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Simple Summary: Genetic variants in more than 10 genes are known to confer moderate to high risks
to breast and/or ovarian cancers (BC/OC). In the framework of the international project BRIDGES,
a panel of 34 known or suspected BC/OC genes has been sequenced in 60,466 breast cancer patients
and 53,461 controls. In this work, we focus on BRIDGES variants detected in the RAD51C gene and
their impact on the gene expression step known as splicing (intron removal), whose alteration is a
relevant disease mechanism. For this purpose, we bioinformatically analyzed 40 RAD51C variants
from the intron/exon boundaries, 20 of which were selected. Then, we developed a biotechnological
tool, called splicing reporter minigene, containing RAD51C exons 2 to 8 where any variant can be
introduced by site-directed mutagenesis and functionally assayed in MCF-7 cells under the splicing
perspective. Nineteen variants impaired splicing, 18 of which induced severe splicing anomalies.
Finally, they were clinically interpreted according to strict guidelines whereby 15 variants were
classified as Pathogenic/Likely Pathogenic, so they are clinically actionable. Therefore, carrier patients
and families may benefit from tailored prevention protocols and therapies.

Abstract: Hereditary breast and/or ovarian cancer is a highly heterogeneous disease with more than
10 known disease-associated genes. In the framework of the BRIDGES project (Breast Cancer Risk after
Diagnostic Gene Sequencing), the RAD51C gene has been sequenced in 60,466 breast cancer patients
and 53,461 controls. We aimed at functionally characterizing all the identified genetic variants that are
predicted to disrupt the splicing process. Forty RAD51C variants of the intron-exon boundaries were
bioinformatically analyzed, 20 of which were selected for splicing functional assays. To test them,
a splicing reporter minigene with exons 2 to 8 was designed and constructed. This minigene generated
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a full-length transcript of the expected size (1062 nucleotides), sequence, and structure (Vector exon
V1- RAD51C exons_2-8- Vector exon V2). The 20 candidate variants were genetically engineered
into the wild type minigene and functionally assayed in MCF-7 cells. Nineteen variants (95%)
impaired splicing, while 18 of them produced severe splicing anomalies. At least 35 transcripts were
generated by the mutant minigenes: 16 protein-truncating, 6 in-frame, and 13 minor uncharacterized
isoforms. According to ACMG/AMP-based standards, 15 variants could be classified as pathogenic
or likely pathogenic variants: c.404G > A, c.405-6T > A, c.571 + 4A > G, c.571 + 5G > A, c.572-1G > T,
c.705G > T, c.706-2A > C, c.706-2A > G, c.837 + 2T > C, c.905-3C > G, c.905-2A > C, c.905-2_905-1del,
c.965 + 5G > A, c.1026 + 5_1026 + 7del, and c.1026 + 5G > T.

Keywords: breast cancer; ovarian cancer; susceptibility genes; RAD51C; genetic variants; splicing;
aberrant splicing; VUS; functional assay; minigene; clinical interpretation

1. Introduction

Genetic variants in more than 10 genes are known to confer moderate to high risks to breast and/or
ovarian cancers (BC/OC) and explain 5% to 10% of all breast cancers and approximately 20% of all
ovarian cancers [1,2]. Most of these genes encode for tumor suppressor proteins that play a role in repair
of DNA double-strand (DSB) breaks by homologous recombination (HR). In addition to the main breast
cancer genes, BRCA1 [MIM #113705] [3] and BRCA2 [MIM #600185] [4], inactivating mutations in ATM
[MIM #607585], BARD1 [MIM#601593], BRIP1 [MIM#605882], CHEK2 [MIM #604373], PALB2 [MIM
#610355], RAD51C [MIM#602774], and RAD51D [MIM#602954], among others, confer risk to breast
and/or ovarian cancer [1,2,5,6].

