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Abstract: Huntington’s disease is a devastating heritable neurodegenerative disorder that is caused by the presence of a trinucleotide 
CAG repeat expansion in the Huntingtin gene, leading to a polyglutamine tract in the protein. Various mechanisms lead to the 
production of N-terminal Huntingtin protein fragments, which are reportedly more toxic than the full-length protein. In this review, we 
summarize the current knowledge on the production and toxicity of N-terminal Huntingtin protein fragments. Further, we expand on 
various therapeutic strategies targeting N-terminal Huntingtin on the protein, RNA and DNA level. Finally, we compare the 
therapeutic approaches that are clinically most advanced, including those that do not target N-terminal Huntingtin, discussing 
differences in mode of action and translational applicability. 
Keywords: Huntingtin, N-terminal fragments, proteolysis, aberrant splicing, exon1 fragment, Huntington’s disease therapeutics

Introduction
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder with an estimated prevalence of up to 9 per 
100,000 in the USA, Canada, Oceania, and Western Europe.1,2 HD is caused by a CAG (cytosine, adenine, and guanine) repeat 
expansion in exon 1 of the Huntingtin (HTT) gene, resulting in the translation of a mutant Huntingtin protein harboring a toxic 
polyglutamine (polyQ) stretch at its amino (N) terminus. Gene carriers with repeats between 36 and 39 CAG show incomplete 
penetrance, while repeats of 40 and more triplets lead to fully penetrant disease. The age of onset is inversely correlated with 
the CAG repeat length, with an average age of onset of 35–44 years. HD is characterized by motor, cognitive and psychiatric 
symptoms and is ultimately fatal, with a median survival of 15–18 years after onset. About 5–10% of HD patients show 
disease onset before 20 years of age, in which case it is called juvenile HD. Juvenile HD has a different clinical presentation 
compared to adult onset HD, characterized by symptoms such as severe mental retardation, speech and language delay, as well 
as more pronounced motor and cerebellar symptoms and overall more rapid disease progression.3

Apart from the inherited CAG length, several genetic modifiers have been identified that are associated with age of 
onset. Many of these modifiers point towards an important role for somatic instability: the process in which the CAG 
repeat within cells expands over time. Within the HTT locus, a strong genetic modifier is whether or not a CAA 
(cytosine, adenine, and adenine) interruption is present at the 3’ end of the CAG repeat. Similar to CAG triplets, CAA 
encodes for glutamine, thus resulting in the same polyQ stretch. Nonetheless, alleles that lack this CAA interruption were 
found to be more prone to somatic expansion and showed decreased age of onset, while the presence of an additional 
CAA interruption was found to delay both somatic expansion and age of onset.4,5 Moreover, many of the identified trans- 
acting genetic modifiers, such as FANCD2 And FANCI Associated Nuclease 1 (FAN1) and MutL Homolog 1 (MLH1), 
are involved in DNA mismatch repair and influence somatic instability of the CAG repeat.5,6

Although HD was initially thought to be mainly a protein toxic gain-of-function disorder, it is likely that protein 
loss-of-function also plays a role, as reviewed elsewhere,7–10 and there is increasing evidence for the involvement of 
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other disease mechanisms, such as repeat-associated non-AUG dependent (RAN) translation and RNA toxic gain-of- 
function, also reviewed previously.11–13 Still, little is known regarding the relative contribution of each of these 
pathogenic mechanisms to the disease (Figure 1).

HTT is known to be essential for embryonic development, as demonstrated by the fact that knockout mice are 
embryonically lethal, and also appears to play a role in later stages of development and life, as reviewed by Kaemmerer 
and Grondin.10 There is, however, no clear consensus on the level of wild type HTT (wtHTT) that is required for its normal 
function, as this is likely to depend on many factors, including age and tissue/brain region. wtHTT is involved in many 
important cellular processes, including endocytosis and vesicular trafficking, cell division, autophagy and transcriptional 
regulation (reviewed by Saudou and Humbert)9 which may all be impacted by a loss of wtHTT function in HD.

Compelling evidence for the involvement of RNA-mediated toxicity was provided by Sun et al, who found that even 
in the absence of translation, there was still repeat-length dependent toxicity of 5’ HTT mRNA as well as full-length 
HTT.14 RNA toxic gain-of-function is caused by the interaction between RNA-binding proteins (RBPs), such as 
Muscleblind like splicing regulator 1 (MBNL1) and Pre-mRNA processing factor 8 (PRPF8), and the secondary structure 
formed by the expanded CAG repeat in the mRNA, affecting the splicing of a range of transcripts.15,16 This interaction 
appears to be dependent on the purity of the CAG repeat (ie, the absence of CAA interruptions), as Mbnl1 was found to 
be recruited to nuclear foci in the novel BAC-CAG mouse model, which has an uninterrupted repeat, but not in the 
BACHD model, which harbors an interrupted repeat.17

Finally, the presence of the expanded CAG repeat has also been shown to induce repeat-associated non-AUG 
dependent (RAN) translation, which leads to the production of homopolymers other than polyQ that may also negatively 
impact cell function. RAN translation products have been detected in the affected brain regions of patients, as well as in 
N171-82Q mice and a C. elegans model.18,19 However, the actual contribution of RAN translation products to HD is not 
clear, as, for example, no RAN toxicity was observed in HD140Q knock-in mice.20

The expanded polyQ-containing mutant HTT (mHTT) protein has been shown to interact aberrantly with a variety of 
proteins, including transcriptional regulators such as RNA polymerase II subunit A (POLR2A), Tumor protein p53, Mouse 
double minute 2 (MDM2), CREB-binding protein (CBP) and Heat shock protein 70 (HSP70), cell cycle regulators like Ras 
homolog enriched in brain (Rheb) and mammalian target of rapamycin (mTOR), and cytoskeleton proteins such as actin 
and neurofilament light (NF-L). These aberrant interactions result in a complex and widespread molecular pathology, 
affecting many essential processes in the cell, including DNA damage repair, transcriptional regulation, mitochondrial 
function and apoptosis.21–25 Importantly, premature polyadenylation of the pre-mRNA as well as proteolytic cleavage of 
HTT protein lead to the production of a variety of HTT fragments, and there is ample evidence that such fragments, 
especially the short N-terminal species, are more toxic than the full-length mHTT protein.26–35 In order to make tailored 
therapeutics towards the short toxic fragments, a good understanding of the mechanisms leading to their formation is 

Figure 1 Schematic overview of the molecular pathogenesis of HD.
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needed. In this review, we therefore focus on how toxic N-terminal HTT protein species are produced and how they are 
linked to toxicity, as well as on therapeutic strategies that are capable of reducing these fragments.

