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Diabetic cardiomyopathy (DCM) is characterized by diastolic relaxation abnormalities in its
initial stages and by clinical heart failure (HF) without dyslipidemia, hypertension, and
coronary artery disease in its last stages. DCM contributes to the high mortality and
morbidity rates observed in diabetic populations. Diabetes is a polygenic, heritable, and
complex condition that is exacerbated by environmental factors. Recent studies have
demonstrated that epigenetics directly or indirectly contribute to pathogenesis. While
epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding
RNAs, have been recognized as key players in the pathogenesis of DCM, some of their
impacts remain not well understood. Furthering our understanding of the roles played by
epigenetics in DCM will provide novel avenues for DCM therapeutics and prevention
strategies.
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INTRODUCTION

According to theWorldHealthOrganization, over 422million people (∼6% of the global population) have
been diagnosed with diabetes, a number that continues to increase each year (Sneha and Gangil, 2019).
Diabetes that is accompanied by various other syndromes represents the leading cause of morbidity and
mortality across the global. Clinical parameters such as poor glycemic control and insulin response to
diabetes contribute to heart problems (Matheus et al., 2013). Recent studies have found that cardiovascular
patients with diabetes have a worse prognosis than those without diabetes. The mortality due to
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cardiovascular disease in diabetic patients is s3-5 times higher than
that in the general population (Rawshani et al., 2017; Fedeli et al.,
2019). Diabetic cardiomyopathy (DCM), a cardiovascular
complication associated with diabetes, is a severe form of cardiac
dysfunction caused by changes in the structure and contractility of the
myocardium (Dong et al., 2017). Approximately 12% of diabetic
patients eventually develop severe heart failure (HF) and often die due
to DCM (Trachanas et al., 2014). Additional comorbidities in this
population of patients include hypertension, obesity, dyslipidemia,
and vascular disease (Lorenzo-Almoros et al., 2017).

DIABETIC CARDIOMYOPATHY

DCM is a serious complication of the myocardium of diabetic
patients characterized by ventricular dilation and hypertrophy,

diastolic dysfunction, decreased or preserved systolic function,
and reduced ejection fraction, with no accompanying coronary
artery disease or hypertension (Rubler et al., 1972). The
diagnostic criteria for DCM include left ventricular diastolic
dysfunction, left ventricular ejection fraction (EF) reduction,
pathological left ventricular hypertrophy, and interstitial
fibrosis (Fontes-Carvalho et al., 2015). Despite these
devastating effects, there are still no effective and specific tools
to diagnose DCM. Numerous studies over the past decades have
highlighted the complexity of DCM pathogenesis, identifying that
multiple molecular mechanisms synergistically damage
cardiomyocytes and impair heart function. The metabolic
environment associated with diabetes (e.g., high blood sugar,
increased circulating fatty acids and triglycerides,
hyperinsulinemia, and increased inflammatory cytokines, that
activate transcription factors and change various molecular
pathways in cardiomyocytes), reduces myocardial contractility
and causes cardiomyocyte dysfunction, cell damage, and death.
Thus, the mechanisms underlying DCM pathogenesis are
extremely complex and involve changes in 1), signal
transduction (insulin signal, renin-angiotensin signal); 2),
metabolism (glucose and lipid metabolism), calcium
homeostasis, and mitochondrial function; 3), gene regulation
(activation of transcription factors and epigenetic
mechanisms); 4), post-translational modification of signaling
proteins; 5), homeostasis of cellular processes such as
apoptosis, autophagy, and endoplasmic reticulum stress
(Figure 1).

Although DCM pathogenesis is multifactorial, hyperglycemia
(Singh et al., 2018; Evangelista et al., 2019) is still considered a
significant driver of myocardial damage (Seferovic and Paulus,
2015). Type 1 and type 2 diabetes(T2D) affect both systolic and
diastolic function, and evidence from animal and the human
study suggests that DCM occurs in T2D, affecting heart function
and morphology and increasing the risk of HF (Holscher et al.,
2016; Zhang et al., 2018; Yang et al., 2019). External stimuli or
environmental factors often trigger this change. For example,
changes in blood glucose levels can stress intracellular pathways
that activate various transcription factors that alter global gene
expression. Changes in the activity of transcription factors can
ultimately lead to structural changes in the body (Lee et al., 2004).
Dysregulation of coding and non-coding genes can lead to
various cardiovascular diseases, including DCM (Dorn and
Matkovich, 2008; Khraiwesh et al., 2010), and recent studies
have implicated epigenetic and microRNAs (miRNAs) in this
process. This review focuses on the role of epigenetic changes
in DCM.

