Supplementary Information

MamF-like proteins are distant Tic20 homologs involved in organelle assembly in bacteria

Anja Paulus¹, Frederik Ahrens¹, Annika Schraut¹, Hannah Hofmann¹, Tim Schiller¹, Thomas Sura³, Dörte Becher³, René Uebe^{1,*}

Affiliations:

¹Department of Microbiology, University of Bayreuth; Bayreuth, Germany.

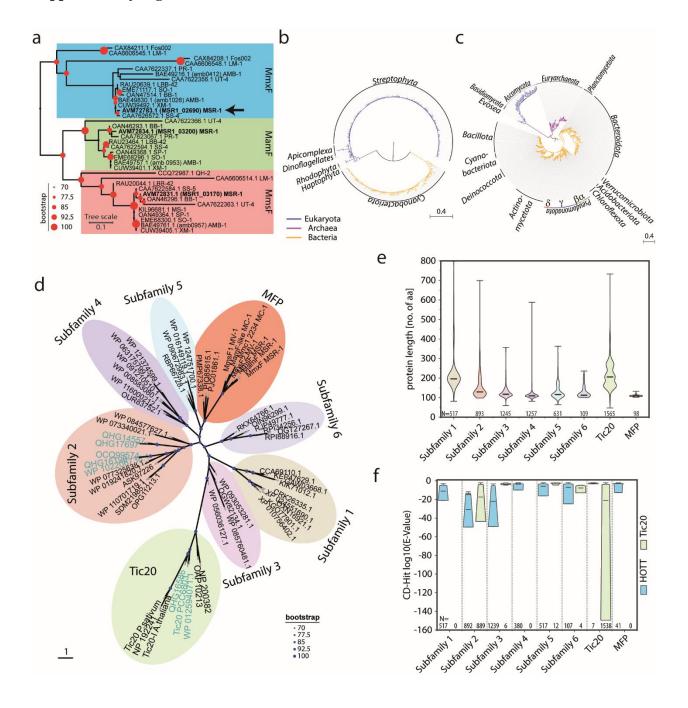
²Microbial Proteomics, Institute of Microbiology, University of Greifswald; Greifswald, Germany.

*Corresponding author. Email: rene.uebe@uni-bayreuth.de

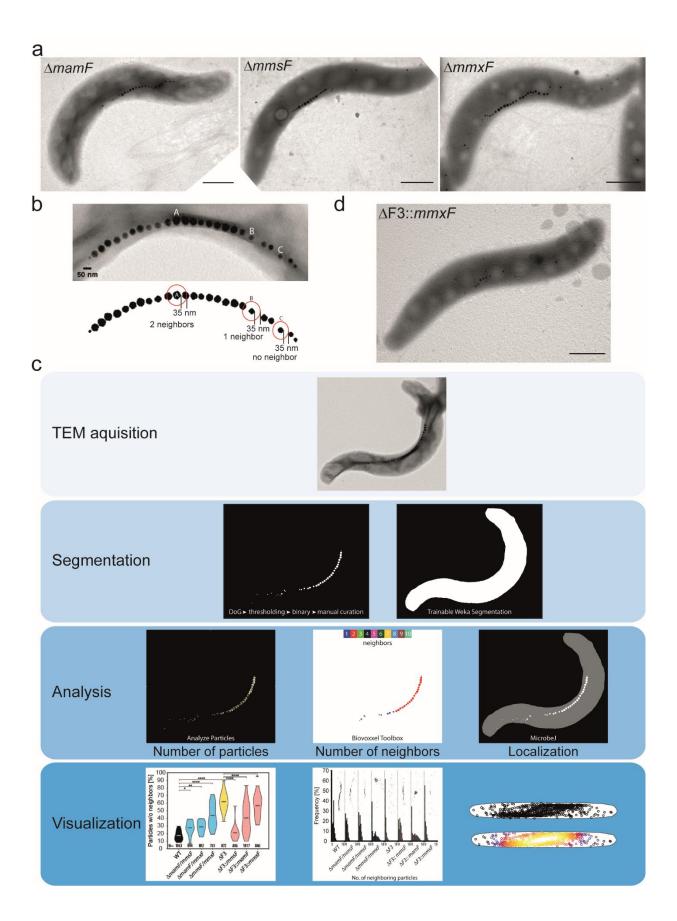
This PDF file includes:

Supplementary Note 1 Supplementary Figures 1-5 Supplementary Tables 1-4

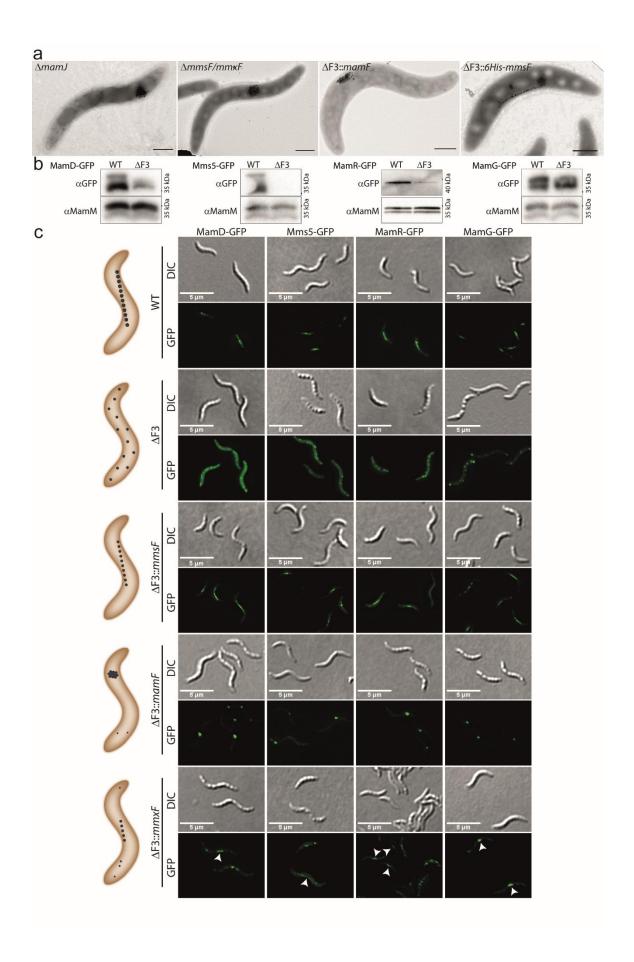
Other Supplementary Materials for this manuscript include the following:

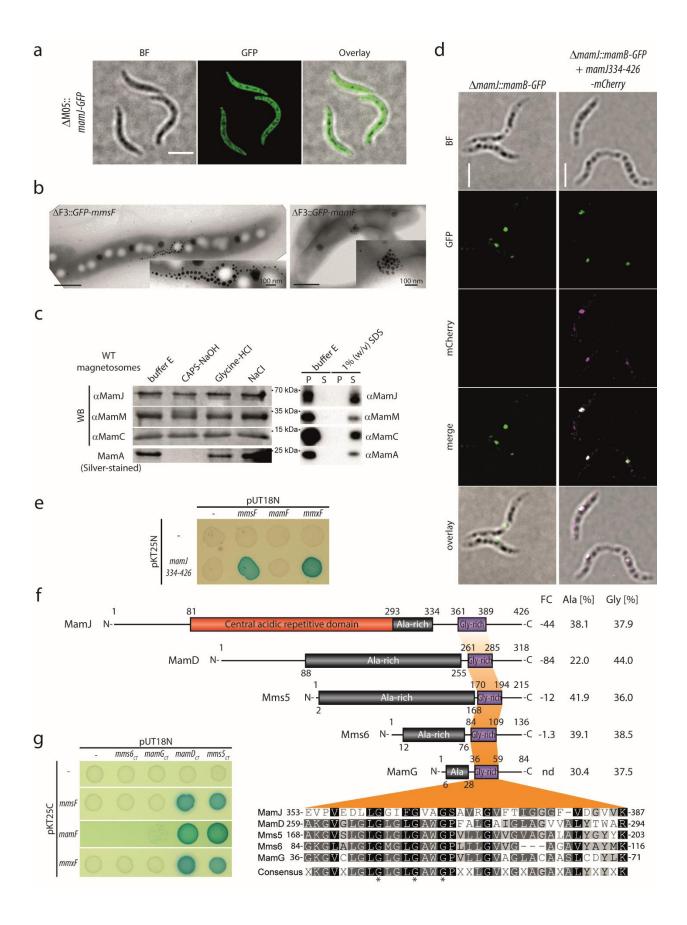

Supplementary Data 1-5 Source data file

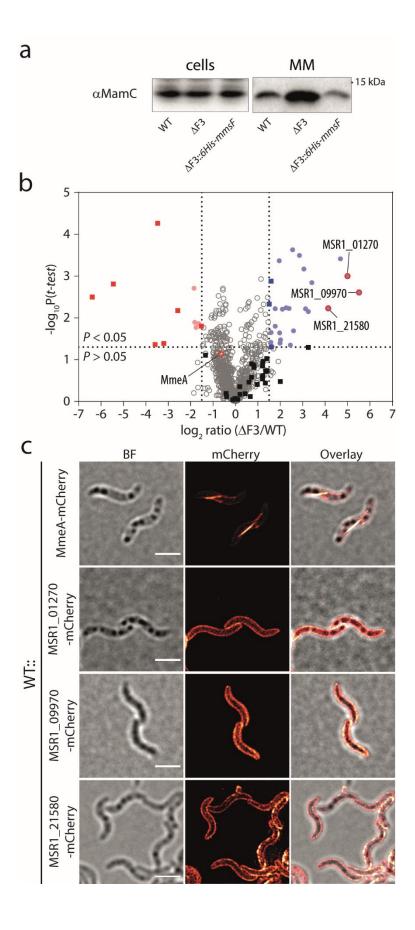
Supplementary Note 1


Altered composition of the MM in MFP mutants

In addition to the eleven proteins that showed a significantly decreased abundance in MM fractions of strain Δ F3, our quantitative proteomic analyses also revealed that 26 proteins are significantly enriched compared to the WT (Supplementary Data Table 4). Among these proteins, the three MAPs MamC, MamW, and MamX showed a three-fold increase (Fig. 3d). While increased MamC levels could be confirmed by Western immunoblots (Supplementary Fig. 5a), the deletion of mamC or mamW had only very weak effects on magnetosome formation ^{1,2}. Since MamX, on the other hand, plays a role in magnetosome redox control ³, the enrichment of these MAPs does not seem to play a role for the Δ F3 phenotype. Beside these MAPs, 23 significantly enriched proteins have no known function in magnetosome biomineralization and are encoded outside the genomic magnetosome island that contains almost all MAP genes². Strikingly, 13 of these proteins contain predicted secretory N-terminal signal sequences (Signal P 5.0) (Supplementary Data Table 4) 4 and thus likely reside within the periplasm or the outer membrane. To test for a putative role in magnetosome biogenesis, we fluorescently labeled three of the most strongly enriched proteins (Supplementary Fig. 5b, c). When produced in the WT, all proteins showed a peripheral cell localization, whereas mCherry-labeled MmeA, a MAP with a known N-terminal signal peptide 5, showed a magnetosome chain-like localization pattern. Thus, at least the tested proteins (MSR-1_01270, MSR-1_09970, MSR-1_21580) do not localize to the MM in vivo. We thus concluded that only proteins with a decreased abundance in Δ F3 MM extracts are relevant for our analyses.


Supplementary Figures


Supplementary Figure 1. MFPs are members of a common Tic20/HOTT protein superfamily, which are distributed in all domains of life. a A phylogenetic analysis of various MFPs reveals that one of the newly identified magnetosome proteins (MSR1 02690) is an ortholog of MmxF (amb1026) from Magnetosprillum magneticum AMB-1 ¹⁴. The tree is based on 36 MFPs sequences from different magnetotactic bacteria inferred under the best-fitting LG+G4 substitution model. Grouped MmxF, MamF and MmsF homologs are shaded with blue, green, and red boxes, respectively. MSR-1 MFPs are highlighted in bold and MmxF is marked with an arrow. Red dots above branches are bootstrap values in percent, denoted in the legend. Scale bar represents expected substitutions per site. Accession numbers are listed in Supplementary Data 1. b A phylogenetic analysis reveals a narrow distribution of the Tic20 family. The phylogenetic tree is based on 16S/18S rRNA sequences from 297 organisms containing at least one Tic20 family protein. The tree was inferred under the best-fitting TIM3+F+R3 substitution model. Scale bar represents expected substitutions per site. c A phylogenetic analysis reveals the wide distribution of the HOTT family in all domains of life. The phylogenetic tree is based on 16S/18S rRNA sequences from 456 organisms containing at least one HOTT family protein. The tree was inferred under the best-fitting GTR+F+R10 substitution model. Scale bar represents expected substitutions per site. d Unrooted phylogenetic tree of the Tic20/HOTT superfamily inferred under the bestfitting mtInv+F+I+G4 substitution model. The MFPs and six other HOTT groups form distinct subfamilies within the HOTT family that is widely separated from the Tic20 family. HOTT subfamily 1 exclusively includes eukaryotic sequences whereas subfamilies 2-6 contain only prokaryotic representatives. Cyanobacteria (in teal) are the only organisms containing HOTT (subfamily 2) and Tic20 family proteins. Bootstrap values (blue dots) are denoted in the legend. Scale bar represents expected substitutions per site. Accession numbers are listed in Supplementary Data 1. e Comparison of protein length distributions (in aa) in the Tic20/HOTT superfamily using violin plots. Please note the short length of most HOTT family members in comparison to Tic20. The min, max, and mean values are indicated by bars. The number of analyzed proteins of each group [N] is given below. f Conserved domain (CD) search analysis of the Tic20/HOTT superfamily using violin plots. Almost all representatives of the HOTT Subfamily 2 retrieve significant E-values to both protein families, HOTT and Tic20. Only hits with E-values < than 10⁻³ are shown. The min, max, and mean values are indicated by bars. The number of proteins with hits to each protein domain [N] is given below. a, d, e, f Source data are provided as a Source Data file.


