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Abstract: A hydrogel is a polymeric three-dimensional network structure. The applications
of this material type are diversified over a broad range of fields. Their soft nature and
similarity to natural tissue allows for their use in tissue engineering, medical devices, agriculture,
and industrial health products. However, as the demand for such materials increases, the need to
understand the material mechanics is paramount across all fields. As a result, many attempts to
numerically model the swelling and drying of chemically responsive hydrogels have been published.
Material characterization of the mechanical properties of a gel bead under osmotic loading is difficult.
As a result, much of the literature has implemented variants of swelling theories. Therefore, this
article focuses on reviewing the current literature and outlining the numerical models of swelling
hydrogels as a result of exposure to chemical stimuli. Furthermore, the experimental techniques
attempting to quantify bulk gel mechanics are summarized. Finally, an overview on the mechanisms
governing the formation of geometric surface instabilities during transient swelling of soft materials
is provided.

Keywords: hydrogels; superabsorbent polymers; osmotic swelling; finite deformation; kinetics;
thermodynamics; hydrogel mechanics; surface instabilities; chemically-responsive

1. Introduction

A hydrogel is a three-dimensional network structure composed of cross-linked polymer chains
(see Figure 1A), which has the ability to absorb a large volume of solution. This can be attributed
to hydrophilic residues, which are found on the monomer chains or as lateral terminal chains, or to
counter-ions in the network, resulting in an associated osmotic pressure. The cross-links resist the
deformation caused by fluid absorption and stop the material from dissolving into the swelling solution.
Hydrogels can either be synthetic or natural. Natural gels, such as gelatine, agar, polysaccharides,
bacterial biofilms, and extra-cellular matrices, can be found throughout all areas of life and nature [1,2].
However, synthetic polymers have only existed since the 1960s [3]. Since then, the field of synthetic
hydrogels has exploded, with the number of publications on the topic increasing each year. As a result
of the ability to tailor synthetic polymers to a given application, they have often replaced natural
polymers in academia and industry [4]. Hydrogels are generally created through a process known
as gelation. This process consists of the linking of macro-molecular monomer chains in order to
create progressively larger branched chains. The framework of these polydisperse soluble branched
chains is called ‘sol’. The linking process continues to increase the size of the network with decreasing
solubility to form a polymer with finite branched chains. This formation to a structured network is
known as the ‘sol–gel’ transition [5]. Gelation can be classed into two separate categories—physical
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or chemical—depending on the type of interactions. Chemical gelation refers to the formation of
covalent bonds between the branched chains and always results in a strong gel (i.e., permanent and
irreversible). Physical gelation can result in either a strong or weak gel, and consists of physical
bonds (i.e., interactions such as ionic, polar, or induced dipole interactions) between the polymer
chains [6]. A particular type of hydrogel, known as superabsorbent polymers (SAP), has the ability to
swell up to 100 times its original volume [7]. These structures are typically synthesized through the
radical polymerization of monomers. Chemical cross-linking of these monomer chains is implemented
through co-polymerization of multi-functional monomers into the network [8]. This review will
consider both chemically and physically cross-linked gels.

Hydrogels can be grouped into various material classifications, such as by preparation techniques,
cross-linking type, degradability, and response to name a few [1,4,9]. An in-depth review of each of
the various classification groups is outside the scope of this article; however, Figure 1B summarizes
the ‘response’ class of hydrogels. These gels respond mechanically to either chemical or physical
stimuli. The chemically responsive class responds to changes in ionic strength, pH, composition,
and molecular species in the external solution/environment (many SAPs are chemically responsive
hydrogels). This response is generally a swelling or shrinking of the material (i.e., a volumetric
change), also called deformation. Many attempts to numerically replicate such deformation have been
published [10,11]. However, due to the difficulty of mechanically characterizing the strains of the
transient swelling, there exist a wide variety in the theories and constitutive models which have been
implemented. Furthermore, during transient swelling, the surface of the gel is often observed to buckle
and form a wrinkling pattern. Again, experimentally characterizing this phenomenon quantitatively is
difficult, as a result of its seemingly random nature.
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Figure 1. (A) Material structure of a superabsorbent polymer (sodium neutralized polyacrylic acid).
(B) Response classification of hydrogels, separated into physically and chemically responsive gels and
including the stimuli for each. (C) Schematic of dry gel (left) exposed to a swelling solution, showing
the transience of the process (including surface instabilities) and finally coming to equilibrium (right).
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The ability to influence the characteristics of hydrogels allows for a broad range of applications
which are extensive across many diverse fields [12]. They are used widely in drug delivery systems
and tissue engineering scaffolds in medicine, as well as being key in the design of smart biodevices
and biosensors [13,14]. In agriculture, they have been studied for use in moisture retention in soil and
have also been implemented in various hygiene products (especially superabsorbents) [8,15,16]. As the
prerequisite of these applications is to control the rate and magnitude of swelling, an understanding of
gel mechanics at large deformation is paramount in ensuring the efficacy of the products.

Therefore, this article focuses on reviewing the current literature surrounding the deformation
mechanics of chemically responsive hydrogels. This includes the computational models of hydrogel
free swelling, as well as the experimental techniques used to quantify gel deformation. A review on
the mechanisms governing surface instabilities during transient swelling will also be conducted.