EPIGENETICS

Epigenetics refers to heritable changes in gene expression that do
not involve changes in nucleotide sequence. Epigenetic
phenomena include DNA methylation, genomic imprinting,
maternal effects, gene silencing, nucleolar dominance, dormant
transposon activation, and RNA editing. Through these changes,
the epigenome provides information about the structure of

FIGURE 1 | Mechanisms of epigenetic on diabetic cardiomyopathy.
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crucial functional elements that regulate gene expressions, such as
methyl-labeled DNA and histones, and the interaction between
the distal portions of chromatin (Romanoski et al., 2015).
Epigenetic mechanisms such as DNA methylation, chromatin
remodeling, and histone modifications regulate gene expression
in response to change in the cellular microenvironment. These
processes also play essential roles in HF (Egger et al., 2004; Mateo
Leach et al., 2010), including HF that results from DCM.
Although these epigenetic modifications can induce chronic
disruptions in gene expression, recent studies have shown that
complex interactions between genes and the environment may
play an essential role in the pathogenesis of DCM and can be
manipulated through diet, exercise, and drug interventions
(Pepin and Wende, 2019).

DNA METHYLATION

DNA methylation is an important epigenetic mechanism and is
one of themost widely studied epigenetic markers (Ambrosi et al.,
2017). As a significant mechanism of epigenetic regulation in
mammalian cells, DNA methylation is essential for mammalian
development and plays a critical role in gene silencing, genomic
stability, and parental imprinting during mitosis (Smith and
Meissner, 2013). DNA methylation refers to the biochemical
reaction of adding methyl groups to DNA nucleotides
(cytosine or adenine) which is performed by DNA
methyltransferases (DNMTs, Figure 2). The most frequently
methylated nucleotides are cytosine residues located within
CpG dinucleotides (Jin and Liu, 2018). They are usually found
at the 5′ end of many gene regulatory regions but can extend into
the exons (Deaton and Bird, 2011). CpG dinucleotides are not
evenly distributed and can be categorized into dense CpG islands
with CpG sequences or scattered out-of-island regions
(Rodriguez-Rodero et al., 2017). In normal human somatic
cells, 70%–90% of CpG dinucleotides are methylated (Ehrlich
et al., 1982; Shaknovich et al., 2010). Cytosine methylation affects
the expression of diabetes-related genes by changing the
chromatin structure and altering the accessibility of
transcription machinery. In addition to regulating the
expression of various genes, methylation plays a vital role in
cell differentiation and female X-chromosome inactivation (Shi
et al., 2016). Repeating genomic sequences are extremely

unstable, and their hypermethylation may prevent
chromosomal instability, easy breakage, translocation, and
gene disruption caused by the repeating DNA sequence, which
can promote the expression of genes on that chromosome (Singh
et al., 2011).

DNA METHYLATION AND DIABETIC
CARDIOMYOPATHY

DNA methylation is an important epigenetic mechanism that
controls cell differentiation and transcriptional potential in
mammals. It regulates gene expression by inhibiting the
binding of transcription factors to DNA. Many factors affect
DNA methylation status, including the environment, diet, and
aging. Recent studies have shown that abnormal DNA
methylation is closely related to the occurrence and
development of many cardiovascular diseases, such as
coronary heart disease (Kim et al., 2010; Navas-Acien et al.,
2021), atherosclerosis (AS) (Tao et al., 2021), hypertension
(Dupriest et al., 2020; Amenyah et al., 2021), HF (Kao et al.,
2010; Haas et al., 2013; Madsen et al., 2020), and DCM (Liu ZZ.
et al., 2014; Guo et al., 2021).