Production of Toxic N-Terminal HTT Protein Species
N-terminal HTT protein fragments are mainly produced through two distinct processes: proteolytic cleavage and 
premature polyadenylation (see Figure 2 and Table 1).

Proteolytic Cleavage
Caspase Cleavage
The group of Michael Hayden first showed that HTT could be cleaved proteolytically by apopain (caspase-3) in a repeat- 
length dependent manner.36 This was confirmed in a follow-up study, in which they mapped one of the caspase-3 
cleavage sites to D513 and another site C-terminally of amino acid (aa) 548. Furthermore, two caspase-1 cleavage sites 
were identified in the first 548 aa. In contrast to their previous work with truncated HTT, the authors found no repeat- 
length dependence of cleavage efficiency of full-length HTT.37 In a third study, the authors were able to map the second 
caspase-3 cleavage site to D552, and further identified a caspase-6 cleavage site at D586.38 More recently, Martin et al 
recently identified yet another caspase cleavage site at D572, which was shown to be cleaved by caspase-1 and 
caspase-2.39

Figure 2 Schematic overview of production of N-terminal HTT protein. (A) Regular splicing, overview of the resulting mRNA and full-length protein and the identified 
proteolytic cleavage sites. (B) Alternative splicing and premature polyadenylation and resulting transcript. (C) Resulting protein species and propensity for nuclear entry, 
aggregation and toxicity.
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Calpain Cleavage
Both full-length and N-terminal caspase-cleavage products of HTT were found to be substrates for cleavage by 
calpains.40–42 Four calpain cleavage sites have been mapped, at aa 437, 465/469 and 536/54041 and between aa 
63–111,42 calpain cleavage efficiency appears to be positively correlated with repeat length.41,42 Furthermore, it was 
shown that calpain levels, and in particular the active form, were increased in the caudate of HD patients compared to 
controls.41

Other Proteases/Unidentified Mechanisms
Next to caspase and calpain generated fragments, various other cleaved HTT products have been described. Lunkes et al 
identified two N-terminal HTT fragments, cp-A and cp-B, which appeared to be generated in transfected NG108 cells 
through cleavage by aspartic endopeptidases. The C-terminus of HTT cp-A fragment was mapped between aa 104–114. 
N-terminal fragments with the same immunogenic properties were identified in nuclear inclusions in post mortem frontal 
cortex of HD patients.43

Similarly, Schilling et al identified an N-terminal fragment ending between aa 90–115 in post mortem tissues from 
HD patients and N171-82Q mice, as well as in transfected HEK293 cells.44 Further investigation in a HEK293 cell model 
revealed that short, HTT cp-B-like fragments were efficiently processed to HTT cp-A-like fragments, while longer HTT 
fragments proved to be inefficient substrates. The C-terminus of the HTT cp-A-like fragments was mapped between aa 
105 and 115–124. Although similar in size to the fragment described by Lunkes et al, inhibition of aspartyl proteases did 
not affect the formation of the cp-A-like fragment, and the authors were unable to identify any protease that generates 

Table 1 Overview of Proteolytic Cleavage Sites

Cleavage Site Enzyme References Notes

90–105 (cp-1) Undetermined Ratovitski et al 
200746

104–114 (cp-A) Aspartic endopeptidases? Lunkes et al 2002;43 

Tebbenkamp et al 

201245

Tebbenkamp et al were unable to inhibit formation of this 
product, suggesting that it may generated by a novel protease and 

not aspartic endopeptidases (‘?’: conflincting evidence)

63–111 Calpain Sun et al 200242

146–214 (cp-B) Aspartic endopeptidases? Lunkes et al 200243

R167 Cysteine endopeptidases 
including bleomycin hydrolase 

and cathepsin Z

Ratovitski et al 
2009;162 Ratovitski 

et al 2011163

402 MMP-10 Miller et al 2010161

465, 469 Calpain Gafni et al 200241

473 Calpain Gafni et al 200241

D513 Caspase-3 Wellington et al 

1998;37 Wellington 

et al 200038

536, 540 Calpain Gafni et al 200241

D552 Caspase-3, caspase-2? Wellington et al 

200038

D572 Caspase-1 Martin et al 201939

D586 Caspase-6 Wellington et al 
200038
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these HTT cp-A-like fragments, suggesting that i) the fragments are not the same or ii) that the cp-A-like fragment 
described by Schilling et al is the same fragment but generated by a novel protease, which may be cell-type dependent.45 

Ratovitski et al identified two N-terminal fragments (HTT cp-1 and cp-2) in PC12 and HEK293 cells expressing full- 
length HTT with 21Q or 126–153Q or a truncated N1212 HTT fragment with 15Q or 138Q.46 These fragments were 
similar in size to the previously described HTT cp-A and cp-B fragments but were not affected by inhibition of aspartic 
endopeptidases. In addition, they were not affected by deletion of aa 105–114. In combination with the epitope mapping, 
this narrowed the C-terminus of the HTT cp-1 fragment down to between aa 90 and 105, shorter than the cp-A and cp-A- 
like fragments described by Lunkes et al43 and Schilling et al44,45 Based on the absence of identified proteases and on the 
fragment length, we speculate that the generation of these fragments could involve aberrant splicing (see Aberrant 
Splicing and Premature Polyadenylation), although this would require further investigation.