2. Hydrogel Swelling Theory

Generally, chemically responsive hydrogel swelling, especially for superabsorbent polymers,
is triggered by two mechanisms. First, when the system is exposed to an aqueous solution, water
molecules are attracted to the polymer chains across the gel surface in a process known as mixing.
Secondly, a Donnan osmotic pressure is generated by the difference between the concentration of
counter-ions inside the gel and concentration of an ionic compound in the external aqueous solution.
As a result, fluid moves across the semi-permeable gel boundary. The direction of fluid flow depends
on the sign of the sum of the osmotic pressure difference and mixing pressures. If the chemical
potential of the fluid outside is greater than inside, the gel swells; on the other hand, if the chemical
potential of the fluid inside is greater than outside, the gel shrinks. The magnitude of swelling or
shrinking is a function of the size of the osmotic pressure difference, the mixing pressure, and the
stiffness of the macro-molecular network. The ability to theoretically model the interaction between
this osmotic pressure difference, the mixing pressure, and its effect on the deformation of the gel is key
in implementing an accurate numerical model.

As with all theoretical models, assumptions about the system have to be made. Here, an ideal
elastomeric gel is taken to have two main assumptions: The first assumption, known as molecular
incompressibility, states that the volume of a gel system is taken as the sum of the dry gel volume
and the absorbed solvent volume (Equation (1)) [17]. The second assumption, known as the
Frenkel–Flory–Rehner hypothesis, states that the Helmholtz free energy of a hydrogel system is
the sum of three parts: The energy of the mixing of the solvent and the polymer (Fmixing), the energy
associated with the elastic stretching of solid matrix (Felastic), and finally the energy of the ionic osmosis
(Fion) (Equation (2)) [18–22].

∑
α=s,p,+,−

φα = 1, (1)

∆Ftotal = ∆Fmixing + ∆Felastic + ∆Fionic, (2)

where φα is the volume fraction of the constituent α (where α is s for solvent, p for polymer, + for positive
ions, and − for negative ions). Several studies have shown that the perfect seperability of the energies
defined by the Flory–Frenkel–Rehner (Equation (2)) theory is not exact [23–25]. However, an alternative
to separating the free energies of the system has not been published and, therefore, for the purpose of
the computational models outlined below, Equation (2) is assumed to be true [21].

The mixing and ionic energy terms are the driving forces of gel swelling, while the elastic term
restricts the gel from extending indefinitely and eventually balances the swelling terms to allow the
gel to reach equilibrium. The driving forces of the swelling (Πswelling) can then be denoted by their
osmotic pressures (Equation (3)):

Πswelling = Πionic + Πmixing. (3)
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There have been many published theories coupling the chemical forces to the mechanical response
of gels [26,27]. Generally, they draw upon two different research traditions: Flory–Rehner theory and
mixture theory. Flory–Rehner theory is more concerned with the micro-structure of the gel and how
individual polymer chains effect the system, whereas mixture theory assumes the continuum of each
constituent of the mixture is always occupied at every point in the system. Therefore, mixture theory
has more of an emphasis on the macro-structure of the gel and tends to average out the micro-structure
considerably more than Flory–Rehner theory. Hence, the elastic energy of Flory–Rehner theory
is described by statistical mechanics, while mixture theory is described by continuum mechanics.
These two frameworks are similar in their use of the swelling pressures (Πion and Πmix), but differ
substantially in their theoretical description of the elastic energy.

2.1. Mixing Energy

When a hydrophilic polymer comes into contact with an aqueous solution, the solvent molecules
are attracted towards the polymer through a weak van der Waals force in a process called mixing (i.e.,
mixing of polymer and solution). The energy associated with the mixing of this solution–polymer
blend can be described by the Flory–Huggins lattice theory of polymer solutions [28,29]. This theory
assumes that the total number of lattice sites in a rigid lattice frame (N0) are comprised of distributed
solvent molecules (Ns) and repeat polymer units (Npr):

N0 = Ns + Npr. (4)

We define the Flory–Huggins approximation of the entropy (∆smix) associated with the mixing of
polymer solution as

∆smix =
∆Smix

N0
≈ −kB

[
φp

(r.vr)
ln(φp) +

φs

vs
ln(φs)

]
, (5)

where kB is the Boltzmann constant and vr,s are the volumes of a repeat polymer unit and a solvent
molecule, respectively. The volume fractions of solvent (s) and polymer (p) are denoted as

φs =
Nsvs

(Nsvs + Nprvr)
, (6)

φp =
Npvp

(Nsvs + Nprvr)
. (7)

The Gibbs free energy associated with mixing (∆Gmix) depends on both the entropy (∆Smix) and
the internal energy associated with the enthalpy (∆Umix), taking into account that the polymer solution
mixing can either be an exothermic or endothermic reaction:

∆Gmix ≈ ∆Fmix = ∆Umix − T∆Smix. (8)

When the volume change from the mixing of polymer and solvent is negligible, the Gibbs free
energy can be approximated as the Helmholtz free energy (∆Fmix). So far, the solvent and polymer
terms have been written separately but, in order to take into account the actual mixing of the two,
an interaction parameter must be defined. This is called the Flory–Huggins interaction parameter, χ,
which is related to the enthalpy in the mixture by

χp,s =
∆Umix

kBTNsφp
. (9)

In order to derive Equation (9), referring to the three-dimensional lattice in Figure 2, the total
number of interactions any given molecule within the lattice experiences is equal to six, assuming
only interactions in the principal x, y, and z directions are considered. Therefore, the total number
of contacts between a polymer lattice site and its polymer neighbors is z − 4, where z is the total
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number of interactions (i.e., z = 6). Given that the probability that a given molecule within the lattice
is a solvent molecule is equal to the solvent volume fraction, the total number of polymer to solvent
interactions (Np,s) within the lattice is

Np,s = (z− 4)rNpφs. (10)

Figure 2. Visual representation of Equation (4) showing a three-dimensional lattice of a polymer
solution mixture. N0, total number of lattice sites (all cubes): Ns, number of solvent molecules (empty
cubes); and Npr, number of polymer repeat units (cubes with black dots connected with black lines) [30].