Supplementary Figure 2. Characterization of MSR-1 deletion phenotypes using quantitative magnetosome neighbor analysis. a Representative TEM micrographs of MFP single deletions show WT-like phenotypes. (Scale bars: 500 nm). **b** MSR-1 WT magnetosomes with an average size of 35 nm are arranged in almost perfect chain-like structures in which most particles have exactly two neighboring particles within a distance of 35 nm (see particle A). Exceptions can be found at the end of chains where a wider particle spacing can be observed (e.g. particle B that has only one neighboring particle within 35 nm) or particle C that has no neighbor. In the absence of magnetosome chains the frequency of neighbor-less particles increases strongly while strains with aggregated magnetosomes frequently have neighbor numbers ≥ 3 . c For quantitative magnetosome neighbor analysis images of different mutant strains were collected by TEM. Micrographs were subsequently segmented into magnetosomes and cell bodies. Segmented binary images were then used to analyze the overall number of magnetosomes per cell, the number of neighboring magnetosomes of each individual particle and the distribution of intracellular magnetosome localizations using Fiji plugins. Visualization of the results was performed using Fit-o-mat 0.752 ⁶, Prism 7 (GraphPad Prism Software Inc., San Diego, California), and MicrobeJ 7. d Expression of mmxF in $\Delta F3$ results in phenotypic heterogeneity (compare with $\Delta F3::mmxF$ TEM image in Fig. 2c) which may derive from an unbalanced production of MmxF or an impaired folding due to the use of the strong *mamG* promoter.

Supplementary Figure 3. Verification of the $\Delta F3$ proteome analysis. a MSR-1 mutants expressing mamF as the only MFP gene phenocopy the mamJ deletion mutant whereas $\Delta F3$ expressing a 6His-mmsF construct phenocopies strain $\Delta F3$::mmsF (compare Fig. 2c). Representative TEM micrographs of $\Delta mamJ$, $\Delta mmsF/mmxF$, $\Delta F3$::mamF, and $\Delta F3$::mmsF. (Scale bars: 500 nm). b Western blot analyses (αGFP) of magnetosome membrane fractions from WT and $\Delta F3$ strains expressing mamG-, mamD-, mms5-, and mamR-GFP confirm a strong reduction of MamD, Mms5, and MamR in $\Delta F3$ magnetosomes compared to the WT. In contrast, MamG-GFP is equally abundant in both strains. Source data are provided as a Source Data file. c Schematic phenotypic models and epifluorescence imaging of WT, $\Delta F3$, and complemented $\Delta F3$ strains producing MamD-, Mms5-, MamR-, or MamG-GFP fusion proteins reveals MM targeting of MamD-, Mms5-, and MamR-GFP by all three MFPs. In $\Delta F3$, MamD-, MamR-, and partially Mms5-GFP show only a soluble localization whereas MamG-GFP exclusively localizes in a punctuate pattern. Arrowheads indicate cells with midcell chain-like fluorescence patterns in $\Delta F3$::mmxF. DIC, differential interference contrast image. (Scale bars: $5 \mu m$)

Supplementary Figure 4. Characterization of potential MFP substrate proteins. a 3D-Structured illumination microscopy of MamJ-GFP reveals a soluble localization pattern in the MSR-1 \(\Delta M05\) mutant that lacks all magnetosome genes. BF, bright field image. (Scale bars: 2 \(\mu m \)) **b** GFP-labeled MmsF and MamF are functional. Complementation of ΔF3 with GFP-mmsF or GFP-mamF results in similar phenotypes as complementation with unlabeled genes (compare with Fig. 2c). (Scale bars: 500 nm). c MamJ is resistant to prolonged treatments (20 h) with basic (0.1 M N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), pH 11), acidic (0.1 M glycine, pH 2.5), or high salt (1 M NaCl, 10 mM Hepes, 1 mM EDTA, pH 7.4) buffer solutions. Magnetosome pellet fractions were loaded on SDS-PAGE and subsequently analyzed by Western blot (aMamJ, αMamM, αMamC) or silver staining (MamA). In an independent experiment, magnetosomes were incubated for one hour in 1% SDS as a positive control. The sample was fractionated into supernatant and magnetosome pellets by centrifugation. Trichloroacetic acid-precipitated supernatant and pellet fractions were loaded onto SDS-PAGE. Subsequent Western blot immunodetections of MamJ, MamM, and MamC indicate an integral membrane protein behavior for all three proteins as they could be only extracted by SDS. Contrarily, the MM associated protein MamA could be readily extracted by SDS and CAPS-buffer treatments. Buffer E treatments served as negative controls. Source data are provided as a Source Data file. d 3D-Structured illumination colocalization microscopy of MamB-GFP and MamJ334-426-mCherry in \(\Delta mamJ \) indicate that residues 334-426 mediate MM targeting of MamJ (see also Fig. 4). Micrographs are maximum intensity projections. MamB-GFP is colored in green; MamJ-mCherry is colored in magenta; White-colored regions in the overlay indicate colocalization. BF, bright field image. (Scale bars: 2 μm) e Interaction analysis of MamJ using a BACTH assay based on reconstitution of CyaA adenylate cyclase activity in the cya strain E. coli BTH101. Fusion of proteins to the fragmented catalytic CyaA domains T25 and T18 from Bordetella pertussis only confers cAMP-dependent expression of a lacZ reporter gene upon protein-protein interaction-mediated reconstitution of CyaA. lacZ expression is indicated by blue color formation and enhanced growth on X-Gal containing M63 maltose-mineral salts agar. The MamJ C-terminal domain interacts with MmsF and MmxF but not MamF in BACTH assays. Source data are provided as a Source Data file. f Domain structures of putative MFP substrates MamJ, MamD and Mms5 as well as the MamDhomologs MamG and Mms6 which are not targeted to the MM in an MFP-dependent manner (fold change (FC) of the proteomic analysis is indicated; nd, not detected). Alanine and glycine contents of the alanine- (black) and glycine-rich (purple) domains are given in %, respectively. Numbers above and below the proteins represent domain boundaries or protein lengths, respectively. Multiple aa sequence alignment of the glycine-rich domains. Amino acid residues are shaded using the Rasmol color scheme. A consensus motif is given below the alignment. The numbers at the beginning and end of each line indicate the position of the first and last amino acid of the respective protein within the alignment. Asterisks indicate the position of conserved glycine residues. g Interaction analysis of MamD, Mms5, MamG, Mms6 C-terminal domains using a BACTH assay based on reconstitution of CyaA adenylate cyclase activity in the cya⁻ strain E. coli BTH101. BACTH assay showing the interaction between the C-terminal domains of MamD and Mms5 with MamF, MmsF, and MmxF. Note that the highly homologous proteins MamG and Mms6 do not interact with the MFPs. Source data are provided as a Source Data file.

Supplementary Figure 5. Verification of the proteomic data a Western immunoblot analysis of the WT, Δ F3 and Δ F3::6His-mmsF strains using MamC antibody confirms the slight enrichment of MamC in magnetosome membrane fractions of ΔF3 while the cellular levels remained unaltered. Molecular weight standard is indicated. Source data are provided as a Source Data file. **b** Volcano plot showing the log₂-fold depletion (red) or enrichment (blue) of proteins in purified magnetosome fractions of $\Delta F3$ compared to the WT as determined by LC-MS/MS. Circles represent non-MAI encoded proteins, non-significant proteins are depicted by grey or black symbols, respectively. Proteins with predicted N-terminal signal peptide sequences and high enrichment in $\Delta F3$ used for mCherry-labelling are highlighted (red circles). MmeA, whose abundance remained unaffected in ΔF3 MM fractions and used as a reference for mCherry labelling is also highlighted. Coloring otherwise identical to Fig. 3d. (See also Supplementary Data 4. Source data are provided as a Source Data file.) c 3D-Structured illumination microscopy confirms that mCherry-labeled proteins (see Supplementary Fig. 5b) with potential secretory signal sequences are localized near the cell surface in the MSR-1 WT. However, except for the known magnetosome protein MmeA, no protein showed magnetosome chain localization. BF, bright field image. (Scale bars: 2 µM)

Supplementary Table 1. Strains used in this study.