Finally, Landles et al showed fourteen different N-terminal HTT protein isoforms (fragments 1–14) in brain tissue 
from HdhQ150 KI mice, the three shortest of which (fragments 12–14) were specific to mHTT.33 Some of these 
fragments could be linked to specific proteolytic cleavage events: fragment 7 terminated at a novel calpain cleavage 
site between aa 510–654, fragment 8 appeared to correspond to the D586 caspase-6 cleavage product, fragment 9 was 
likely produced by cleavage at calpain site 536 and fragment 10 by caspase cleavage at D513. Lastly, fragment 13 was 
determined to correspond to HTT-ex1.

In summary, many different proteases have been found to act on mHTT and wtHTT, generating N-terminal and 
C-terminal HTT fragments. The availability of antibodies that can recognize these fragments, as well as the possibility to 
specifically inhibit certain proteases, have allowed mapping of various fragments, albeit with variable resolution. 
Nonetheless, for multiple fragments, the mechanisms of production remain to be identified.

Aberrant Splicing and Premature Polyadenylation
Besides proteolytic cleavage, there are other mechanisms that lead to the generation of toxic N-terminal mHTT 
fragments. Sathasivam et al showed that incomplete splicing of intron 1 leads to the production of a short premature 
polyadenylated HTT-ex1 transcript in various HD mouse models and that this HTT-ex1 can be translated into a 90 aa 
N-terminal HTT-ex1 protein (based on 23Q). HTT-ex1 transcript was also found to be expressed in HD patient fibroblasts 
and cortex.47 In a follow-up study, Neueder et al confirmed that the HTT-ex1 transcript can be detected in patient-derived 
fibroblasts, as well as HD patient cerebellum, sensory motor cortex and hippocampus, with the highest expression levels 
measured in juvenile HD patient tissues.48 The HTT-ex1 transcript has also been detected by RNA-sequencing in various 
HD mouse models, including BACHD, BAC-CAG and HdhQ111.17 Both in vitro and in patient-derived tissues, the 
production of the HTT-ex1 transcript appears to be positively correlated with CAG repeat length, showing much higher 
expression in cells and tissues derived from juvenile HD patients.48,49

The current hypothesis is that HTT-ex1 formation is influenced by a combination of sequestration of spliceosome 
components such as U1 snRNP at the CAG repeat, leading to less efficient splicing of exon 1 to exon 2, and a reduced 
transcription rate, which leads to longer exposure of the cryptic polyA site in intron 1. Although the Bates group initially 
found evidence for the involvement of Serine and Arginine Rich Splicing Factor 6 (SRSF6) in HTT-ex1 formation,47,49 

they later found that the silencing of Srsf6 in HD mouse models did not affect HTT-ex1 formation.50 It has therefore been 
hypothesized that multiple RNA-binding proteins may be involved in the missplicing of HTT-ex1.12 Regardless of the 
exact mechanisms involved, aberrant mHTT splicing is CAG repeat length dependent, suggesting that HTT-ex1 
formation and associated toxicity would increase as somatic instability progresses in HD48 and that interventions 
targeting repeat expansion and HTT-ex1 may have therapeutic advantage.

Properties of N-Terminal Protein Species
Consistently accumulating evidence indicates that small N-terminal fragments containing extended polyQ tracts sig
nificantly contribute mHTT cellular mislocalization, aggregation and toxicity. Initial studies by the Ross group showed 
that transfection of N2a or HEK293 cells with full-length HTT with either 23Q or 82Q, or of truncated HTT N171-18Q 
or N63-18Q resulted in a diffuse cytoplasmic localization of the protein. In contrast, transfection with N171-82Q or N63- 
82Q led to more punctate labeling in both cytoplasm and nucleus, with the short N63-82Q construct showing the most 
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prominent nuclear localization.51 The Hayden group found similar results, showing that N-terminal fragments of 427, 
548 or more aa formed mainly perinuclear aggregates, while fragments up to 224 aa showed both cytoplasmic and 
nuclear aggregates. Furthermore, they found that pathogenicity depended both on repeat length and on fragment size.26,27

Barbaro et al found that, in Drosophila, shorter N-terminal fragments were more toxic and more prone to aggregate, with 
HTT-ex1 being by far the most toxic species.28 In mice, the R6/2 model that expresses only HTT-ex1 is by far the most 
swiftly progressing HD mouse model,52,53 while conditional suppression of HTT-ex1 has been shown to be 
neuroprotective.54 Recent in vitro studies by the Lashuel group confirm these results and further extend the findings by 
showing that the polyQ and Nt17 domains of HTT-ex1 synergistically modulate the aggregation propensity of HTT-ex1, 
with a key role of the Nt17 domain in regulating HTT-ex1 aggregation dynamics and subcellular localization and toxicity.34

There is conflicting evidence with regard to the pathogenicity of nuclear and cytoplasmic mHTT. Some groups have 
reported evidence that nuclear localization is required for toxicity. For example, the Greenberg group showed that adding a 
nuclear export signal to a N171 HTT fragment blocked its toxicity in transfected striatal neurons.55 In contrast, the Hayden 
group reported that neither the addition of a nuclear localization signal to a N548 HTT fragment nor the addition of a nuclear 
export signal to a N151 fragment altered the toxicity of those fragments, suggesting that both the nucleus and the cytoplasm 
are sites of HD toxicity.56 Trushina et al found that nuclear entry of mHTT only occurred after commitment of a cell to cell 
death. Therefore, the authors argue that nuclear mHTT localization may not be the primary event leading to toxicity.57

Intranuclear and neuropil aggregates have been observed in most HD animal models,17,30,31,58–63 and the presence of 
aggregates containing N-terminal HTT fragments has also been confirmed in patient brains by multiple groups.40,64,65 

However, various groups have shown that it is not the insoluble aggregates or inclusion bodies, but rather the soluble 
oligomers that are the more toxic species.66–69 In fact, some groups have found evidence that the formation of 
intranuclear inclusions may be protective,55,70,71 as reviewed by Arrasate and Finkbeiner.72 Mechanistically, this may 
be explained by the fact that soluble mHTT-ex1 oligomers have more aberrant protein interactions than insoluble 
aggregates and inclusions.73 Importantly, the length of N-terminal protein species and the associated sequence context, 
as well as post-translational modifications, also appear to play an important role in the aggregation process.35,74,75 For 
more in-depth reviews on the role of post-translational modifications, we redirect elsewhere.76,77

Therapeutic Strategies to Reduce N-Terminal HTT and HTT-ex1
Various approaches have been investigated to therapeutically lower the expression or reduce the toxicity of the mutant 
HTT protein. The proteolytic cleavage pathway can be targeted to reduce the formation of N-terminal mHTT protein 
species. Furthermore, the N-terminal part of the protein can be targeted to reduce aggregation and/or increase clearance 
of mHTT. Finally, mHTT can be targeted at the transcript or gene level. Here, we will focus on approaches that are able 
to target not only full-length HTT but also HTT-ex1 and other N-terminal mHTT species, considering their potential 
therapeutic advantage (see Table 2).