The change in energy for the formation of a polymer to solvent interaction (∆εp,s) is defined as

∆εp,s = εp,s −
(εp,p + εs,s)

2
, (11)

where the ε terms are the energies associated with polymer–solvent (p, s), polymer–polymer (p, p),
and solvent–solvent (s, s) interactions. The change of internal energy associated with the enthalpy of
mixing with the lattice (∆Umix) can be defined as

∆Umix = ∆εp,s(z− 4)rNpφs = ∆εp,szNsφp. (12)

Replacing ∆εp,s with kBTχp,s results in the final form of Equation (9). Subbing Equation (9) and
Equation (5) into Equation (8) results in the Helmholtz free energy in the polymer solution:

∆Fmix = kBT
[

φp

rvr
ln(φp) +

φs

vs
ln(φs) +

χp,sφsφp√
vrvs

]
. (13)

Differentiating Equation (13) with respect to the number of solvent molecules (Ns) results in the
partial molar free energy associated with mixing (or the chemical potential), resulting in

∆µs =
∂∆Fmix

∂Ns
= RT

[
ln(1− φp) + (1− 1

r
)φp + χp,sφ2

p

]
. (14)

Finally, utilising the relationship between the chemical potential and osmotic pressure, the mixing
pressure can be calculated as

Π = −µs

Vs
= −RT

Vs

[
ln(1− φp) + (1− 1

r
)φp + χp,sφ2

p

]
, (15)
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where Vs is the molar volume of the solvent. Assuming infinite repeat units r within the polymer
solution, the mixing pressure is simplified to

Πmix = −RT
Vs

[
ln(1− φp) + φp + χp,sφ2

p

]
. (16)

As the Flory–Huggins interaction parameter is dependent on both temperature and solvent
composition (Equation (9)) and is normally calculated empirically, it is more appropriate to denote it
by means of a series [31,32]:

χp,s = χ0 + χ1φp + χ2φ2
p + ... (17)

This leads to the most common form of the Flory–Huggins mixing pressure equation,

Πmix = −RT
Vs

[
ln(1− φp) + φp + χ0φ2

p + χ1φ3
p

]
. (18)

The above derivation of the mixing energy according to Flory–Huggins theory assumes molecular
incompressibility (Equation (1)) and random distribution of the polymer and solvent lattice sites.
Equation (18) can be implemented into both Flory–Rehner and mixture theories.

2.2. Ionic Energy

The ionic energy is most prominent in ionized hydrogels (hydrogels with an attached charge to
the polymer chains) where there is a positive counter-ion concentration inside the gel, resulting in
the generation of an osmotic pressure with the external solution. This external solution is assumed to
be infinitely large, such that its concentration is prescribed and is kept at constant temperature and
pressure. The osmotic pressure difference between inside and outside the gel drives fluid across the
semi-permeable external membrane. Assuming that the translational entropy of the ions is the only
contributor to the osmotic pressures, the ionic pressure is denoted as

Πion = kBT ∑
i

(
nin

i − nout
i

)
, (19)

where ni is the concentration of species i inside the gel (in) and in the external solution (out). The molar
concentration (ci) of each species can be calculated by

ci =
ni

NA
. (20)

Subbing Equation (20) into Equation (19) for positive (+) and negative (−) ions results in the
ionic pressure, in terms of molar concentration of the counter-ions and the ionic composition of the
external solution:

Πion = RT [(c+,in + c−,in)− (c+,out + c−,out)] , (21)

where R is the universal gas constant and the internal concentrations can be calculated from
Donnan equilibrium:

(c+,in + c−,in) =
√
(cCI)2 + 4(cext)2, (22)

where cCI is the concentration of osmotically active counter-ions inside the gel. As mixture theory
averages out the micro-structure, this description of the ionic energy is sufficient for continuum
theories. However, when delving into the micro-structural effects on the ionic energy, alternative
descriptions can be used [21]. Due to the difficulty of generating a correct model of the micro-structure
of the material, as well as defining experimental values for those models (e.g., ionized groups per
chain, number of monomer chains, electrostatic repulsion between chains, and so on), significant
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retro-engineering is necessary to describe the condition being assessed [24,33–37]. Although significant
variation occurs between the models, even in non-equilibrium transient states of swelling, Donnan
equilibrium is acceptable for gels, as the characteristic times of ionic diffusion, h2/D+ and h2/D−,
is generally much smaller than the characteristic time of hydraulic pressure diffusion of the solvent,
h2/KE (h = characteristic distance, K = hydraulic permeability, and E = Young’s modulus) [11].
This hints that Equation (19) is sufficient in describing the ionic pressure in gels for both Flory–Rehner
and mixture theories.

2.3. Elastic Energy

According to Equation (3), the ionic and mixing energies are responsible for the swelling of the
gel. In order to counteract this swelling and cease the deformation of the polymer chains, the elastic
energy acts as the balancing force. How this energy is described is the biggest discrepancy between
Flory–Rehner and mixture theories.