Strain	Genotype/Description	Reference/Source
E. coli	TT . C . 1 .	T
DH5α	Host for cloning:	Invitrogen
	F Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1	
	endA1 hsdR17 (r_k^-, m_k^+) phoA supE44 thi-1	
WB 500 54	gyrA96 $relA1 \lambda^{-}$	*******
WM3064	Donor strain for conjugation:	William Metcalf at
	thrB1004 pro thi rpsL hsdS lacZΔM15 RP4-1360	UIUC
DELI101	Δ (araBAD)567 Δ dapA1341::[erm pir (wt)]	Б 1
BTH101	BACTH assay reporter strain:	Euromedex
	F cya-99 araD139 galE15 galK16 rpsL1 (Str ^R)	
M	hsdR2 mcrA1 mcrB1	
M. gryphiswaldense	MCD 1 D2/C1. D:fR CmR anontoneous mutant	8
Wild type (WT) WT:: <i>mamD-GFP</i>	MSR-1 R3/S1; Rif ^R , Sm ^R spontaneous mutant	
WT::mamD-GFP WT::mamR-GFP	WT with mamD-GFP after Tn5 insertion, Tet ^R	This study
WT::mms5-GFP	WT with <i>mamR-GFP</i> after Tn5 insertion, Tet ^R WT with <i>mms5-GFP</i> after Tn5 insertion, Tet ^R	This study
WT::mamG-GFP	· · · · · · · · · · · · · · · · · · ·	This study
WT::P _{tet} -mmeA-mCherry	WT with <i>mamG-GFP</i> after Tn5 insertion, Tet ^R WT with <i>mmeA-mCherry</i>	This study This study
W1::P _{tet} -mmeA-mCnerry	after Tn5 insertion, Kan ^R	This study
WT:: <i>MSR-1_01270-mCherry</i>	WT with MSR-1_01270-mCherry	This study
W1MSK-1_012/0-mCherry	after Tn7 insertion, Cam ^R	Tills study
WT::MSR-1_09970-mCherry	WT with MSR-1_09970-mCherry	This study
W1MSK-1_09970-mCherry	after Tn7 insertion, Cam ^R	Tills study
WT::MSR-1_21580-mCherry	WT with MSR-1_21580-mCherry	This study
W1MSK-1_21380-mCherry	after Tn7 insertion, Cam ^R	Tills study
WT::MSR-1_03900-mCherry	WT with MSR-1_03900-mCherry	This study
W1MSK-1_03300-mCherry	after Tn7 insertion, Cam ^R	Tills study
ΔΜ05	Non-magnetic mutant with large MAI operon	9
AMOS	deletions	
Δ M05:: <i>mamJ-GFP</i>	$\Delta M05$ with mamJ-GFP	This study
Ziviosmams OI i	after Tn5 insertion, Tet ^R	Tins study
Δ mam J	mamJ deletion strain	10
ΔmamJ::mamJ-GFP	$\Delta mamJ$ with mamJ-GFP	This study
Zinemo GII	after Tn5 insertion, Tet ^R	Tims staay
ΔmamJ::mamJ1-80-GFP	$\Delta mamJ$ with mamJ1-80-GFP	This study
	after Tn5 insertion, Tet ^R	Tims stady
Δ <i>mamJ</i> :: <i>mamJ81-333-GFP</i>	$\Delta mamJ$ with mamJ81-333-GFP	This study
	after Tn5 insertion, Tet ^R	
∆mamJ::mamJ334-426-GFP	ΔmamJ with mamJ334-426-GFP	This study
	after Tn5 insertion, Tet ^R	
∆mamJ::mamJ∆335-343-GFP	Δ mamJ with mamJ Δ 334-343-GFP	This study
	after Tn5 insertion, Tet ^R	•
∆mamJ::mamJ∆335-348-GFP	$\Delta mamJ$ with $mamJ\Delta 334-348$ -GFP	This study
	after Tn5 insertion, Tet ^R	•
∆mamJ::mamJ∆335-353-GFP	$\Delta mamJ$ with $mamJ\Delta 334-353$ -GFP	This study
	after Tn5 insertion, Tet ^R	•
<i>∆mamJ∷mamJ∆335-358-GFP</i>	Δ mamJ with mamJ Δ 334-358-GFP	This study
	after Tn5 insertion, Tet ^R	•
∆mamJ::mamJ∆378-426-GFP	Δ mamJ with mamJ Δ 378-426-GFP	This study
	after Tn5 insertion, Tet ^R	•
∆mamJ::mamJ∆396-426-GFP	Δ mamJ with mamJ Δ 396-426-GFP	This study
	after Tn5 insertion, Tet ^R	•
∆mamJ::mamJ∆407-426-GFP	$\Delta mamJ$ with $mamJ\Delta 407-426$ -GFP	This study
	after Tn5 insertion, Tet ^R	-

