic properties, i.e., positivity and boundedness of the model. Then we compute the basic reproduction number 𝑅0 of the
considered model. From our theoretical analysis, it is clear that there are two types of equilibrium points of the model: disease-free
equilibrium point and endemic equilibrium point. We prove the disease-free equilibrium point is stable if basic reproduction number
is less than unity which means the disease is eradicated from the population. On the other hand, for basic reproduction numbers
greater than unity, the endemic equilibrium point is stable, which implies disease persists in this case. We observe that the model
system has a Transcritical bifurcation at disease-free equilibrium point for the critical value of the bifurcation parameter 𝛽2, disease
transmission rate of the infected class.

Our study considers the data from 15th February 2020 to 14th July 2020 in Italy. At the early stage, the disease spread rapidly
in a short period due to the inattention of the people about the infection. In Italy, lockdown is started from 9th March 2020 and is
continued up to 18th May 2020. But before 9th March, 2020 many exposed & asymptomatic and infected peoples moved all over
the country. At the same time, many infected people came into Italy from outside of the country. For this reason, before 9th March
2020, disease spread rapidly among the people. Maintaining lockdown, home quarantine, hand wash, musk wearing, the influence
of the disease is started to decrease day by day.
10
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Fig. 7. Effective reproduction number.

To check the validity of the proposed model, we perform data fitting of the model from the reported data from 15th February
to 14th July 2020 in Italy. We observe that our proposed model is well fitted for the reported data from data fitting. We have
done sensitivity analysis to find out the most influential model parameter. For sensitivity analysis, we have used the normalized
forward sensitivity index method. By sensitivity analysis we observe that most sensitive model parameters are disease transmission
rate for both exposed & asymptomatic and also infected compartment namely 𝛽1 and 𝛽2 respectively, panic/tension/ anxiety of the
usceptible and infected class namely 𝛼 and 𝜂 respectively, natural death rate (𝜇), disease-induced death rate (𝜇1). Our analysis shows
hat the number of infected populations increases when 𝛽1 and 𝛽2 increase. On the other hand, the infected population decreases
hen 𝛼 and 𝜂 increase. Thus, we observe that the spread of the infection increases rapidly, and after taking proper preventive
easures, it decreases gradually. Then we estimate the basic reproduction number 𝑅0 from actual data in Italy. From the estimation

f basic reproduction number, we have seen that the value of the initial reproduction number is 0.1232352602014, and the value
f the basic reproduction number lies between 1.3581601558 and 1.5757511687. Finally, we find out the adequate reproduction
umber of the proposed model; the value of effective reproduction number lies near unity. The value of the adequate reproduction
umber is dropped from 5.354 to 0.4934. Based on our theoretical and numerical analysis, we can conclude that mathematical
odeling is an efficient method to estimate the situation of global pandemic COVID-19 if the parameters can be appropriately

stimated.
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ppendix A. Proof of disease-free equilibrium point (𝑬𝟎)

To find disease-free equilibrium point (𝐸0), we have 𝐸 = 0, 𝐼 = 0. Then from first equation of model (2.1), we have 𝑆 = 𝜏
𝜇 + 𝛼

nd from fourth equation, we have 𝑅 = 0. Therefore, disease-free equilibrium point (𝐸0) is given by
(

𝜏 , 0, 0, 0
)

.

𝜇 + 𝛼
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Table 4
Parameters estimation for Spain.

Parameter Value References

𝜏 0.00814 [28]
𝛽1 1.172149055003047 × 10−09 Estimated
𝛽2 1.494788358477118 × 10−07 Estimated
𝜇 0.0093 [28]
𝑘 1∕14 Assumed
𝛾 0.006396688847989 Estimated
𝜇1 0.009 [1]
𝛿 0.357592168378645 Estimated
𝛼 0.038717882508566 Estimated
𝜂 0.484591866531165 Estimated

Appendix B. Validation of the proposed model for Spain

In Section 4, we have already shown that the model is well fitted for the first wave (from 15th Feb 2020 to 14th July 2020) in
taly. We will show that our proposed model is also well fitted for the first wave (from 24th Feb 2020 to 4th July 2020) in Spain.

e have considered initial values

𝑆(0) = 46784213, 𝐸(0) = 350, 𝐼(0) = 3, and 𝑅(0) = 0.

Fig. 8. (a) Fitting model to cumulative cases in Spain (b) Residuals of the fit (c) Bar diagram for 132 days from 24th February to 4th July.

The estimated model parameters are given in Table 4. To validate the model, we consider the actual case of COVID-19 infection
of Spain from 24th February to 4th July 2020, i.e., the real cases for 132 days. The model is fitted to the cumulative number of
infected cases, presented in Fig. 8(a), and the residuals of the fit are presented in Fig. 8(b), which shows that the residuals are small
and random. In Fig. 8(c), we plot a bar diagram of the infected population for 132 days. The randomness of the residuals shows
that the fitness is best. Therefore proposition of our model is well defined.
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