2.3.1. Statistical Mechanics: Flory–Rehner Theory

The Flory–Rehner description of the elastic energy in a cross-linked network originates from the
rubber elasticity theory of hyperelastic materials, which relies on two main assumptions: (i.) The free
energy of the cross-linked network associated with its elastic response is the summation of the elastic
energy of the individual chains within the network, and (ii.) the chains within the network follow a
normal Gaussian distribution [30]. The aim of this statistical method to deduce the mechanics of the
model is to relate the molecular structure of the gel network to its elastic macroscopic properties [38].
There are several important molecular characteristics that influence these elastic properties most.
These characteristics include the concentration of elastic chains in the gel, the cross-link functionality,
and network imperfections. As an in-depth review of the molecular characteristics of a gel network is
outside the scope of this review, the reader is directed to the comprehensive review on this topic in [39].
The original definition for the change in the elastic free energy (Felastic), according to Flory–Rehner,
was taken as a function of the temperature and the change of entropy (∆Sd) within the system, with
respect to its deformation:

∆Felastic = −T∆Sd, (23)

with the entropy of deformation derived as

∆Sd = kBNp(α
2 +

2
α
− 3)/2, (24)

where Np is the number of chains in the system and α is the deformation of the system, calculated as

α =

(
φp,0

φp

)1/3
. (25)

Since this original derivation, many statistical mechanics models for cross-linked networks have
been proposed. These include phantom and network models (which only consider the influence of
the individual network chains), as well as constrained junction fluctuation, diffused constraint, tube,
and slip-tube models (which also take into account the interactions between chains). An in-depth
review of each of these network models is outside the scope of this study, and more detailed information
can be found in the vast literature on the subject [39–43].

However for the purpose of comparison to the continuum approach, the most basic of network
model (the affine model) is described. The affine model assumes that the average displacements of the
junctions (cross-link sites) transform affinely and, as a result, the elastic free energy is defined as

Felastic(a f f )/kBT =

(
Np

2V0

)
(λ2

1 + λ2
2 + λ2

3)− (µel/V0)ln(λ1λ2λ3), (26)
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where kB is the Boltzmann constant, T is the absolute temperature, V0 is the original volume of the
network, µel is the number of elastic junctions in the network, and λ1,2,3 are the stretches per chain in
the principal directions [44–46]. The stress in the system can, then, be related by differentiating the
elastic free energy with respect to the principal stretches:

σe f f (i) =
λi
J

∂Felastic(a f f )

∂λi
, (27)

where i = 1, 2, 3, σe f f (i) denotes the effective stresses in the principal directions, and J denotes the
volume change (J = λ1λ2λ3).

Obviously, the limiting factor of this method of mechanically characterizing the elastic response
of the solid matrix through statistical relations to molecular parameters is the calculation of these
parameters. Combining the selection of mixing, ionic, and elastic energy equations results in a full
description of the free energy within a swelling model. The application of these sets of equations to
the coupling of deformation and fluid transport in hydrogels came several decades after the initial
derivation of the Flory–Rehner theory [47].

Although the Flory–Rehner theory is well-defined and has been used in a plethora of studies,
the difficulty of understanding the micro-structural deformation has led to a variety of models (as
mentioned above). However, in order to relate the micro-structure back to the overall mechanical
load, continuum mechanics has to be utilized. So, although Equation (26) defines the Gaussian-chain
elastic response, relating the energy to gel swelling is completed through a continuum equation for
the calculation of the effective stress, Equation (27). This has been present in several studies on the
topic [17,48–50]. A large deformation model has been developed to include a Terzaghi decomposition
of the stress in the system into the effective stress on the solid matrix and the pressure of the fluid in the
pores [51–54]. This model was, then, applied to the free swelling of spherical hydrogels under osmotic
loading [10]. During transient swelling, the deformation was shown to be strongly inhomogeneous,
with the outer surface swelling first. The fluid volume fraction also increased at the surface, in order to
coincide with the deformation gradient. The result of this gradient was the total azimuthal stress at the
surface turning compressive, which has been strongly linked with the formation of surface instabilities.

Overall, Flory–Rehner theory utilizing statistical mechanics has shown an ample capability for
describing the deformation seen in swelling hydrogels.

2.3.2. Continuum Mechanics: Mixture Theory

Biot theory (also known as poroelasticity theory) lies at the core of continuum mechanics in
porous solids and, therefore, a basic understanding of the approach is required. Originally derived
for three-dimensional consolidation in soils [52], it has been altered to describe the non-linear finite
deformation of fluid-saturated porous media [55]. The theory models the deformation of a solid with
respect to fluid flow in the Lagrangian frame and vice versa. Biot has highlighted the importance of
the Langrangian description, as the solid matrix controlling the translation and rotation of the adjacent
pores (and, therefore, the material description) has proven to be essential. The deformation is defined
by standard Finite Elasticity theory [56,57] as the deformation tensor (F), which is related to the strain
through the right Cauchy–Green strain (C):

F =
∂x
∂X

, (28)

C = FTF, (29)

J = det(F). (30)
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where x and X are the spatial coordinates in the deformed and reference state, respectively, and J is
the Jacobian of the deformation tensor, denoting the volume change of the system with respect to the
reference frame. The first and second Piola–Kirchhoff stresses are used as measures. First, the total
stress in the system (σtotal) needs to be defined, and is split into the effective stress acting on the solid
matrix (σe f f ) and the pressure on the fluid in the pores (p) through Terzaghi’s decomposition [54].
The total stress is symmetric and is the measure of stress in the Eulerian description:

σtotal = σe f f − pI. (31)

The effective stress is calculated through the derivative of the selected strain energy density
function (∆Felastic), with respect to the right Cauchy–Green strain:

σe f f = J−1F
δ∆Felastic

δC
FT . (32)

Popular strain energy density functions for hydrogel models are the Mooney–Rivlin and
neo-Hookean models, due to their derivation spawning from polymer networks [56,58]. The first and
second Piola–Kirchhoff stresses (T and S, respectively) are, then, given by