Strain	Genotype/Description	Reference/Source
Δ mamJ::mamJ Δ 417-426-GFP	$\Delta mamJ$ with $mamJ\Delta 417$ -426-GFP	This study
	after Tn5 insertion, Tet ^R	
∆mamJ::mamB-GFP	\triangle mam J with chromosomally encoded mam B-GFP, expressed from the native mam B locus	This study
A I D CED	· •	TD1 : 1
ΔmamJ::mamB-GFP::	$\Delta mamJ$ with chromosomally encoded mamB-	This study
P_{lac} -mamJ334-426-mCherry	GFP, expressed from the native mamB locus	
	and mamJ334-426-mCherry inserted into the Tn7 locus	
$\Delta mamF$	mamF deletion strain	11
$\Delta mmsF$	<i>mmsF</i> deletion strain	11
$\Delta mmxF$	mmxF deletion strain	This study
$\Delta mamF/mmsF$	mamF, mmsF double deletion strain	11
$\Delta mamF/mmxF$	mamF, mmxF double deletion strain	This study
$\Delta mmsF/mmxF$	mmsF, mmxF double deletion strain	This study
∆mmsF/mmxF::mamJ334-426-GFP	Δ <i>mmsF/mmxF</i> mamJ334-426 after Tn5 insertion, Tet ^R	
$\Delta F3$	mamF, mmsF, mmxF triple deletion strain	This study
$\Delta F3$::mamF	This mediated complementation of $\Delta F3$ with	This study This study
AI JHWHII	mamF, Tet^R	rins study
$\Delta F3::mmsF$	Tn5 mediated complementation of $\Delta F3$ with	This study
La Commit	mmsF, Tet ^R	ims study
$\Delta F3::mmxF$	Tn5 mediated complementation of $\Delta F3$ with	This study
	$mmxF$, Tet^R	
$\Delta F3$::6His-mmsF	$\Delta F3$ with 6His-mmsF after Tn5 insertion, Kan ^R	This study
$\Delta F3::P_{tet}$ -mCherry-mamK	$\Delta F3$ with inducible <i>mCherry-mamK</i>	This study
	after Tn5 insertion, Kan ^R	
$\Delta F3::P_{tet}$ -mScarlet-I-mamY	$\Delta F3$ with inducible <i>mScarlet-I-mamY</i>	This study
	after Tn5 insertion, Kan ^R	
$\Delta F3\Delta$ mam $J::mamJ-GFP$	$\Delta F3\Delta$ mam J with $mamJ$ - GFP	This study
	after Tn5 insertion, Tet ^R	
$\Delta F3::GFP$ -mam F	$\Delta F3$ with GFP -mamF after Tn5 insertion, Tet ^R	This study
$\Delta F3::GFP-mmsF$	$\Delta F3$ with <i>GFP-mmsF</i> after Tn5 insertion, Tet ^R	This study
$\Delta F3::mamD\text{-}GFP$	$\Delta F3$ with mamD-GFP after Tn5 insertion, Tet ^R	This study
$\Delta F3::mamR-GFP$	$\Delta F3$ with mamR-GFP after Tn5 insertion, Tet ^R	This study
$\Delta F3::mms5-GFP$	$\Delta F3$ with mms5-GFP after Tn5 insertion, Tet ^R	This study
$\Delta F3$::mamG-GFP	$\Delta F3$ with mamG-GFP after Tn5 insertion, Tet ^R	This study
$\Delta F3$::mamD-GFP::mmsF	$\Delta F3$ with mamD-GFP and mmsF	This study
	after Tn5 insertion, Kan ^R , Tet ^R	
$\Delta F3::mamR-GFP::mmsF$	$\Delta F3$ with mamR-GFP and mmsF	This study
	after Tn5 insertion, Kan ^R , Tet ^R	
$\Delta F3::mms5$ -GFP:: $mmsF$	$\Delta F3$ with mms5-GFP and mmsF	This study
	after Tn5 insertion, Kan ^R , Tet ^R	
$\Delta F3::mamG-GFP::mmsF$	$\Delta F3$ with mamG-GPF and mmsF	This study
	after Tn5 insertion, Kan ^R , Tet ^R	
$\Delta F3::mamD$ - $GFP::mamF$	$\Delta F3$ with mamD-GFP and mamF	This study
	after Tn5 insertion, Kan ^R , Tet ^R	
$\Delta F3::mamR-GFP::mamF$	$\Delta F3$ with mamR-GFP and mamF	This study
	after Tn5 insertion, Kan ^R , Tet ^R	
$\Delta F3::mms5-GFP::mamF$	$\Delta F3$ with mms5-GFP and mamF	This study
	after Tn5 insertion, Kan ^R , Tet ^R	
$\Delta F3::mamG-GFP::mamF$	$\Delta F3$ with mamG-GPF and mamF	This study
	after Tn5 insertion, Kan ^R , Tet ^R	
$\Delta F3::mamD\text{-}GFP::mmxF$	$\Delta F3$ with mamD-GFP and mmxF	This study
	after Tn5 insertion, Kan ^R , Tet ^R	
$\Delta F3::mamR-GFP::mmxF$	$\Delta F3$ with mamR-GFP and mmxF	This study
	after Tn5 insertion, Kan ^R , Tet ^R	

Strain	Genotype/Description	Reference/Source
$\Delta F3::mms5-GFP::mmxF$	$\Delta F3$ with mms5-GFP and mmxF	This study
	after Tn5 insertion, Kan ^R , Tet ^R	
$\Delta F3$::mamG-GFP::mmxF	$\Delta F3$ with $mamG$ - GPF and $mmxF$	This study
	after Tn5 insertion, Kan ^R , Tet ^R	
$\Delta F3::mmsF$ D34N, D36N, D37N, E38N	$\Delta F3$ with mmsF ^{D34N, D36N, D37N, E38N}	This study
	after Tn5 insertion, Tet ^R	
$\Delta F3$:: $mmsF$ D34N, R35Q, D36N, D37N, E38N	$\Delta F3$ with mmsF D34N, R35Q, D36N, D37N, E38N	This study
	after Tn5 insertion, Tet ^R	
$\Delta mamKY$	mamK, mamY double deletion strain	12
$\Delta F3\Delta mms5\Delta mamK\Delta mamY::GFP-$	mamF, mmsF, mmxF, mms5, mamK, mamY	This study
mmsF	codeletion strain; $\Delta F3\Delta mms5\Delta mam K\Delta mam Y$	
	with GFP-mmsF after Tn5 insertion, Tet ^R	
$\Delta A13\Delta mmxF\Delta mms5$	mamGFDC, mms5, mms6, mamXY	13
	codeletion strain	
$\Delta A13\Delta mmxF\Delta mms5\Delta mamR$	mamGFDC, mms5, mms6, mamXY, MamR	This study
	codeletion strain	
$\Delta A13\Delta mmxF\Delta mms5\Delta mamR::mmsF$	$\Delta A13\Delta mmxF\Delta mms5\Delta mamR$ with $mmsF$	This study
	after Tn5 insertion, Tet ^R	

Supplementary Table 2. Plasmids used in this study.