Studies have shown that CpG islands are present in the
promoter region of the sarcoplasmic reticulum Ca2+-ATPase
(SERCA2a). In diabetic hyperglycemia, in vivo stimulation of
cardiomyocytes with pro-inflammatory tumor necrosis factor-
alpha (TNF-α: 50 ng/ml) increases methylation of the SERCA2a
promoter region by increasing the level of DNA
methyltransferase, which reduce the expression of SERCA2a
(Kao et al., 2010). SERCA2a mediates the relaxation of the
heart by transferring Ca2+ from the cells into the sarcoplasmic
reticulum. Downregulation of SERCA2 expression can cause
diastolic dysfunction and ultimately lead to the development
of DCM. Changes in TNF-α expression in cardiomyocytes
may underlie HF in diabetic patients since there is a positive
correlation between HF severity and TNF-α (Asrih and Steffens,
2013). El-Osta et al. have shown that transient exposure of aortic
endothelial cells to hyperglycemia induces sustained-onset
epigenetic changes in the promoter of the NF-κB p65 subunit,
which leads to increased expression of the p65 gene (El-Osta et al.,
2008). Pirola et al. found that hyperglycemia can alter CpG
methylation and, thus gene expression under diabetic

FIGURE 2 | Simplified overview of molecular mechanisms of DNA methylation.
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conditions. A study reported that Keap1 protein expression was
increased by demethylation of CpG islands in the promoter and
reduced Nrf2 activity, thus inhibiting the transcription of various
antioxidant genes and ultimately disrupting the redox balance in
diabetes (Liu ZZ. et al., 2014). Activation of the renin-
angiotensin-aldosterone system pathway plays a significant
role in DCM. In DCM, genes in this pathway are typically
upregulated, which eventually leads to myocardial
hypertrophy. Bogdarina et al. showed that the proximal
promoter of the angiotensin II type-1b (AT1b) gene is
hypomethylated in the adrenal gland, and AT1b expression
highly depends on promoter methylation in vitro (Bogdarina
et al., 2007).

Hyperglycemia significantly affects human vascular chromatin
and transcriptional upregulation of genes involved in metabolism
and cardiovascular diseases (Pirola et al., 2011). The
Epidemiology of Diabetes Interventions and Complications
(EDIC) study examined DNA methylation profiles in whole
blood isolated at baseline. The results indicate that changes in
DNA methylation differences during diabetes persist at specific
sites associated with blood glucose for several years. There was
also evidence of persistent hypomethylation of the thioredoxin-
interacting protein (TXNIP) gene associated with hyperglycemia
and related complications (Chen et al., 2016). Recent studies
identified that liver X receptor alpha (LXRα) is expressed in the
myocardium of diabetic rats induced by streptozotocin (STZ). In
addition, there are significant differences in the methylation
status of the LXRα gene in the ventricles of control rats
compared to the status in diabetic rats (Cheng et al., 2011).

A clinical study showed that age-related increases in
methylation are negatively correlated with hepatic liver
glucokinase (Gck) expression by studying the degree of Gck
methylation and GcK expression in three age groups (Jiang
et al., 2008). These results suggest that DNA methylation plays
a significant role in increasing age-dependent insulin resistance
and susceptibility to diabetes. Insulin resistance impairs heart
contractility and increases oxidative stress, leading to
cardiomyocyte apoptosis, myocardial fibrosis, remodeling, and
cardiac hypertrophy, and thus resulting in DCM (Dobrin and
Lebeche, 2010; Chemaly et al., 2011; Bobbert et al., 2012; Lebeche,
2015). Recent studies have shown that cardiac insulin resistance
significantly contributes to the pathogenesis and progression of
HF (Saotome et al., 2019).

JunD, a member of the activator protein 1 (AP-1) family
transcription factors, stimulates or inhibits the expression of a
variety of genes. JunD is under several layers of regulation,
including transcriptional, post-transcriptional, protein post-
translational modification, and protein-protein interactions.
JunD is involved in the occurrence and development of DCM.
Hussain et al. reported that the levels of JunDmRNA and protein
are downregulated in the heart of patients with T2D and STZ-
induced diabetic mice. JunD is epigenetically regulated by
promoter hypermethylation, post-translational histone
modifications, and miRNA-mediated translational repression
by miR-673/menin axis. This indicates that multiple epigenetic
mechanisms can synergize o alter gene expression rather than
acting independently (Hussain et al., 2020). In addition, this cell-

type-specific analysis revealed that gene programs associated with
distinct biological processes are differentially regulated in
diabetes.