T = JσtotalF
−T , (33)

S = JF−1σtotalF
−T , (34)

where T is non-symmetric and S is symmetric. Typically, the second Piola–Kirchhoff stress tensor is
used in the Lagrangian description involving large deformations [59]. The pore pressure is equal to
the summation of the chemical potential of the fluid inside the porous solid (µ f ,gel) and the osmotic
swelling pressure (Πswelling = Πionic + Πmixing):

p = µ f ,gel −Πswelling. (35)

Finally, the fluid flow (Q) inside the porous solid is described by a generalized Darcy’s law

Q = −k
ρ

ν

∂µ

∂x
, (36)

where k is the intrinsic permeability, ρ is the fluid specific mass, ν is the fluid viscosity, and the chemical
potential µ derivative is the chemical gradient [60]. With the basic Lagrangian descriptions of the solid
deformation and fluid flow described, mixture theory is then implemented. Originally derived for
modeling any type of mixture [61], mixture theory has also been applied to modeling soft porous
media [62]. It has also been applied to a variety of soft biological tissue and even cells [63–65].
The assumption made for mixture theory is that the continuum is occupied by all the constituents of
the mixture at every point in the system. Biphasic, triphasic, and quadriphasic theories, taking into
account the solid, fluid, and ionic components have all been published [66–68]. The novelty of mixture
theory is not the capability to reach large deformations (this was already present in Biot theory) [55],
but rather the ability to include ions into the theory. The positions of each constituent are described by

xa = χa(Xa, t), (37)

where a is the constituent, t is time, xa are the position vectors in the current domain, Xa are the
position vectors in the original domain, and χa is a continuously differentiable mapping function
from the original domain to the current domain. The deformation gradient of constituent, a, can be
calculated by

Fa = [∇a ⊗ χa(Xa, t)]T . (38)
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Equation (38) allows the deformation of any constituent within the mixture to be calculated.
Transformations between the deformed and reference states can be completed by multiplying the
variable of interest by the determinant of the deformation tensor, with respect to the reference state (J)
as a result of the mapping function (χa) in Equations (37) and (38). For example, the original polymer
volume fraction (φp,0) within the mixture can be related to the current solid volume fraction (φp) by

φp,0 = Jφp. (39)

The system is then governed by two equations describing the momentum balance (Equation (40))
and the fluid content continuity in the Lagrangian frame (Equation (41)) [53]:

∇X · T = 0, (40)

DJ
Dt

+∇X ·Q = 0, (41)

where T is the first Piola–Kirchoff stress tensor, ∇X is a divergence operator applied to the Lagrangian
variable X, and Q is a Lagrangian vector with its Eulerian counterpart as q = JF−1Q.

In order to understand the historical development of the application of mixture theory, biological
tissue studies also need to be considered. Initial models implementing this theory concentrated
on quadri-phasic continuums in one-dimensional tissue swelling or the equilibrium swelling
state [69–71]. The theory was, then, extrapolated to three dimensions in the large deformation
regime [72]. However, local mass balance violation restricting the strain to approximately 10 percent
and computational expense remained the main limitations.

The application of alternative finite element methods to mixture theory have also been published.
Hong et al. [17] developed a theory of coupled diffusion and large deformation in polymeric gels
and compared their results of uniaxial creep against Biot [52], published 70 years earlier. This theory
expands on the pioneering work of a later Biot theory of finite deformation of porous solids [55],
integrating aspects of Biot theory into Flory–Rehner theory. Since then, several non-linear swelling
models have been presented based on the non-linear theory presented by Hong et al. [48–50,73].
Although the numerical model of Zhang et al. [48] showed stability in the formation of surface
instabilities during transient swelling, the two-field formulation (network displacement and fluid
chemical potential) can lead to inaccuracies [74]. A three-field mixed formulation, taking displacement,
pore pressure, and fluid displacement, was derived to model hydrated biological tissue. With the
addition of an extra independent variable, Lagrangian multipliers were used to constrain the
system and significantly reduce computational expense [75]. Confined compression was used as
the numerical example showing the advantages of the three-field formulation over the conventional
two-field formulation. This three-field formulation was further developed and implemented into a
three-dimensional free swelling model of a cube. The primary variables consisting of the displacement
of the structure, the pore pressures, and the fluid velocities instead of the fluid displacements.
Also, the model allows for the inclusion of a selection of hyperelastic strain energy density function
constitutive laws [76].

Although these models capture finite deformation in the traditional sense of its meaning, the finite
deformation in hydrogel swelling should be seen as much larger than conventional materials. In order
to model large deformations in soft materials, the Mixed Hybrid Finite Element Method (MHFEM)
has shown promising results. This technique uses a hybridization of the mixed finite element method
to reduce the degrees of freedom in the system, hence considerably decreasing computation time.
During conventional modeling of hydrogels using standard FEM techniques, the fluid flux of the
system is calculated through numerical differentiation of the chemical potential field [74]. This can
lead to inaccuracies in defining the fluid flux field, which is a critical variable in describing the
fluid–solid coupled deformation. Therefore, calculating the fluid flux as a primary variable through
Raviart–Thomas element ensures local mass conservation and has been proven to be more effective
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in solving Darcy-type equations [77,78]. This is especially true for processes with an inhomogeneous
permeability tensor. As finite swelling of gels typically leads to large variation of the hydraulic
permeability across the domain, MHFEM has proved to be far superior to classical FE formulations.
Initially, MHFEM has been implemented to solve Biot consolidation problems concentrated on ground
water in geomechanics, showing increased simulation accuracy [79,80]. Its success has led to its
implementation in swelling models. Solving for the displacement, chemical potential, and fluid flux as
primary variables, the swelling of tissue and hydrogel has been modeled for small deformations in two
dimensions using a bi-phasic theory [81]. This model was extended to three dimensions for the free
swelling and shrinking of gels [11]. A strain-dependent hydraulic permeability factor was also added,
allowing for more control of the dynamic swelling behavior. The results showed the ability to deform
the gel up to 80 times its original volume, while allowing a stiffness approaching the visco-elastic fluid
range (<5 kPa). Also, the enhanced local mass conservation allowed for irregular gel geometries to
be modeled, as well as simulating the formation of surface wrinkles under surface-attached swelling.
These were, then, verified against experimental tests on the same phenomenon, further displaying the
robustness of the model [82]. Table 1 summarizes the computational models reviewed in this section.