Loss-of-function variants in RAD51C and RAD51D increase the risk of breast and ovarian cancer,
but the same has not been demonstrated for other RAD51 paralogs, or for RAD51 itself that plays a
major role in HR repair [7–11]. Likewise, bi-allelic RAD51C (or FANCO) deleterious variants have been
found in Fanconi Anemia patients [12]. RAD51C participates in the recruitment of RAD51 to DNA
damage sites and the stabilization of RAD51 nucleofilaments as part of the BCDX2 complex (RAD51B,
RAD51C, RAD51D, and XRCC2). It is also involved in the resolution of Holliday junctions interacting
with XRCC3 resulting in the CX3 complex, and recently, it was demonstrated that RAD51C interacts
directly with PALB2, a key protein in HR [13–17]. Furthermore, RAD51C has been reported to facilitate
ATM-dependent CHEK2 phosphorylation, allowing the activation of CHEK2, another important
regulator of the cellular response to DNA damage [18,19].

The detection of germ-line pathogenic variants in these cancer susceptibility genes can contribute
to improve the prevention, therapy, and surveillance of breast/ovarian cancer patients, as well as
to a better knowledge of BC/OC genetics. Unfortunately, a large fraction of variants is classified as
variants of uncertain clinical significance (VUS). Since the association with cancer risk is unknown
for these variants, this complicates genetic counseling and the clinical management of patients.
Multifactorial likelihood approaches, together with functional studies of variants, can facilitate their
interpretation [20–22]. Variants of disease-genes are typically assessed according to their predicted
impact on protein translation, so protein truncating variants (frameshift and nonsense) are usually
classified as damaging variants. However, variants might also have an impact on RNA expression and,
e.g., disrupt transcription initiation, miRNA regulation, or splicing [23–27].

Pre-mRNA splicing is an essential gene expression mechanism, whereby introns are excised
and exons are consecutively joined to produce the mature mRNA. The splicing motifs include the
core consensus sequences (5′ and 3′ splice sites -5′SS and 3′SS-, the polypyrimidine tract, and the
branchpoint) and exonic or intronic splicing enhancers and silencers [28]. Variants in these cis-motifs
may lead to abnormal events such as exon skipping, intron retention, inclusion of pseudoexons,
or the use of alternative splice sites [29]. These generate aberrant transcripts which may be associated
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with a genetic disorder [21,30–32]. According to the Human Gene Mutation Database (accessed on
27 November 2019) around 9% (23354/269419) of reported disease-causing mutations impair splicing,
although some authors suggested that up to 50% of all human disease mutations impair splicing [33,34].

Given the low precision of in silico analysis tools that predict the impact of candidate variants
on RNA splicing, the exact consequences of these genetic changes must be verified in functional
assays [35,36]. The most suitable method to determine whether a particular variant affects splicing
is the direct analysis of blood RNA from heterozygous carriers (either patients or healthy relatives),
although access to blood RNA samples is not always feasible in the diagnostic routine [37–39]. Even if
available, the assessment of the transcripts derived from the variant allele is hampered by the presence of
the wild type one. One possible alternative strategy is to use minigene assays, which have been proven
to represent a robust tool for assessing the pathogenicity of potential spliceogenic variants [40–43].

Multigene panel testing is a cost- and time-effective option to evaluate genes and genetic variants
that may be associated with a risk of cancer, and is becoming widely used in clinical practice. Our study
was conducted in the context of the BRIDGES project (Breast Cancer After Diagnostic Gene Sequencing;
https://bridges-research.eu/) where a panel of 34 known or suspected breast cancer susceptibility genes
were sequenced in 60,466 cases and 53,461 controls [44]. Here, we bioinformatically analyze 40 variants
from the intron/exon boundaries of the RAD51C gene identified in BRIDGES subjects. Twenty variants
are selected and functionally tested by minigene assays.

2. Results

2.1. Bioinformatics Analysis

We identified in BRIDGES patients and controls a total of 40 different variants located at RAD51C
exon/intron boundaries (see Methods). These variants were bioinformatically analyzed with Max
Ent Scan (MES) according to the standards indicated in Materials and Methods. Twenty variants
were selected for further analysis, based on their predicted impact on splicing (Table 1 and Table S1).
Of the 20 selected variants, eleven variants were predicted to impair the 3′SS, and the other nine were
predicted to impair the 5′SS. Six variants (c.405-6T > A, c.571 + 4A > G, c.706-2A > C, c.706-2A > G,
c.966-2A > G, and c.966-2A > T) were predicted to impair the SS and simultaneously create a de novo
SS. Variants c.146-3C > T, c.1026 + 5_1026 + 7del, and c.1026 + 5G > T did not produce significant MES
score changes (≥15%), but they affected the conserved nucleotides of the splice sites. The MES value of
the exon 8 donor site (2.0) was below the default threshold (3.0), so NNSplice calculations for variants
c.1026 + 5_1026 + 7del and c.1026 + 5G > T were used instead (0.8→ <0.1).