Interestingly, despite these changes in gene expression, cell-
type-specific DNAmethylation signatures in genic and regulatory
regions remain stable in diabetes. Analysis of heterocellular
interactions in the diabetic heart suggests that the interplay
between fibroblasts and monocytes is pivotal. A previous study
showed that diabetes could change gene expression but not DNA
methylation in cardiac cells (Lother et al., 2021).

Other regulatory factors are also involved in the occurrence
and development of DCM. BRD4 is a member of the BET
(bromodomain and extra-terminal domain) family of
epigenetic regulators. High expression of BRD4 results in
cardiac hypertrophy and plays an essential role in the
pathogenesis of high glucose-induced cardiomyocyte
hypertrophy through the AKT pathway in H9C2 cells and a
diabetes rat model (Wang et al., 2019). In addition, JQ1 inhibits
BRD4, improves mitochondrial function, and repairs cardiac
structure and function by activating PINK1/Parkin-mediated
mitophagy in high-fat diet-induced DCM (Mu et al., 2020).

In summary, these findings indicate that epigenetic marks
such as DNA methylation play a significant role in DCM
(Table 1).

HISTONE MODIFICATION

Currently, there are 5 classes of histones identified in mammals: H1,
H2A, H2B, H3, and H4. Histone modification mechanism. Histone
modification is an epigenetic event that occurs via methylation,
acetylation, phosphorylation, adenylation, ubiquitination, and ADP
ribosylation (Bauer andMartin, 2017). These modifications affect the
transcriptional activity of associated genes.

Covalent post-translational modification of histones can alter
genome stability in response to changes in the environment,
resulting in alterations to gene expression in pathological states
such as metabolic stress. Along with CpG methylation, histone
modifications control the accessibility of nucleosomes for
transcription. Histone modifications also influence the binding
capacity of other proteins to histones through changes in local
hydrophobicity, RNA polymerase status, and binding affinity to
other transcription coactivators. Various post-translational
modifications can occur at the N-terminus of histones,
including phosphorylation, acetylation, methylation, and ADP-
ribosylation. It is challenging to decode specific post-translational
modifications for individual histones or nucleosomes (e.g.,
location of nucleosomes regarding the gene transcriptional
start site). However, histone modifications can communicate
with each other. Factors including sites, types, and degrees of
histone modifications contribute to the complexity of the
histone code.

Histone acetylation and deacetylation, mediated through
coactivator complexes containing histone acetyltransferases
(HATs) and co-repressor complexes containing HDACs,
respectively, represent the primary machineries controlling gene
expression. HAT-mediated histone acetylation disengages intra-
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and inter-nucleosomal interactions to loosen the chromatin structure
and turn on gene transcription. Histone changes through acetylation
(attaching an acetyl group to lysine residues to neutralize its basic
charge) or deacetylation usingHDACsmodulates the chromatin state
(euchromatin is accessible whereas heterochromatin is inaccessible
(Pasquier et al., 2015).

HDAC1 plays a significant role in the prevention and
treatment of cardiac dysfunction. Resveratrol activates HDAC1
to prevent cardiomyocyte apoptosis and endoplasmic reticulum
stress, reducing heart dysfunction in diabetic rats. SIRT1-
dependent H3 deacetylation is also important to the response
to myocardial injury and involves PERK/eIF2α, ATF6/CHOP,
and IRE1α/JNK (Guo et al., 2015). The downregulation of Sirt1
and DNMT3b induced by diabetes promotes H3 acetylation and
DNA demethylation of the p66Shc promoter, leading to DCM
(Costantino et al., 2018). In addition, a recent study on obese mice
reported that the lack of cardiac mitochondrial acetaldehyde
dehydrogenase 2 affected the epigenetic SUV39H-SIRT1 loop,
resulting in changes in transcription, autophagy, and myocardial
metabolism (Wang et al., 2018).