Table 1. Computational models implemented to replicate deformation in porous structures defining
the material, strain energy density function theoretical framework, and the dimension reached in
each study.

Study Material Framework Dimension Reference

Tanaka and Fillmore 1979 Hydrogel Statistical 2D [47]
Bowen 1980 Hydrogel Continuum 2D [62]
Lanir 1987 Biological Tissue Continuum 2D [66]
Lai et al., 1991 Articular Cartilage Continuum 2D [67]
Huyghe and Janssen 1997 Porous Media Continuum 2D [68]
Oh et al., 1998 Hydrogel Statistical 2D [83]
Van Loon et al., 2003 Biological Tissue Continuum 3D [72]
Dolbow et al., 2005 Hydrogel Statistical 2D [84]
Malakpoor et al., 2007 Articular Cartilage Continuum 2D [81]
Hong et al., 2008 Hydrogel Statistical 2D [17]
Hong et al., 2009 Hydrogel Statistical 2D [70]
Kang and Huang 2010 Hydrogel Continuum 2D [71]
Chester and Anand 2010 Hydrogel Statistical 2D [49]
Duda et al., 2010 Hydrogel Statistical 2D [50]
Bouklas et al., 2012 Hydrogel Statistical 2D [85]
Bouklas et al., 2015 Hydrogel Statistical 2D [73]
Bertrand et al., 2016 SAP Statistical 3D [10]
Yu et al., 2018 SAP Continuum 3D [11]

3. Experimental Analysis

3.1. Deformation Measurements

The three-dimensional mechanical characterization of hydrogels under osmotic loading is a
challenging task. For many computational swelling studies, experimental verification of the model is
conducted by comparing the volume change ratio of the equilibrium state. Although this is sufficient
for validating the equilibrium states, a comparison of the transience of the swelling is often ignored.
For many applications, mainly drug delivery, the transience of the system is of great importance in
understanding the characteristics of the delivery mechanism. Therefore, this section presents the
current literature surrounding the experimental quantification of hydrogel swelling.

The most important characteristic of hydrogel swelling is the volume change, also referred to as
the volumetric deformation, which is measured as a ratio of the volume before swelling to the volume
after swelling. Volume change can be experimentally calculated by two separate methods, depending
on the geometry of the gel. Firstly, if the gel is of a regular geometry, the geometrical features (radius,
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height, width, and so on) before and after swelling can be measured (by physical measurement or by
imaging). For example, radial measurements can be used to calculate the volume change (∆V) from

∆V =
4
3 π(ra f ter)

3

4
3 π(rbe f ore)3

, (42)

where Ra f ter and Rbe f ore are the radii of the gel after and before swelling, respectively. The second
technique to experimentally calculate volume change utilizes the mass change of the gel (also known
as the capacity). The capacity can be calculated as

C =
Ms

Mg
=

M f + Mg

Mg
, (43)

where Mg is the mass of the dry polymer, Ms is the mass measured after swelling, and M f is the mass
of the fluid. However, the capacity measurement does not take into account the porosity of the initial
state.Therefore, the volume of air in the initial state needs to be considered. Additionally, the mass
readings must be adjusted by density to provide a volume change measurement. The volume change
can be written as

∆V =
Va f ter

Vbe f ore
=

Vf luid + Vgel

Vgel + Vair
, (44)

where Vf luid, Vgel , and Vair are the volumes of fluid, gel, and air respectively. Re-writing the volumes
in terms of mass and density,

∆V =

m f luid
ρ f luid

+
mgel
ρgel

mgel
ρgel

+ Vair
, (45)

where m f luid and mgel are the masses of the fluid and gel and ρ f luid and ρgel are the densities of the
fluid and gel, respectively. The volume of air in the dry state is a function of the mass and porosity of
the dry gel:

Vair =
mgel

ρgel

(
φ

1− φ

)
, (46)

where φ is the porosity of the dry gel (the volume fraction of air). Therefore, the volume change
can be calculated from capacity measurements. However, if the size of a hydrogel is very small,
an accurate measurement of the dry state mass is difficult. Micro weighing scales can be used, but the
error in the measurement increases significantly. Furthermore, due to the difficulty of measuring
the porosity and effective density of a dry gel, the conversion from capacity to volume change also
produces significant experimental error. Therefore, a relationship between the swelling ratio of a
group of small gel beads and a single gel bead has been developed, taking into account the interstitial
fluid between the gels [86,87]. This technique utilizes the radius of the gel and, therefore, is only
applicable to approximately spherical geometries. For more irregular shapes, a centrifuge retention
capacity (CRC) method can be used, which averages the capacity across a material sample; for example,
of 0.2 g (i.e., a multitude of individual particles) [88]. The interstitial fluid is removed by centrifuge
and the remaining hydrogel is measured and compared to the initial state, as per Equation (43).
Only accounting for equilibrium states, this capacity calculation has also been used to create a discrete
field of transient swelling [47]. However, it is only useful for slow-swelling hydrogels with small
deformations, as increasing the swelling speed and magnitude results in a subsequent increase in
swelling variance at each time step.
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3.2. Mechanical Behavior