Plasmid	Description	Reference/Source
pUT18C	BACTH vector designed to express a given	14
	polypeptide fused in frame at its N-terminal	
	end with T18 fragment;	
	ColE1 ori; Amp ^R	1.4
pUT18N	BACTH vector designed to express a given	14
	polypeptide fused in frame at its C-terminal	
	end with T18 fragment;	
WT25C	ColE1 ori; Amp ^R	14
pKT25C	BACTH vector designed to express a given	14
	polypeptide fused in frame at its N-terminal end with T25 fragment; <i>p15A</i> ori; Kan ^R	
pKT25N	BACTH vector designed to express a given	14
pK1251V	polypeptide fused in frame at its C-terminal	
	end with T25 fragment; p15A ori; Kan ^R	
pUT18C- <i>zip</i> ; pKT25- <i>zip</i>	Derivatives of pUT18C and pKT25 with a	14
ροτίσε <i>μ</i> ρ, ρκτ25 <i>μ</i> ρ	114 bp DNA fragment encoding for a leucine	
	zipper (positive control for BACTH)	
pUT18C- <i>mamJ</i>	BACTH plasmid coding for T18-MamJ	12
pKT25C- <i>mamK</i>	BACTH plasmid coding for T25-MamK	12
pK123C mamK	Briefff plasmid coding for 123 Mainix	
pKT25C-mamY	BACTH plasmid coding for T25-MamY	12
pKT25N- <i>mamJ</i> 334-426	BACTH plasmid coding for	This study
	MamJ334-426-T25	
pUT18N- <i>mmsF</i>	BACTH plasmid coding for MmsF-T18	This study
pKT25C- <i>mmsF</i>	BACTH plasmid coding for T25-MmsF	This study
pUT18N- <i>mmxF</i>	BACTH plasmid coding for MmxF-T18	This study
pKT25C- <i>mmxF</i>	BACTH plasmid coding for T25-MmxF	This study
pUT18N- <i>mamF</i>	BACTH plasmid coding for MamF-T18	This study
pKT25C-mamF	BACTH plasmid coding for T25-MamF	This study
pUT18N- <i>mms</i> 6 _{CT}	BACTH plasmid coding for Mms6-T18	This study
pUT18N- $mamG_{CT}$	BACTH plasmid coding for MamG-T18	This study
pUT18N- $mamD_{CT}$	BACTH plasmid coding for MamD-T18	This study
pUT18N-mms5 _{CT}	BACTH plasmid coding for Mms5-T18	This study
pBAM-Tet- <i>mamD</i> -G <i>FP</i>	R6K ori, Tn5, Amp ^R , Tet ^R , P_{mamG} -mamD-GFP	15
•		
pBAM-Tet-mamR-GFP	R6K ori, Tn5, Amp ^R , Tet ^R , P _{mamG} -mamR-GFP	This study
pBAM-Tet-mms5-GFP	R6K ori, Tn5, Amp ^R , Tet ^R , P _{mamG} -mms5-GFP	This study
pBAM-Tet-mamG-GFP	R6K ori, Tn5, Amp ^R , Tet ^R , P _{mamG} -mamG-GFP	This study
pBAM-Tet- <i>mamJ-GFP</i>	R6K ori, Tn5, Amp ^R , Tet ^R , P _{mamG} -mamJ-GFP	16
pBAM-Tet-mamJ1-80-GFP	R6K ori, Tn5, Amp ^R , Tet ^R ,	This study
	P_{mamG} -mamJ1-80-GFP	
pBAM-Tet-mamJ81-333-GFP	R6K ori, Tn5, Amp ^R , Tet ^R ,	This study
	P _{mamG} -mamJ81-333-GFP	
pBAM-Tet-mamJ335-426-GFP	R6K ori, Tn5, Amp ^R , Tet ^R ,	This study
DAM THE 14 225 242 CEP	P _{mamG} -mamJ335-426-GFP	mi
pBAM-Tet- $mamJ\Delta 335-343-GFP$	<i>R6K</i> ori, Tn5, Amp ^R , Tet ^R ,	This study
nPAM Tot mam IA 225 240 CED	P_{mamG} -mamJ $\Delta 335$ -343-GFP	This study
pBAM-Tet- $mamJ\Delta 335-348$ -GFP	<i>R6K</i> ori, Tn5, Amp ^R , Tet ^R ,	This study
pBAM-Tet- <i>mamJ∆335-353-GFP</i>	P_{mamG} -mam $J\Delta 335$ -348- GFP R6K ori, Tn5, Amp ^R , Tet ^R ,	This study
PDTM1-151-11MIIIJDJJJ-JJJ-GFF	P_{mamG} -mam $J\Delta 335$ -353-GFP	This study

Plasmid	Description	Reference/Source
pBAM-Tet-mamJΔ334-359-GFP	R6K ori, Tn5, Amp ^R , Tet ^R ,	This study
	P_{mamG} -mam $J\Delta 335$ -358-GFP	
pBAM-Tet- <i>mamJ∆378-426-GFP</i>	R6K ori, Tn5, Amp ^R , Tet ^R ,	This study
	P_{mamG} -mam $J\Delta 378$ -426-GFP	
pBAM-Tet- <i>mamJ∆396-426-GFP</i>	R6K ori, Tn5, Amp ^R , Tet ^R ,	This study
	P_{mamG} -mam $J\Delta 396$ -426-GFP	
pBAM-Tet- <i>mamJ∆407-426-GFP</i>	R6K ori, Tn5, Amp ^R , Tet ^R ,	This study
D 1 1 4 7 4 7 4 7 4 7 4 7 6 CFD	P_{mamG} -mam $J\Delta 407$ - 426 - GFP	TT1 1 1
pBAM-Tet- <i>mamJ</i> ∆417-426-GFP	R6K ori, Tn5, Amp ^R , Tet ^R ,	This study
pBAM-Tet-GFP- <i>mmsF</i>	P_{mamG} - $mamJ\Delta 417$ - 426 - GFP $R6K$ ori, Tn5, Amp ^R , Tet ^R , P_{mamG} - GFP - $mmsF$	This study
•		This study
pBAM-Tet-GFP-mamF	R6K ori, Tn5, Amp ^R , Tet ^R , P _{mamG} -GFP-mamF	This study
pBAM-Tet-mmsF	R6K ori, Tn5, Amp ^R , Tet ^R , P _{mamG} -mmsF	This study
pBAM-Tet-mamF	R6K ori, Tn5, Amp ^R , Tet ^R , P _{mamG} -mamF	This study
pBAM-Tet-mmxF	R6K ori, Tn5, Amp ^R , Tet ^R , P _{mamG} -mmxF	This study
pBAM-Tet- <i>mmsF</i> D34N, D36N, D37N, E38N	R6K ori, Tn5, Amp ^R , Tet ^R , P _{mamG} -mmsF	This study
pBAM-Tet- <i>mmsF</i> D34N, R35Q, D36N, D37N, E38N	R6K ori, Tn5, Amp ^R , Tet ^R , P _{mamG} -mmsF	This study
pBAM1-mmsF	R6K ori, Tn5, Amp ^R , Kan ^R , P _{mamG} -mmsF	This study
pBAM1-mamF	R6K ori, Tn5, Amp ^R , Kan ^R , P _{mamG} -mamF	This study
pBAM1-mmxF	R6K ori, Tn5, Amp ^R , Kan ^R , P _{mamG} -mmxF	This study
pBAM2-His ₆ -mmsF	p15A ori, Tn5, Amp ^R , Kan ^R P _{mamG} -6His-mmsF	This study
pBAM2-MSR-1_09970-mCherry	p15A ori, Tn7, Amp ^R , Cam ^R ,	This study
•	P_G -MSR-1_09970-mCherry	·
pBAM2-MSR-1_01270-mCherry	p15A ori, Tn7, Amp ^R , Cam ^R ,	This study
	P_G -MSR-1_01270-mCherry	
pBAM2-MSR-1_21580-mCherry	p15A ori, Tn7, Amp ^R , Cam ^R ,	This study
T. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	P_G -MSR-1_21580-mCherry	
pBAM2-MSR-1_03900-mCherry	p15A ori, Tn7, Amp ^R , Cam ^R ,	This study
DAMO 1224 426 Ch	P _G -MSR-1_03900-mCherry	TPL: 1
pBAM2-mamJ334-426-mCherry	p15A ori, Tn7, Amp ^R , Cam ^R ,	This study
pBAM160-mamA-GFP	P _{lac} -mamJ334-426-mCherry R6K ori, Tn5, Amp ^R , Kan ^R , P _{tet} -mamA-GFP	17
pBAM160-mamA-GIT pBAM160-mCherry-mamK	R6K ori, Tn5, Amp ^R , Kan ^R , P _{tet} -mCherry-	This study
pbAW1100-menerry-mamk	mamK	Tills study
pBAM160-mmeA-mCherry	R6K ori, Tn5, Amp ^R , Kan ^R ,	This study
pBriviroo nimeri menerry	P_{tet} -mmeA-mCherry	Tills study
pBAM160-mScarlet-I-mamY	<i>R6K</i> ori, Tn5, Amp ^R , Kan ^R ,	This study
1	P _{tet} -mScarlet-I-mamY	,
pORFM-GalK-MCS	universal in-frame deletion/in-frame fusion	18
•	vector for GalK counterselection;	
	npt galK Tet ^R mobRK2	
pOR-∆ <i>mamR</i>	pORFM-GalK-MCS with	This study
	$\Delta mamR$ deletion construct	
pOR-∆ <i>mamJ</i>	pORFM-GalK-MCS with	This study
on norm	$\Delta mamJ$ deletion construct	era i
pOR-mamB-GFP	pORFM-GalK-MCS with	This study
	mamB-GFP insertion construct	

Supplementary Table 3. PCR Primers used in this study.