We often refer to this relationship between glycemic control and
the development of organ dysfunction as “blood sugar memory.”
Unstable blood glucose can lead to DCM (Pepin and Wende, 2019)
due to a combination of the release of ROS from chronic exposure to
hyperglycemia (Lebeche, 2015), histone H3K4 methylation, and
epigenetic activation of NF-κB-p65 in aortic vascular endothelial
cells (El-Osta et al., 2008), and eventually lead to DCM. El-Osta et al.
further studied the expression of the p65 gene and found that in
transient hyperglycemic conditions, glucose inhibited the H3K9me2
and H3K9me3 marks on the p65 promoter and promoted the
H3K4me1 mark (Brasacchio et al., 2009). Furthermore, histone
lysine methyltransferase, SET7/9 (a novel coactivator of NF-κB),
can target histone H3K4, enhance its methylation, and increase in
NF-κB expression through histone methylation. Studies have shown
that NF-κB-p65 is involved in the pathogenesis of pathological
cardiac hypertrophy (Xu et al., 2015). Moreover, telmisartan and
esculetin attenuate increases in histone modifications, such as
H3K9me2, H3K9Ac, H2AK119Ub, and H2BK120Ub in the heart
of T2D rats and ameliorate type 2 DCM by reversing H3, H2A, and
H2B histone modifications (Kadakol et al., 2017). This suggests that
histone modifications induced by exposure to high blood glucose
concentrations play an essential role in DCM.

Histone dysregulation caused by environmental factors can
synergize with hyperglycemia to induce diabetic complications.
Gaikwad et al. reported a metabolic abnormality associated with
renal failure in diabetic nephropathy. Renal metabolic disorders
alter histone H3 acetylation in diabetic mice, further damaging
myocardial cells. Examining the cross-sections of the hearts of the
diabetic mice demonstrated that renal failure increases
myocardial disease-related gene expression and cardiomyocyte
hypertrophy (one characteristic of DCM) rather than
cardiomyocyte proliferation (Gaikwad et al., 2010). Cardiac
histone H3 modification caused by diabetic nephropathy thus
plays a significant role in driving DCM.

The role of HDACs in cardiac hypertrophy and failure is
complex, with some displaying antihypertrophic properties,
whereas others exhibit pro-hypertrophic features. Recent
studies have shown that HDACs can improve myocardial
function and inhibit cardiac remodeling in DCM, as HDACs
can improve cardiac function and inhibit myocardial remodeling
in diabetic hearts (Chen et al., 2015). Kronlage et al. showed that
O-GlcNAcylation of HDAC4 alleviates HF in diabetes and found
that O-GlcNAcylation of HDAC4 at serine (Ser)-642 is
cardioprotective in DCM and inhibits Ca2+/calmodulin-
dependent protein kinase II signaling (Kronlage et al., 2019).

Taken together, these studies suggest that histone acetylation
plays a significant role in regulating gene expression associated
with diabetic complications, including DCM. In diabetes,
endothelial cells are exposed to hyperglycemia, and histone
acetylation is increased in the promoters of crucial genes in
the extracellular matrix, leading to increased human p300
(Mathiyalagan et al., 2010), vascular diabetic complications
and cardiomyocyte hypertrophy.

In addition, histone modification affects blood glucose
memory in cardiomyocytes, mainly through changes in the
expression of important genes.

NON-CODING RNAS AND DIABETIC
CARDIOMYOPATHY

Accumulating evidence suggests that pathological hypertrophy
and cardiac remodeling may contribute to DCM. Non-coding
RNAs, including long non-coding RNAs (lncRNAs) and small

TABLE 1 | Summary of studies examining DNA methylation in DCM.