During standard mechanical characterisation, the stresses and strains of the material are recorded
and a corresponding elastic or shear modulus is calculated. During osmotic loading, the stress in the
system cannot be recorded in-situ as mechanical clamps are not feasible for free swelling. The stress
could potentially be determined through a constitutive relation implemented after conducting the
experiments. However, the constitutive model would have to be assured to replicate the stress-strain
behavior of the material. Therefore, when studying osmotic loading experimentally, it is wise to stick to
the strains and modulus of the system. Several methods exist to measure the modulus of the material.
Firstly, confined compression restricts the swelling of a soft material in one dimension and measures
the associated stresses acting on the confinement piston [89]. Secondly, nano-indentation can be used
at various swelling ratios and can deduce a dynamic stiffness as a function of volume change [90,91].
Finally, a oscillatory shear method can be implemented to calculate the shear modulus of gel discs and,
again, gather a relationship between stiffness and volume change [92].

As mechanical clamping is not feasible for osmotic loading, in relation to the measurement of
strain, digital image correlation (DIC) is the logical choice of methodology. However, the swelling
of a hydrogel can span a full order of magnitude of displacement. Therefore, attaining images
in three dimensions that couple high spatial resolution with a large field of view and high
temporal resolution is difficult. Several studies have implemented a standard camera setup to
capture the change in gel radius over time. This is beneficial for calculating an approximation
of the volume change and gathering a basic understanding of the transient swelling behavior of
spherical geometries [10,93]. Three-dimensional techniques have been implemented using confocal
microscopy [94,95]. Yet, as confocal imaging in 3D requires stacks of images to be taken, the temporal
resolution is too low for such a highly dynamic process. More recently, transient swelling in
three dimensions was attempted using an altered particle tracking velocimetry (PTV) setup which
incorporated wave-front sensing (Figure 3) to allow a z dimension to be calculated with only
one camera [96,97]. Fluorescent micro-particles were embedded inside the hydrogel from the
polymerization stage, and these were tracked. Although the system captured a z-dimension, it was
restricted to 200 µm and, therefore, the majority of the swelling was outside the field of view.
Nonetheless, this study provided the framework for future studies on capturing the transient swelling
of hydrogels. Furthermore, advances of Dynamic Light Scattering (DLS) used to probe the diffusion
of particles has allowed for the quantification of the transient properties of polymer chains at a
microscopic level, providing a better understanding of the rheology of the system [98,99]. With recent
advances in imaging capabilities, mostly as a result of the need for CMOS image sensors in the mobile
phone industry, there exist several potential systems for this application [100,101].
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Figure 3. Schematic of a particle tracking velocimetry (PTV) setup used to quantify the transient
swelling of hydrogels in three dimensions [97]; adapted from [96]. Placing a cylindrical lens in front
of the CCD (charge-coupled device) camera creates an anamorphic imaging system, resulting in
different optical properties in the x and y directions. Combining the x and y projections allows for the
information of the z-dimension to be calculated [102]. (BS = beamsplitter)

4. Transient Surface Instabilities

Surface instabilities occur in most soft materials, including hydrogels, as well as in biological
tissue. The low moduli, sensitivity to environmental stimuli, and large deformation of these materials
results in the buckling of their external surfaces. Conventionally, buckling is seen as a failure mode of
a material. However, for soft materials, the ability to control the surface buckling effects during
transient swelling has led to some interesting applications, such as use in microfluidic devices,
sensors, smart adhesives, and the control of cellular behavior in tissue engineering [103–105]. As a
result, the understanding of the mechanisms driving this phenomenon is essential in controlling
the effect. Many studies, both theoretical and experimental, have been published on this topic.
Several of these studies have concentrated on surface-attached hydrogel layers exhibiting surface
instabilities [73,106–109]. However, this section reviews the current theoretical and experimental
literature surrounding surface instabilities forming on spherical or spherical-like geometries.

The morphological buckling response of soft materials can be categorized into three phenotypes:
Wrinkling, folding, and creasing [110]. Wrinkling is defined as periodic surface fluctuations formed
on an originally smooth surface, folding as deep localized valleys, and creasing as self-contacting
ridges. Each of these are a consequence of an elastic surface layer which is free to swell around an
attached stiffer core, or vice versa [111]. This mechanical constraint is created when fluid diffuses
into a gel, but has not yet permeated to the core. Compressive surface stresses cause the surface to
buckle. The magnitude of the buckling (and, hence, the phenotype) is dependent on the magnitude of
the compressive surface stress, as well as the wavelength of the pattern (denoted as λ in Figure 4B).
Both of these are also dependent on the thickness of the buckling layer (also denoted in Figure 4B,
as H) [11,111].

As a modulus difference is required for the formation of surface buckling, many studies have
coupled a stiff gel to a one that is softer. In two dimensions, the effect of the elastic modulus ratio (θ)
between the core and surface (Equation (47)) has been experimentally assessed [112]:

θ =
G1

G2
, (47)

where G1 and G2 are the moduli of the core and shell, respectively. For ratios less than 1 (i.e., the surface
is stiffer than the core), the resulting wavelength was large, causing big lobes to form on the surface of
the gel. On the other hand, larger modulus ratios (i.e., a stiffer core with an elastic surface) caused
small instabilities, replicating a wrinkling pattern. The coupled investigation of swelling kinetics and
instability formation was conducted using Nuclear Magnetic Resonance (NMR). NMR contrasts the
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swollen regions of a swelling gel from the unswollen regions through spin-lattice rates and various
contrast agents [113]. As a result, qualitative evidence of the swelling surface buckling was presented,
showing the importance of the modulus ratio (Equation (47)). Furthermore, as the thickness of the
swelling surface decreases, the wavelength of the buckling increases accordingly.