Oligonucleotides	Sequence	Source
dmmxF_do_for	CCGAAGCCGTCTGATGCTGAACGGATCCGCCGCCC	This study
dmmxF_do_rev	CATCATCGGCAAGGAGGCGCAGA	This study
dmmxF_up_rev	GGATCCGTTCAGCATCAGACGGCTTCGGCCGCAGC	This study
dmmxF_up_for	CCGCAGCTCCCGCAGCTGGC	This study
MamR_Kpn_for	GGTACCATGATTTGGACAGCAGTGATC	This study
MamR-GFP_SacI_rev	GAGCTCTCACTTATACAGCTCGTCCATGC	This study
MmsF_Kpn_for	GGTACCATGGTTGAAGCAATCCTTCG	This study
MamF_Sac_rev	GAGCTCTCAGATCAGGGCGACTACAT	This study
MmeA_NdeI_for	CATATGGCCCTGAAGACGACCCATGC	This study
MmeAoStop_SacI_rev	GAGCTCGCGAACGTAGACCTGCACCT	This study
mms6_C-term2_for	AGGCTGTCGGCGGCACCATC	This study
mms6_C-term2_rev	GGGACAGCGCGCGCAG	This study
mamG_C-term_for	AGGCTGTCGGCAGCACCTTG	This study
mamG_C-term_rev	GAGCAGGCTCGGCGGAGGC	This study
mamD_C-term2_for	AGGCCGCTGGCAGCGCCATG	This study
mamD_C-term2_rev	GTTCCTCGCCGACAGCCGCCAGAA	This study
mms5_C-term2_for	AGACCAGCAGCAGCGCCATGCT	This study
mms5_C-term2_rev	GGACGCCTTCGGCCGCAGC	This study
MmsF_for	AGGTTGAAGCAATCCTTCGG	This study
MmsF_rev	GGATCCGGTCGGCCACCCA	This study
MamF_for	AGGCCGAGACTATTTTGATC	This study
MamF_rev	GGATCAGGGCGACTACATG	This study
MmxF_for	AGATCGCACAGACTGTCGGG	This study
MmxF_rev	GGATGCGGTCGCGATATA	This study
MamY_oSTop_Kpn_rev	GATCGGTACCCGCATCGGAGATGGGGGTT	This study
MamY_Nde_for	CGTACATATGTTGATGAACTTTGTCAACAATG	This study
mamJ_1-80.FOR	GTAACATATGGCAAAAAACCGGCGTGATCGC	This study
mamJ_335-392.FOR	GCCTCATATGACCCGCCAGCCTAACAAGAT	This study
mamJ_335-392.REV	GCTGGGTACCTTTATCTTATCTTCAGCATCACAT	This study
mamJ_1-80.REV	ACGAGGTACCGTCCTGGGAACGAATGGG	This study
MamJ-E294_NdeI_for	GATCAGCATATGGAGAGCGTTGCATCAGCG	This study
MamJ-E333_KpnI_rev	GCTACGGGTACCTTCGACCGCCACAGCAAC	This study
MamJ-A334_NdeI_for	GATCAGCATATGGCCACCCGCCAGCCTAAC	This study
MamJ-F364_KpnI_rev	GCTACGGGTACCGAAAATCCCCCCCAGAAGGT	This study
MamJ-G365_NdeI_for	GATCAGCATATGGGCGTCGCCGGATCGGCG	This study
MamJ-N395_KpnI_rev	GCTACGGGTACCATTGCTTCCAACGAGGCGGCCTCC	This study
MamJ-V396_NdeI_for	GATCAGCATATGGTGGTCGCCGGGACGCGC	This study
MamJ-CAR_for	GATCAGCATATGCCTGTGCCGGTTGCCGATC	This study
MamJ-CAR_rev	GCTACGGGTACCTTCGACCGCCACAGCAAC	This study
MamJ1-80_NdeI_rev	GCTGACATATGGTCCTGGGAACGAATGGG	This study
MamJ344S_for	TCAGTTAAGAAGCGCGCCC	This study
MamJ349A_for	GCCCGGTTCAGGAAGTTC	This study
MamJ354V_for	GTTCCCGTGGAAGACCTTCTG	This study
MamJ359L_for	CTTCTGGGGGGATTTTCG	This study
Kpn-10G_for	GGTACCGGAGGCGGAGGCG	This study
MamJ416S_rev	CGATGAACAACTACCGCAACTTACCTC	This study This study
MamJ406T_rev	AGTTTGCGCCAACCGGCGC	This study
MamJ386V_rev	GACCACTCCATCGACGAATCCG	This study

Oligonucleotides	Sequence	Source
MamJ376T_rev	AGTGAACACCCCGCACCG	This study
6His-MmsF-NdeI_for	AATTCATATGCATCACCACCATCATCACGTTGAAGCAATCCTT CGGAGC	This study
6His-MamF-NdeI_for	AATTCATATGCATCACCACCATCATCACGCCGAGACTATTTTG ATC	This study
MmsF_SphI_rev	TAAGGCATGCTCAGATCCGGTCGGCCACCCA	This study
MamF_SphI_rev	TAAGGCATGCTCAGATCAGGGCGACTACATG	This study
MamJS410_SmaI_rev	CCCGGGCACTTACCTCGATAGTTTGCGC	This study
MamJA334_for	AGGCCACCCGCCAGCCTAAC	This study
MamJ_rev	GTTTATTCTTATCTTCAGCATCACATTTCG	This study
Mms5_SacI_rev	GAGCTCTCAGACGGCTTCGGCCGC	This study
Mms5_KpnI_for	GGTACCATGGCTGGTGGGACCGCG	This study
MmxF_SacI_rev	GAGCTCTCAGATGCGGTCGGCGAT	This study
MmxF_KpnI_for	GGTACCATGATCGCACAGACTGTCG	This study
MamF_KpnI_for	GGTACCATGGCCGAGACTATTTTG	This study
MamF_SacI_rev	GAGCTCTCAGATCAGGGCGACTAC	This study
MmsF_SacI_rev	GAGCTCTCAGATCCGGTCGGCCAC	This study
MmsF_KpnI_for	GGTACCATGGTTGAAGCAATCCTTCG	This study

Supplementary Table 4. Media and buffers used in this study.