Species Genes Methylation status Reference

DCM patients RASSF1A Hypermethylation Tao et al. (2019)
STZ-induced diabetic rats LXRα Demethylation Cheng et al. (2011)
Type 2 diabetes patients Keap1 Demethylation Li et al. (2015)
STZ-induced diabetic rats AT1b Undermethylated Bogdarina et al. (2007)
Type 2 diabetes patients HIF3A DNA methylation Guo et al. (2021)
db/db mice Histone H3 H3K9 and H3K23 acetylation Gaikwad et al. (2010)

H3K4 dimethylation
Diabetic rats p21(Waf1/Cip1) DNA methylation Monkemann et al. (2002)
Type 2 diabetes patients and STZ-induced diabetic mice JunD Hypermethylation, Post-translational modification Hussain et al. (2020)
STZ-induced diabetic mice Sirt1 and DNMT3b H3 acetylation and DNA Demethylation Costantino et al. (2018)

STZ, streptozotocin.
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non-coding RNAs (e.g., miRNAs, short-interfering RNA, and
piwi-interacting RNAs), play important roles in DCM. MiRNAs
are ubiquitous in eukaryotic cells and are about 21–23 nucleotides
in length. As endogenous post-translational inhibitors, miRNAs
bind to the 3’end of complementary mRNA to degrade the
mRNA or inhibit translation, thereby reducing the expression
of the target gene. lncRNA usually regulates protein through
processes such as competitive inhibition and recruitment. They
also participate in the entire transcription process and play
important roles as scaffolds that provide platforms for the
interaction between chromatin modification complexes and
transcription complexes.

In recent years, small RNAs, especially miRNAs, have gained
increasing attention in cardiovascular disease studies. Exploring
the regulatory importance of small RNAs in DCM will facilitate
the development of new DCM therapeutic.

SMALL RNAS IN THE PATHOLOGICAL
DEVELOPMENT OF DIABETIC
CARDIOMYOPATHY
Small RNAs negatively modulate gene expression, primarily
through binding to the target mRNA and subsequently
inducing their degradation or suppressing translation. In

short, small RNAs can regulate DCM pathogenesis through
the aggravation of myocardial fibrosis, oxidative stress,
apoptosis, cardiac electrical remodeling, or epigenetic
modification (Table 2). Recent studies have identified that
miRNAs play a vital role in the etiology of DCM (Guo and
Nair, 2017; Xia and Song, 2020). By upregulating or down-
regulating different target genes, the same miRNA can play
many roles in cardiomyocyte or myocardial fiber pathology
(Xia and Song, 2020). Feng et al. reported that miR-133a was
downregulated in hypertrophic cardiac tissue under high
glucose conditions, and miR-133a overexpression
prevented hypertrophic changes in cardiomyocytes (Feng
et al., 2010). Different miRNAs can also synergistically
regulate DCM by upregulating or down-regulating target
genes (Xia and Song, 2020). According to previous reports,
multiple miRNAs, including miR-1 (Ikeda et al., 2009), miR-
133a (Zhu Y.-F. et al., 2021), miR-351 (Zhu Y.-F. et al., 2021),
miR-199a (Li et al.,2017), and miR-451 (Kuwabara et al.,
2015), regulate cardiac hypertrophy in DCM by upregulating
or down-regulating target genes. In addition, some miRNAs
only alter the levels of one target gene under high-glucose
conditions. They achieve DCM pathological changes by
singly up- or down-regulating target genes under high
glucose conditions. Liang et al. revealed that knockdown of
miR-451 attenuated cardiac fibrosis and improved cardiac

TABLE 2 | Summary of miRNAs involved in the pathogenesis of DCM.

Mechanism miRNAs Regulated genes Species Reference

Hypertrophy ↓miR-1 MEF2a/Gata4 HG-treated NRCMs and diabetic rats Ikeda et al. (2009)
↓miRNA-146a DLST HG-treated NRCMs Heggermont et al. (2017)
↓miR-133a SCK1/IGF1R STZ-induced diabetic mice Feng et al. (2010)
↓miR-150 p300 Diabetic rats Duan et al. (2013)
↑miR-200c DUSP-1 HG and STZ-induced diabetic rats Singh et al. (2017)

Fibrosis ↓miR-152-3p Wnt1/β-catenin HG-treated NRCMs Xu et al. (2021)
↑miR-26a/b-5p GAS5 STZ-induced diabetes model Zhu et al. (2021a)
↓miR-29b-3p circHIPK3 STZ-induced diabetes model Wang et al. (2021)
↓miR-223 NLRP3 HG-induced cardiomyocyte injury mode Xu et al. (2020)
↓miR-155 TGF-β1 STZ-induced diabetes model Zhang et al. (2016)
↓miR-21 DUSP8 HG-induced diabetes model Liu et al. (2014a)