Reducing Proteolytic Cleavage
Caspase inhibition has been shown to reduce the proteolytic cleavage of mHTT and to improve the HD phenotype in 
BACHD78 and HdhQ111 mice.79 These results are backed up by earlier studies, where mutation of caspase-6 cleavage 
sites slowed down disease progression in YAC128 mice.80 However, it is not clear to what extent the protective effects 
are due specifically to the reduction of N-terminal mHTT species, rather than a general protective effect of caspase 
inhibition, as caspase inhibition was also protective in R6/2 and malonate models of HD, which do not express caspase- 
cleavable mHTT.81–83

Using a different approach, Evers et al showed that removal of the caspase-6 cleavage site by antisense oligonucleo
tide (ASO)-mediated skipping of (part of) exon 12 led to reduced levels of the N568 fragment in vitro and in vivo in wild 
type and YAC128 mice.84,85 Except for the absence of astrogliosis, no data are available regarding phenotypic effects of 
this ASO treatment.

None of these approaches have yet successfully been translated into the clinic, and although all may potentially 
decrease the formation of toxic mHTT fragments and have the potential of allele-specificity, mechanisms of RNA- 
associated toxicity would not be addressed.
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Table 2 Overview of Studies Targeting HTT Protein

References Therapeutic 
Modality

Name In vitro Models In vivo Models

Caspase inhibition

Leyva et al 201079 Peptidomimetic Novel pan- 
caspase 

inhibitors

HEK293T overexpressing myc-tagged full-length HTT 
(23 or 148Q); STHdh cells; rat striatal and cortical 

neurons expressing N90 (73Q)

Aharony et al 

201578

Peptide ED11 Striatal extracts from BACHD mice; HEK293 cells 

overexpressing N1212 (15Q); PC12 cells with inducible 
145Q-mHTT

BACHD

Evers et al 201484 ASO QRX-704 HD patient-derived fibroblasts; murine C2C12 cells WT mice

Klein et al 201885 ASO QRX-704 HD patient-derived fibroblasts; HD iPSC-derived 

neurons; COS7 cells

YAC128 mice

Decreasing aggregation and increasing mHTT-ex1 clearance

Chaudhary et al 

201586

Aptamers mHtt2.2.18, 

mHtt2.2.47, 

mHtt2.3.42

Recombinant HTT-ex1 proteins; yeast expressing HTT- 

ex1

Patel et al 201887 Aptamers mHtt2.2.18, 

mHtt2.3.42

Yeast expressing HTT-ex1

Southwell et al 

200890

Intrabodies Happ1, 

Happ3, 
MW7, 

VL12.3

HEK293 cells overexpressing mHTT-ex1; rat brain slices 

transfected with mHTT-ex1; ST14A cells 
overexpressing mHTT-ex1

Southwell et al 

200991

Intrabodies Happ1, 

VL12.3

Lentiviral mouse model; R6/2 

mice; N171-82Q mice; 

YAC128 mice; BACHD mice

Southwell et al 

201192

Intrabodies Happ1, 

Happ3, 
MW7, 

VL12.3

HEK293 cells overexpressing mHTT-ex1; ST14A cells 

overexpressing mHTT-ex1

de Genst et al 

201593

Intrabodies scFv-C4 Recombinant HTT-ex1 proteins

Butler et al 201489 Intrabodies scFv-C4, 

VL12.3

ST14A cells overexpressing mHTT-ex1 R6/1 mice

Lecerf et al 200194 Intrabodies scFv-C4 COS-7, BHK-21 and HEK293 cells overexpressing 

mHTT-ex1 constructs

Murphy and 

Messer 200495

Intrabodies scFv-C4 Murine brain slices transfected with HTT-ex1

Wolfgang et al 

200596

Intrabodies scFv-C4 Drosophila expressing mHTT- 

ex1

Miller et al 200597 Intrabodies scFv-C4 BHK-21, HEK293 and ST14A cells overexpressing HTT- 

ex1; STHdh cells

Snyder-Keller et al 

201098

Intrabodies scFv-C4 R6/1 mice

(Continued)
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Decreasing Aggregation and Increasing mHTT-ex1 Clearance
Aptamers
Aptamers are single-stranded oligonucleotides that, through their tertiary structure, can interact with target molecules 
such as proteins. The Roy lab identified aptamers that bind specifically to mHTT with 51 or 103Q but not wtHTT with 
20Q.86,87 The selected aptamers were shown to inhibit aggregation of recombinant mHTT-ex1 in cell-free assays and in 
yeast, as well as reducing oxidative stress and mitochondrial dysfunction.86 To our knowledge, this approach has not yet 
been tested in vivo.

Intrabodies
Various antibodies have been expressed intracellularly as “intrabodies” to target the N-terminus of HTT. In vivo, such 
intrabodies are delivered using viral vectors. An excellent review on the use of intrabodies in various neurodegenerative 
diseases was written by Messer and Butler.88

Two groups of intrabodies have been tested most extensively (see Figure 3): those that bind to the N-terminus of HTT 
(VL12.3, scFv-C4) and those that recognize the proline-rich regions (PRRs) in HTT-ex1 (MW7, Happ1, Happ3, INT41). 
In addition, there is some literature about polyQ-binding intrabodies (MW1, MW2) and a more C-terminal intrabody 
derived from EM48 (scFv-EM48).