Component	Final concentration
MSR-1 flask standard medium (FSM) pH 7	
HEPES	10 mM
Potassium lactate	12 mM
NaNO ₃	4 mM
KH_2PO_4	0.74 mM
$MgSO_4 \cdot 7 H_2O$	0.60 mM
Fe(III)-citrate	50 μΜ
Yeast extract	0.01% (w/v)
Soybean peptone	0.3% (w/v)
MSR-1 soft agar pH 7	. ,
HEPES	10 mM
Potassium lactate	1.5 mM
NaNO ₃	4 mM
KH_2PO_4	0.74 mM
$MgSO_4 \cdot 7 H_2O$	0.60 mM
Fe(III)-citrate	50 μΜ
Yeast extract	0.01% (w/v)
Soybean peptone	0.3% (w/v)
Agar	0.2% agar (w/v)
Agar for Bacterial two-hybrid assays	0.270 agai (11717)
X-Gal	$40~\mu \mathrm{g}~\mathrm{mL}^{-1}$
IPTG	0.5 mM
Amicillin	100 µg mL ⁻¹
Kanamycin	50 μg mL ⁻¹
LB medium for Bacterial two-hybrid assays supplemented with	30 μg IIIL
IPTG	0.5 mM
Amicillin	100 µg mL ⁻¹
Kanamycin	50 μg mL ⁻¹
M 63 Agar for Bacterial two-hybrid assays	30 μg niL
X-Gal	40 μg mL ⁻¹
IPTG	0.5 mM
Amicillin	50 μg mL ⁻¹
	25 μg mL ⁻¹
Kanamycin Maltose	23 μg IIIL 0.2% (w/v)
Buffer W pH 7.4	0.270 (W/V)
	20 mM
HEPES EDTA	20 mM
EDTA Duffer B att 7.4	5 mM
Buffer R pH 7.4	50 M
HEPES EDTA	50 mM
EDTA	1 mM
PMSF	0.1 mM
Buffer E pH 7.4	1034
HEPES	10 mM
EDTA P. 65 G. W.7.4	1 mM
Buffer S pH 7.4	40.55
HEPES	10 mM
EDTA	1 mM
NaCl	200 mM

Component	Final concentration
5x SDS sample buffer pH 6.8	
SDS	10% (w/v)
3-mercaptoethanol	25% (v/v)
Glycerol	25% (v/v)
Bromophenol blue	0.05%
Γris/HCl	0.3 M
2x SDS sample buffer pH 6.8	
SDS	0.2% (w/v)
DTT	200 mM
Glycerol	20% (v/v)
Bromophenol blue	0.2%
Гris	100 mM
Coomassie staining solution	100 mwi
Methanol	50% (v/v)
Acetic acid	10% (v/v)
Coomassie R-250	• • •
	0.1% (w/v)
Coomassie washing solution	100/ / / \
Methanol	10% (v/v)
Acetic acid	7% (v/v)
Silver-stain fixing solution	40
Methanol	40% (v/v)
Formaldehyde	36.5% (v/v) of 37% (w/v)
Silver-stain incubation solution	
Thiosulfate	0.02% (w/v)
Silver-stain impregnation solution	
AgNO ₃	0.1% (w/v)
Silver-stain developing solution	
$Na_2S_2O_3$	0.02% (v/v) of $0.02%$ (w/v)
Na_2CO_3	3% (w/v)
Formaldehyde	0.135% (v/v) of 37% (w/v)
Silver-stain stopping solution	
EDTA	1.86% (w/v)
Buffer E for protein complex purification supplemented with	
NaCl	50 mM
LMNG	0.1% (w/v)
Buffer E for protein complex purification supplemented with	
NaCl	50 mM
LMNG	0.1% (w/v)
Extraction buffers	
- NaCO ₃ pH 11.3	100 mM
- Buffer E supplemented with SDS	1%
- CAPS-NaOH pH 11	0.1 M
- Glycine-HCl pH 2.5	0.1 M
- HEPES	10 mM
EDTA pH7.4	1 mM
NaCl	1M
Precipitation buffer	
r	
Acetone	90% (v/v)

Component	Final concentration
NaCl	10 mM
Buffer 1 pH 7.4	
HEPES	10 mM
EDTA	1 mM
NaCl	50 mM
PMSF	0.1 mM
Triton X-100	0.5% (v/v)
Buffer 2 pH 7.4	
HEPES	10 mM
EDTA	1 mM
NaCl	50 mM
PMSF	0.1 mM
Triton X-100	0.1% (v/v)
Buffer A	
Acetic acid	0.1% (v/v)
Buffer B	
Acetic acid	0.1% (v/v)
Acetonitrile	99.9% (v/v)

Supplementary References

- 1. Scheffel, A., Gärdes, A., Grünberg, K., Wanner, G. & Schüler, D. The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in *Magnetospirillum gryphiswaldense* but regulate the size of magnetosome crystals. *J. Bacteriol.* **190,** 377–386, (2008).
- 2. Lohße, A. *et al.* Functional analysis of the magnetosome island in *Magnetospirillum* gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. *PLoS One* **6**, e25561, (2011).
- 3. Raschdorf, O., Müller, F. D., Pósfai, M., Plitzko, J. M. & Schüler, D. The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in *Magnetospirillum gryphiswaldense*. *Mol. Microbiol.* **89**, 872–886, (2013).
- 4. Almagro Armenteros, J. J. *et al.* Signal P 5.0 improves signal peptide predictions using deep neural networks. *Nat. Biotechnol.* **37**, 420–423, (2019).
- 5. Richter, M. *et al.* Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. *J. Bacteriol.* **189**, 4899–4910, (2007).
- 6. Möglich, A. An Open-Source, Cross-Platform Resource for Nonlinear Least-Squares Curve Fitting. *J. Chem. Educ.* **95,** 2273–2278 (2018).
- 7. Ducret, A., Quardokus, E. M. & Brun, Y. V. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. *Nat. Microbiol.* **1**, 16077 (2016).
- 8. Schultheiss, D., Kube, M. & Schüler, D. Inactivation of the flagellin gene *flaA* in *Magnetospirillum gryphiswaldense* results in nonmagnetotactic mutants lacking flagellar filaments. *Appl. Environ. Microbiol.* **70**, 3624–3631, (2004).
- 9. Dziuba, M. V., Zwiener, T., Uebe, R. & Schüler, D. Single-step transfer of biosynthetic operons endows a non-magnetotactic Magnetospirillum strain from wetland with magnetosome biosynthesis. *Environ. Microbiol.* **22,** 1603–1618, (2020).
- 10. Scheffel, A. *et al.* An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. *Nature* **440**, 110–114 (2006).
- 11. Lohße, A. *et al.* Genetic dissection of the *mamAB* and *mms6* operons reveals a gene set essential for magnetosome biogenesis in *Magnetospirillum gryphiswaldense*. *J. Bacteriol.* **196**, 2658–2669, (2014).
- 12. Toro-Nahuelpan, M. *et al.* MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. *Nat. Microbiol.* **4,** 1978–1989, (2019).
- 13. Zwiener, T. *et al.* Identification and elimination of genomic regions irrelevant for magnetosome biosynthesis by large-scale deletion in *Magnetospirillum gryphiswaldense*. *BMC Microbiol.* **21**, 65, (2021).
- 14. Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. *PNAS* **95**, 5752–5756, (1998).
- 15. Uebe, R. *et al.* The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. *Mol. Microbiol.* **107**, 542–557, (2018).

- 16. Kolinko, I. *et al.* Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. *Nat. Nanotechnol.* **9,** 193–197, (2014).
- 17. Pfeiffer, D. *et al.* A bacterial cytolinker couples positioning of magnetic organelles to cell shape control. *PNAS* **117**, 32086–32097, (2020).
- 18. Raschdorf, O., Plitzko, J. M., Schüler, D. & Müller, F. D. A tailored *galK* counterselection system for efficient markerless gene deletion and chromosomal tagging in *Magnetospirillum gryphiswaldense*. *Appl. Environ. Microbiol.* **80**, 4323–4330, (2014).