Exposure to
fluid

λ

(A)

(B)

H

Figure 4. (A) A circular core (blue)–shell (grey) hydrogel, before and after exposure to a swelling
solution, showing the anisotropy in the buckling formation. (B) Surface-attached hydrogel showing
the wavelength, λ, and layer thickness (H).

The ratio of moduli has been continued in computational studies and extended to three
dimensions. From investigating gyrification effects on the brain, the formation of sulci was shown
to be strongly dependent on the mechanical constraint created by the surface grey matter swelling
at different rates to the core white matter [114]. Both two- and three-dimensional simulations were
conducted, with the ‘core’ being clamped to a non-deforming centre. Similar moduli for the surface and
core proved significant in the formation of the correct brain morphology. A similar study extended this
theory by experimental verification of the model [115]. From Magnetic Resonance Images (MRI) images
of a fetal brain, a 3D-printed gel mimic was created and placed in a swelling solution. The mechanical
swelling was alone sufficient in replicating the sulci of the brain and showed remarkable similarity
to both MRI images of real brains at similar time points and the three-dimensional numerical model.
These results showed the importance of mechanical constraints over bio-molecular determinants in
correct geometrical fetal brain formation.

More recently, studies have moved towards showing instability formation in the unconstrained
swelling of gels. Three-dimensional surface instabilities were simulated with a constant modulus
across the radius through a stress-diffusion model [116]. The effects of the shear modulus and
the dimensionless Flory–Huggins parameter, χ, on the formation of surface instabilities have been
investigated, where the lowest modulus and Flory parameter (meaning more pronounced swelling)
resulted in the largest buckling of the surface layer. The model showed that the hoop stress at the
surface of the gel was in compression, whereas the core was in tension. However, further investigation
is required to quantify the effects of many other parameters, such as permeability, geometry, porosity,
fixed charge, and external concentration on surface wrinkling. Therefore, although a handful of studies
have successfully experimentally and numerically replicated surface instabilities in soft materials,
the characteristics which govern the process remain under-studied.

5. Conclusions

As discussed, the swelling of hydrogels is a multivariate, complex process. Many studies
have been published on the computational modeling of this phenomenon, mostly centered around



Molecules 2019, 24, 3521 16 of 22

theoretical frameworks of Flory–Rehner, Biot, and mixture theories. The basics of the frameworks,
including their similarities and differences, have been presented here, with the accompanying studies
implementing them. As shown, the theories have been used to generate powerful swelling models
for large deformations. However, no study has shown thorough transient experimental deformation
verification and, therefore, it is difficult to hypothesize which of them is more representative.
This highlights the importance of experimentally quantifying transient and local swelling in hydrogels,
in order to design the most effective solutions for drug delivery and tissue engineering systems.
The lack of methodologies for quantifying the transient state of swelling has led to a dearth of
experimental validation for these numerical models. With recent advancements in technology,
more and more potential systems have become available that can be applied for this purpose.
Finally, the current state-of-the-art regarding surface buckling was described. Although much
advancement in the understanding of this phenomenon has taken place recently, there still exists a gap
in the knowledge of the relative magnitudes of the contributions of various parameters. Overall, despite
the myriad studies on numerical and experimental deformations of hydrogels, there still remains a
lack of knowledge on the transient state of the process.
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Abbreviations

The following abbreviations are used in this manuscript:

2D Two-Dimensional
3D Three-Dimensional
CCD Charged Couple Device
CMOS Complementary Metal Oxide Semiconductor
CRC Centrifuge Retention Capacity
DIC Digital Image Correlation
FEM Finite Element Method
MHFEM Mixed Hybrid Finite Element Method
MRI Magnetic Resonance Imaging
NMR Nuclear Magnetic Resonance
PTV Particle Tracking Velocimetry
SAP Superabsorbent Polymer
− (subscript) Negative Charge
+ (subscript) Positive Charge
Na Avagadro’s Number
kB Boltzmann Constant
C Capacity
∆ε Change in energy for the formation of a polymer–solvent interaction
µ Chemical Potential
n and c Concentration (amount-of-substance and molar)
α (subscript) Constituent
CI Counter-ion
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α Deformation of the system (Statistical Mechanics)
F Deformation Tensor
ρ Density
∇ Divergence operator
S Entropy
T First Piola–Kirchhoff stress tensor
χ Flory–Huggins Parameter
Q Fluid Flux
ρ fluid specific mass
G Gibbs Free Energy
F Helmholtz Free Energy
I Identity Tensor
U Internal Energy associated with Enthalpy
J Determinant of the deformation tensor (Volume change)
Q Lagrangian vector
λ Principal stretch
χ Mixture theory mapping function
M Mass
G Moduli
µ Molar chemical potential
V Molar Volume
µel Number of elastic junctions
z Number of lattice connections
N Number of molecules
Π Osmotic pressure
k Permeability
p (subscript) polymer
p pore pressure
r Radius
r repeat units
C right Cauchy–Green strain tensor
S second Piola–Kirchhoff stress tensor
s (subscript) solvent
σ Stress
T Temperature
R Universal Gas Constant
V Volume
φ Volume Fraction
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