Southwell et al showed that intrabodies that bind to the PRR, ie, MW7, Happ1 and Happ3, increase the turnover of 
mHTT-ex1 overexpressed in vitro. VL12.3, an intrabody that binds to the N-terminal 17 aa of HTT, did not affect 
turnover, but did increase the nuclear localization of mHTT-ex1.90 In vivo, the PRR-binding Happ1 was shown to be 
beneficial in five different HD mouse models. In contrast, VL12.3, while effective in a lentiviral HD model, was 

Table 2 (Continued). 

References Therapeutic 
Modality

Name In vitro Models In vivo Models

Wang et al 200899 Intrabodies scFv-EM48 HEK293 cells, rat primary cortical neurons and PC12 
cells overexpressing HTT-ex1

R6/2 mice; N171-82Q mice

Amaro and 
Henderson 

2016100

Intrabodies INT41, 
Happ1

HEK293T cells overexpressing HTT-ex1; PC12 cells 
with inducible full-length HTT

R6/2 mice

Bauer et al 2010102 Fusion protein QBP1- 

HSC70

Neuro2a cells expressing HTT-ex1 R6/2 mice; HD190Q-EGFP 

mice

Clift et al 2017103 Fusion protein 3B5H10- 

TRIM21

3T3 cells and oocytes overexpressing partial HTT-ex1 

(aa 8–57)

Butler et al 

2011104

Fusion protein scFv-C4- 

PEST

ST14A cells overexpressing HTT-ex1

Ghosh et al 

2021105

Endogenous 

protein

Praja1 

ubiquitin 

ligase

HEK293T and N2A cells overexpressing HTT-ex1

Hegde et al 
2020106

Endogenous 
protein

TBK1 Recombinant HTT-ex1; HEK293 cells overexpressing 
HTT-ex1; rat primary striatal neuronal cells; mouse 

primary striatal neurons transfected with HTT-ex1 or 

N586

C. elegans overexpressing 
N513 15Q or 128Q

Aladdin et al 

2020107

Endogenous 

protein

Blm10/ 

PA200

Recombinant HTT-ex1; yeast and SH-SY5Y cells 

overexpressing HTT-ex1

Galyan et al 

2022108

Small molecule GLYN122 PC12 cells with inducible mHTT-ex1 R6/2
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ineffective in YAC128 mice and had a detrimental effect in R6/2 mice.91 The authors later showed that the increased 
turnover mediated by the PRR-binding intrabodies is dependent on a calpain-chaperone-mediated autophagy-dependent 
mechanism and that this process is blocked by VL12.3,92 explaining the detrimental effects of VL12.3.

Although scFv-C4 also binds to the N-terminus of HTT,93 its predominant cytoplasmic localization appears to protect 
from the detrimental effects observed for VL12.3.89 The scFv-C4 intrabody was shown to have beneficial effects in 
various HD models, including in vitro models, Drosophila and different mouse models.94–98

Two additional intrabodies have been investigated: scFv-EM48 and INT41. Like Happ1, scFv-EM48, which binds 
just C-terminally to the second PRR, was shown to increase turnover of mHTT, and improved motor function of N171- 
82Q mice.99 INT41, an intrabody that recognizes the same epitope as Happ1, but which has enhanced cytoplasmic 
solubility, was shown to improve cognitive function in female R6/2 mice.100

Engineered Molecules and Endogenous Proteins
In addition to the increased turnover induced by some of the intrabodies, the endogenous cellular machinery can be 
harnessed specifically to target proteins for degradation, using engineered proteins, peptides or small molecules. These 
can direct the protein of interest to the ubiquitin proteasome system, the autophagy-lysosomal pathway or chaperone- 
mediated autophagy. These approaches and their specific application in the context of HD have been extensively 
reviewed by Jarosińska and Rüdiger.101

Two such approaches specifically target the polyQ region. Bauer et al engineered a fusion molecule consisting of two 
copies of a polyQ-binding peptide (QBP1) and heat shock-cognate protein 70 (HSC70)-binding motifs to induce 
chaperone-mediated autophagy.102 Clift et al co-expressed a polyQ-binding antibody (3B5H10) with TRIM21 in an 
approach that they call Trim-Away, to target mHTT for proteasomal degradation.103 Additionally, Butler et al produced a 
fusion protein consisting of the scFv-C4 intrabody and a PEST motif to enhance proteasomal degradation of HTT-ex1.104

Several endogenous proteins have been described to enhance the turnover of mHTT, including Praja1 ubiquitin 
ligase,105 TBK1106 and Blm10/PA200.107 Induction or overexpression of such proteins may represent a therapeutic 
strategy, although, so far, this notion is only supported by experiments in cellular, Drosophila, and C. elegans models. 
Additionally, specificity for mHTT has not been shown for any of these three proteins.

Finally, a small molecule that can bind to mHTT-ex1, called GLYN122, has been identified recently. GLYN122 was 
shown to reduce mHTT-ex1 aggregation in PC12 cells, as well as reducing mHTT in cortex and striatum of R6/2 mice 
after intraperitoneal injection.108

Targeting HTT-ex1 at the Transcript Level
Next to targeting the pathogenic protein species itself, the production of such proteins can also be inhibited by targeting 
the HTT mRNA. Many different approaches have been tested to this effect, including ASOs, siRNAs, shRNAs and 
miRNAs (Table 3). Again, we only focus on those strategies that target HTT-ex1. Broadly speaking, the HTT-ex1 mRNA 
targeting approaches can be divided into those that target the expanded CAG repeat, and those that target other regions of 
HTT-ex1. In addition, some other approaches have been described.