Apoptosis ↑miR-133a caspase-3, caspase-8 Type 2 diabetic rats Habibi et al. (2020)
↑miR-181a-5p JAK2/STAT3 Human cardiomyocytes Tan et al. (2021)
↑miR-146a MAPK H9C2 cells Chu et al. (2021)
↑miR-140-5p HDAC4/Neat1 STZ-induced diabetic mice Zou et al. (2019)
↓miR-1 IGF1 Diabetic rats Delfan et al. (2020)
↓miR-675 VDAC1 STZ-induced diabetic rats Li et al. (2016b)

Autophagy ↑miR-221-3p GAS5 STZ-induced diabetic rats and HG treated H9C2 Chen and Zhang, (2021)
↑miR-551b-5p DCRF STZ-induced diabetic rats Feng et al. (2019)
↑miR-34a Bcl2 and Sirt1 HG treated H9C2 Zhu et al. (2019)

- STZ-induced diabetic mice and HG- induced cardiomyocytes Ni et al. (2020)
Oxidative stress ↓miR-128 PIK3R1/Akt/mTOR C57 BL/6 mice Zhan et al. (2021)

↓MiR-22 Sirt1 HFD and STZ-induced diabetic mice Tang et al. (2018)
↓miR-1 and ↓miR-499 RyR2 Diabetic rats Yildirim et al. (2013)
↓miR-150 P300 Diabetic rats Duan et al. (2013)

Inflammation ↓miR-130 PPAR-γ H9C2 cells Chu et al. (2018)
↑miR-150-5p Smad7 HG- induced diabetes model Che et al. (2020)
↓miR146a IL6, TNFα, IL-1β, MCP-1 Human cardiac microvascular endothelial cells and STZ-induced

diabetes
Feng et al. (2017)

↓miR-214-3p KCNQ1 STZ-induced diabetes model and cardiomyocytes treated with HG Yang et al. (2018)
↓miR-675 VDAC1 STZ induced diabetic rats Li et al. (2016b)

NRCMs, neonatal rat cardiomyocytes; HFD, high fat diet; HG, high glucose ; STZ, streptozotocin.
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function by suppressing the endothelial-to-mesenchymal
transition (EndMT) in diabetic mouse hearts (Liang et al.,
2019).

CLINICAL APPLICATION OF SMALL RNAS
IN DIABETIC CARDIOMYOPATHY

The above findings reveal a novel mechanism of DCM pathogenesis
involving small RNAs, provide new strategies for the clinical diagnosis,
treatment, or prevention of DCM, and highlight potential strategies
for the development of small RNA-based therapies to treat diabetes-
related cardiovascular complications. Li et al. demonstrated that
inhibiting miR-320 could rescue DCM in diabetic mice (Li et al.,
2019). This suggests that targeting miR-320 may represent a potential
therapeutic strategy to treat diabetes-induced cardiac dysfunction. A
recent study has identified miRNA-497 as a potential therapeutic
agent for diabetic wound healing, owing to its repressive effect on pro-
inflammatory cytokines (Ban et al., 2020). Furthermore, some studies
indicate that as circulating miRNAs can be altered depending on the
phase of the disease, they could also be used as potential biomarkers
for assessing the development and progression of DCM. This also
means that early intervention can prevent severe complications in
DCM (Guo and Nair, 2017). In addition, other small RNAs, such as
piwi-interacting RNAs, could provide therapeutic targets for the
treatment of pathological hypertrophy and maladaptive cardiac
remodeling (Gao et al., 2020).

CONCLUSION

In summary, epigenetics is an exciting and promising
emerging research field in cardiovascular research and

therapy. Achieving a better understanding of the roles
played by epigenetics in DCM is an important strategy to
improve early diagnosis and treatment of DCM, as well as the
establishment of new therapeutics. In addition, drugs such as
methylation and acetylation inhibitors represent promising
candidates for targeted DCM therapies, and tissue-specific
epigenetic modifier drugs may offer a fresh therapeutic
perspective for DCM patients.
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