Figure 3 Anti-HTT Exon 1 intrabodies. (A) Antigens used to select the published anti-HTT intrabodies. (B) Specific binding identified by crystallography for scFvC4 and 
VL12.3. 
Notes: Reproduced from Messer A, Butler DC. Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis. 2020;134 
(October 2019):104619. doi: 10.1016/j.nbd.2019.104619 under Creative Commons BY-NC-ND 4.0.88
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Table 3 Overview of Studies That Evaluated Therapeutic Approaches Targeting HTT at the RNA Level

References Therapeutic 
Modality

In vitro Models In vivo Models

Targeting CAG repeat

Hu et al 2009109 ASO, siRNA HD patient-derived fibroblasts, YAC128-derived primary medium spiny 
neurons

Hu et al 2010110 siRNA HD patient-derived fibroblasts

Gagnon et al 
2010111

ASO HD patient-derived fibroblasts

de Mezer et al 
2011112

siRNA HD patient-derived fibroblasts

Fiszer et al 
2011113

siRNA HD patient-derived fibroblasts

Yu et al 2012115 siRNA HD patient-derived fibroblasts HdhQ150 mice

Aiba et al 

2013116

siRNA HD patient-derived fibroblasts

Liu et al 2013117 siRNA HD patient-derived fibroblasts

Monteys et al 

2015118

miRNA HEK293 cells overexpressing tagged full-length wtHTT and mHTT Transgenic mice expressing 

tagged full-length wtHTT 

and mHTT

Fiszer et al 

2016114

siRNA HD patient-derived fibroblasts; STHdhQ7/Q111 and STHdhQ111/111 cells

Batra et al 

2017140

RNA-targeting 

Cas9

COS-M6 cells overexpressing a 80CAG construct

Urbanek et al 

2017119

ASO, siRNA HD patient-derived fibroblasts

Datson et al 

2017120

ASO R6/2 and Q175 mice

Ciesolka et al 

2021121

siRNA Inducible HEK293 model expressing HTT-ex1 16/98 CAG fused to luciferase; 

HD patient-derived fibroblasts; HD iPSC-derived neural progenitors

Kotowska- 

Zimmer et al 
2022122

shRNA, 

miRNA

HD patient-derived fibroblasts YAC128 mice

Targeting other parts of HTT-ex1

Boado et al 

2000125

ODN Inducible PC12 model expressing HTT-ex1-GFP with 25Q

Chen et al 

2005126

shRNA HeLa, HEK293, DAOY cerebellar medulloblastoma cells

Wang et al 
2005127

siRNA R6/2 mice

(Continued)
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Antisense Oligonucleotides and RNAi Agents
Many studies have tested ASOs or RNAi agents to target the CAG repeat.109–122 In general, CAG-targeting confers 
preference towards the expanded allele, as this allows for binding of multiple molecules per mRNA.111 Only a few 
studies included in vivo efficacy. Yu et al showed the efficacy of their siRNA in HdhQ150 mice.115 Monteys et al used 
transgenic mice expressing tagged full-length wtHTT and mHTT, showing preferential silencing of mHTT.118 Datson 
et al showed the efficacy of their CAG-targeting ASO in R6/2 and Q175 mice,120 an ASO that is now further developed 
by Vico Therapeutics. Kotowska-Zimmer et al have shown that artificial miRNAs targeting the CAG repeat specifically 
reduced mHTT in YAC128 mice.122

A number of strategies that target other regions of HTT-ex1 have been described as well.123–137 This approach would 
be expected to lower both wtHTT and mHTT. With the exception of Boado et al and Kordasiewicz et al, who used ASOs, 

Table 3 (Continued). 

References Therapeutic 
Modality

In vitro Models In vivo Models

Rodriguez- 
Lebron et al 

2005128

shRNA HEK293 cells expressing mHTT-ex1 R6/1 mice

DiFiglia et al 

2007129

siRNA AAV100Q mouse model

Denovan- 

Wright et al 

2008130

siRNA, 

ribozyme

HEK293 cells expressing mHTT-ex1 R6/1 mice

Kordasiewicz 

et al 2012131

ASO R6/2 mice

Rindt et al 

2012138

Trans-splicing HEK293, U2OS and DBRTG cells overexpressing a HTT minigene (exon1-3 

with shortened introns); HEK293 cells; HD patient-derived fibroblasts

Miniarikova 

et al 2016123

miRNA HEK293T luciferase assay Hu128/21 mice

Miniarikova 
et al 2017124

miRNA Lentiviral rat model

Rindt et al 
2017139

Trans-splicing HEK293 cells; HD patient iPSC-derived neural stem cells and iPSC-derived 
neurons

Evers et al 
2018132

miRNA tgHD minipigs

Caron et al 
2019133

miRNA Hu128/21 mice

Spronck et al 
2019134

miRNA Q175 mice and R6/2 mice

Keskin et al 
2020135

miRNA HD patient iPSC-derived neurons and astrocytes

Valles et al 
2021136

miRNA tgHD minipigs

Spronck et al 
2021137

miRNA Wild type rats and NHP 
(GLP-tox)
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all of these studies utilized RNAi agents. Various groups have demonstrated efficacy of siRNA or shRNA in R6/1, R6/2 
and AAV100Q mice.127–130 uniQure’s miRNA therapy has shown target engagement in the widest range of HD animal 
models, including Hu128/21, Q175 and R6/2 mice, lentiviral rat model and transgenic HD minipigs,123,124,132–134,136 as 
well as a favorable safety profile in toxicity studies in rats and non-human primates.137

Other RNA-Targeting Approaches
A handful of studies described other approaches to HTT RNA-targeting. Rindt et al developed a method to induce trans- 
splicing, by which mHTT exon 1 is replaced with exogenous wtHTT exon 1 in the mRNA. Thus far, there is only in vitro 
proof of principle for this approach, and the efficiency is rather low, with 10–15% of trans-splicing observed even after 
extensive optimization.138,139 Batra et al have developed an RNA-targeting Cas9 approach which targets the CAG 
repeat.140 For HD, there is only in vitro evidence for this approach so far, but a similar approach targeting a CUG 
(cytosine, uracil, and guanine) repeat was shown to be effective in vivo in myotonic dystrophy type 1 mouse models.141 

This platform is being developed by Locanabio.
Finally, some small molecules have been described to bind to either HTT-ex1 or the CAG repeat, most notably 

furamidine, myricetin and a series of pyridocoumarin derivatives, reviewed elsewhere.12 These compounds have been 
described to inhibit translation of HTT. However, specificity of such compounds is generally low, thereby increasing the 
chance of unwanted off-target effects.

Targeting HTT-ex1 at the DNA Level
Finally, several approaches that target the HTT gene have been described (Table 4).

Transcription can be prevented using zinc finger proteins (ZFPs) targeting the expanded CAG repeat.142–144 This 
approach shows allele-selectivity for the expanded repeat and is currently being developed for the clinic by Sangamo and 
Takeda. Further, CRISPR-Cas9 genome editing approaches have been developed to either knock out HTT by inducing 
mutations or excise the region containing the CAG repeat. Several groups have shown in vitro and in vivo proof of 
principle using single guide RNAs directed to HTT-ex1 to induce HTT knockout.145–148 Further, using a double guide 
RNA approach, various groups have shown that it is possible to excise the region containing CAG repeat.149–154 The size 
of this region differs based on the chosen guide RNAs, with the first report by Shin et al deleting a large 44 kb region,149 

while the most precise excision was shown by Yang et al and Monteys et al, who deleted only the CAG repeat and small 
flanking regions.150,151

HTT Targeting Therapies in Clinical Development
Several HTT lowering therapies are either already in clinical trials or are close to entering the clinic. These therapies 
include different therapeutic modalities and mechanisms of action, each with distinct potential efficacy and safety 
profiles. Only the approaches in clinical trials or performing IND-enabling studies are covered here.

Two of the most advanced programs, the Phase III trial with the non-allele-specific HTT exon 36-targeting ASO 
tominersen (Roche) and the phase I/II trials with the allele-specific mHTT-associated single nucleotide polymorphism 
(SNP)-targeting ASOs WVE-120101 and WVE-120102 (Wave Life Sciences) were halted in 2021, as reviewed 
elsewhere.155 Roche plans to design a new Phase II study with tominersen, for younger adult patients with lower disease 
burden (https://ir.ionispharma.com/news-releases/news-release-details/ionis-partner-evaluate-tominersen-huntingtons-dis 
ease-new-phase). Wave Life Sciences has now initiated a new trial with their novel product WVE-003, which targets 
another SNP and has improved chemistry (clinicaltrials.gov NCT05032196). These ASOs are administered repeatedly 
through intrathecal administration, which may explain some of the adverse events observed with tominersen, which was 
more pronounced in the cohort receiving more frequent administration.155 Neither drug is expected to affect HTT-ex1 
formation or RNA-mediated toxicity.

Novartis and PTC Therapeutics both have initiated Phase 2 clinical trials for their splicing modulators Branaplam 
(NCT05111249) and PTC518 (NCT05358717). These small molecules induce the inclusion of a pseudoexon between 
HTT exons 49 and 50, which leads to a premature stop codon and subsequent nonsense-mediated decay.156,157 One of the 
main advantages is that these small molecules can be administered orally. Furthermore, the mechanism of action targets 
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Table 4 Overview of Studies Targeting the HTT Gene

References Therapeutic 
Modality

Type Target Region In vitro Models In vivo Models

Garriga-Canut 

et al 2012142

ZFP CAG repeat HEK293T cells overexpressing reporters with N-terminal region of 

HTT; STHdh cells; HD patient-derived mesothelial cell line

R6/2 mice

Agustin-Pavon 

et al 2016143

ZFP CAG repeat R6/1 mice

Zeitler et al 
2019144

ZFP CAG repeat HD patient-derived fibroblasts; STHdh cells; HD patient ESC- 
derived neural stem cells and neurons

Q50 KI mice; R6/2 
mice; zQ175 mice

Kolli et al 2017145 CRISPR-Cas9 Single guide 5’ UTR or exon 1-intron 1 boundary Mesenchymal stem cells derived from YAC128 mice

Merienne et al 

2017146

Self- 

inactivating 
CRISPR-Cas9

Single guide Exon 1 just downstream of the start codon HEK293T cells overexpressing N171-HTT-eGFP; primary murine 

cortical neurons and astrocytes; HD patient iPSC-derived neurons

Lentiviral mouse 

model; HD140Q-KI 
mice

Ekman et al 
2019147

CRISPR-Cas9 Single guide Exon 1 (5’ and 3’ of CAG repeat) HEK293T cells overexpressing HTT-ex1-CFP R6/2 mice

Powell et al 
2022148

CRISPR-Cas13 Single guide Exon 1 (5’ and 3’ of CAG repeat) HEK293T cells overexpressing HTT-ex1-CFP R6/2 mice

Shin et al 2016149 CRISPR-Cas9 Double 
guide; allele- 

specific

Deletion of 44 kb region spanning from promoter 
region to intron 3

Patient-derived fibroblasts, NSCs and iPSCs

Yang et al 2017150 CRISPR-Cas9 Double 

guide

Deletion of part of exon 1 from just upstream to 

just downstream of the CAG repeat

HEK293 cells overexpressing HTT-ex1 HD140Q-KI mice

Monteys et al 

2017151

CRISPR-Cas9 Double 

guide; allele- 

specific

Deletion of 1182 bp region from 3’ end of 

promoter to 5’ end of intron 1

HEK293 cells; HD patient-derived fibroblasts BACHD mice

Dabrowska et al 

2018152

CRISPR-Cas9 

nickases

Double 

guide

Deletion of 107 bp in exon 1, from just upstream 

to downstream of the CAG repeat

HEK293T cells; HD patient-derived fibroblasts

Wu et al 2019153 CRISPR-Cas9 Double 

guide

Deletion of part of exon 1 from just upstream of 

start codon to downstream of the CAG repeat

HEK293 cells

Lopes et al 

2020154

CRISPR-Cas9 Double 

guide

Deletion of part of exon 1 from just upstream of 

start codon to exon1-intron1 boundary

HD patient-derived iPSCs
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the pre-mRNA and is therefore quite upstream in the molecular pathology. However, this approach is not specific for the 
mutant allele and, as it targets a downstream exon, is also not expected to affect HTT-ex1 production or toxic RNA gain- 
of-function.

In a more indirect fashion, metformin has been shown to reduce translation of HTT through interacting with the 
MID1/PP2A/mTOR protein complex.158 Interestingly, the effect of metformin was found to be specific for mHTT and to 
also impact HTT-ex1 protein formation. The drug can be administered orally, and as it is already in clinical use for the 
treatment of diabetes, its safety profile has already been well established. Metformin is currently being tested for the 
treatment of HD in a phase III clinical trial to establish its potential as a treatment for HD (NCT04826692). Although it 
has been shown to reduce HTT levels, RNA-mediated toxicity is not expected to be targeted by its mechanism of action.

There are no therapies that target HTT-ex1 exclusively, but some therapies target HTT-ex1 in addition to the full-length 
HTT. The most advanced is uniQure’s gene therapy AMT-130, which is currently being tested in phase I/II clinical trials 
(NCT04120493 and NCT05243017). AMT-130 is an AAV5-delivered miRNA which is administered through a one-time 
intrastriatal injection. This therapy is not allele-selective, and its effect on RNA-mediated toxicity has not yet been established.

Several other HTT-ex1 targeting candidates are close to entering clinical trials, including Galyan Bio’s HTT-ex1 
binding small molecule GLYN122 and Vybion’s INT41 intrabody. These therapeutic candidates target the protein and are 
therefore not expected to impact RNA-mediated toxicity. According to the companies’ websites, both are performing 
IND-enabling studies, although their target date to enter the clinic is not clear (https://www.galyan.bio/pipeline, https:// 
www.vybion.com/?page=product_pipeline).

Likewise, Vico Therapeutics received FDA orphan drug designation for their CAG-targeting ASO in July 2021 and is 
expected to start clinical trials soon (https://vicotx.com/pipeline/). Takeda and Sangamo are further developing their ZFP 
approach targeting the CAG repeat (https://www.sangamo.com/programs/). Both approaches preferentially target mHTT and 
as they act on the (pre-)mRNA and on transcription, respectively, these drug candidates may also have a beneficial effect on 
RNA-mediated toxicity.

Discussion
Although all the approaches mentioned, as well as others in earlier phases of development, aim to reduce HTT levels, their 
mechanism of action is different and not all pathways related to HTT toxicity will be engaged. The relative contribution of 
each pathway is a matter of debate and is likely to depend on many factors, including age, tissue and cell type. Several of the 
described mechanisms of N-terminal HTT fragment production, including calpain cleavage and premature polyadenylation, 
have been shown to correlate with repeat length. This is also the case with HTT-ex1 formation through aberrant splicing. 
Therefore, it may be expected that as the repeat gets longer over time due to somatic instability, the contribution of these 
mechanisms will increase. Nonetheless, the broad molecular pathology of HD would likely benefit most from an intervention 
that acts as far upstream as possible, ie, on the DNA or the RNA level.

For an approach to be successful in disease modification, next to efficiency, adequate safety is key. Safety issues can 
arise from intrinsic characteristics of the therapeutic modality itself (eg, chemistry, properties of the therapeutic vector, 
and need of chronic administration), which are not covered in this review. The mechanism of action of the approach can 
also have different safety risks. Very specific approaches, with a well-understood mechanism, and with low to no 
interactions with other processes and molecules other than those related to HTT toxicity, would be preferred.

Multiple different approaches are running head-to-head. The small molecule splicing modulators are among the most 
elegant in terms of delivery, as these are capable of crossing the blood–brain barrier and can therefore be administered orally. 
However, these small molecules are not specific for mHTT or even solely for HTT, and long-term studies are needed to 
determine the safety profile. Furthermore, these splicing modulators are expected to affect neither aberrant splicing of HTT- 
ex1 nor toxic RNA gain-of-function effects. ASOs and siRNAs have a less favorable distribution and need to be administered 
locally, although novel chemistries, such as peptide nucleic acids and di-siRNAs, have shown more promising biodistribution 
and may allow for systemic administration. These synthetic oligonucleotides are active for a limited amount of time, and 
therefore need to be readministered frequently. CAG-targeting ASOs are expected to not only reduce HTT and HTT-ex1 
protein gain-of-function but also to alleviate RNA-mediated toxicity; however, non-specific effects on other genes containing 
CAG repeats may be difficult to overcome. Finally, the gene therapy approaches utilize AAVs to deliver their cargo. The 
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current generation of AAVs is not sufficiently capable of crossing the blood–brain barrier and therefore still needs to be 
administered locally, although efforts are ongoing to identify novel capsids that could be administered in a less invasive 
manner, eg, Goertsen et al.159 Because most cells that are targeted in HD are non-dividing, a more invasive route of 
administration is, however, less of an issue, as the therapy would only need to be administered once. uniQure’s miRNA- 
based strategy would reduce toxic protein gain-of-function, whereas Takeda and Sangamo’s ZFP approach targets DNA and 
thereby acts upstream of mHTT transcription, which would improve both toxic protein- and RNA gain-of-function; yet, as the 
mechanism of action of this approach involves direct targeting of the repeat, off-target effects may be an issue. Pre-clinically, 
gene editing approaches using CRISPR-Cas are being explored. However, long-term studies will need to show the safety 
profiles of such approaches.

To maximize therapeutic efficacy, future research will need to point out whether it may be advantageous to combine various 
therapeutic strategies with different modes of action. Further, it is likely that any therapeutic approach will benefit from as early 
intervention as possible. To this end, excellent safety profiles and good biomarkers of both safety and efficacy will be key.160

Conclusion
In summary, we have reviewed the production of N-terminal HTT protein fragments, their role in HD pathology, as well 
as therapeutic approaches to target these toxic species. Extensive research into HD continues to deepen our understanding 
of the broad molecular mechanisms leading to disease. With the increasing understanding of the pathological mechan
isms associated with mHTT, several different therapeutic approaches are being developed, which will hopefully lead, in 
the near future, to halting or modification of this devastating disease.
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