https://bridges-research.eu/
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Table 1. Bioinformatics analysis and splicing outcomes of RAD51C canonical splice variants.

Variant (HGVS) 1 Bioinformatics 2
Transcripts

Canonical PTC 3 In-Frame Uncharacterized

Wild type 98.6% ± 0.2% 1106-nt (1.4% ± 0.2%)

c.146-3C > T [↓]3′SS (9.5→8.7) 100%

c.404G > A [−]5′SS (4.8→−3.5) -

H(E2q27): 69.3% ± 2.9%
∆(E2q175): 19.9% ± 0.6%

∆(E2q22): 4.3% ± 0.5%
∆(E2): 2.4% ± 0.2%

913-nt (4.1% ± 3.0%)

c.405-6T > A [−]3′SS (7.7→2.2)
[+] 3′SS (8.6) 4-nt upstream - H(E3p4):95.2%± 1.6%

∆(E3): 4.8% ± 1.6%

c.571 + 4A > G [↓]5′SS (10.5→8.1)
[+] 5′SS (5.5) 4-nt downstream 5.4% ± 0.1% ∆(E3): 76.5% ± 0.3%

H(E3q4): 11.6% ± 0.2% ∆(E3q114): 4.0 ± 0.0% 808-nt (1.4% ± 0.0%)
774-nt (1.1% ± 0.0%)

c.571 + 5G > A [↓] 5′SS (10.5→5.8) - ∆(E3): 91.5% ± 0.3% ∆(E3q114): 4.8 ± 0.2%
808-nt (1.6% ± 0.0%)
917-nt (1.1% ± 0.1%)
774-nt (1.0% ± 0.0%)

c.572-1G > T [−]3′SS (7.4→−1.2) - ∆(E4): 93.4% ± 0.2% 1005-nt (3.3% ± 0.1%)
1058-nt (3.3% ± 0.1%)

c.705G > T [−]5′SS (9.1→2.6) - ∆(E4): 100%

c.705 + 5G > C [↓]5′SS (9.1→7.2) 51.6% ± 2.4% ∆(E4): 48.4% ± 2.4%

c.706-2A > C [−]3′SS (11.1→3.1)
[+]3′SS (3.3) 10-nt downstream - ∆(E5p10): 91.4% ± 1.5%

∆(E5p52): 1.8% ± 0.9% ∆(E5): 4.0% ± 0.1% 886-nt (2.8% ± 1.6%)

c.706-2A > G [−]3′SS (11.1→3.1)
[+]3′SS (3.2) 10-nt downstream - ∆(E5p10): 33.5% ± 0.2% ∆(E5): 65.4% ± 0.3% 972-nt (1.1% ± 0.1%)

c.837 + 2T > C [−]5′SS (8.6→0.8) - ∆(E4_5): 2.2% ± 0.1% ∆(E5): 89.3% ± 0.2% 972-nt (8.5% ± 0.1%)

c.905-3C > G [−]3′SS (8.2→−4.9) - ∆(E7): 98.1% ± 1.0%
∆(E7_8): 1.9% ± 1.0%

c.905-2A > C [−]3′SS (8.2→0.1) - ∆(E7): 97.4% ± 0.4% 660-nt (2.6% ± 0.4%)

c.905-2_905-1del [−]3′SS(8.2→0.6) - ∆(E7): 100%
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Table 1. Cont.

Variant (HGVS) 1 Bioinformatics 2
Transcripts

Canonical PTC 3 In-Frame Uncharacterized

c.965 + 5G > A [↓]5′SS(8.7→3.8) - ∆(E7): 100%

c.966-3C > A [−]3′SS (7.3→4.4) 2% ± 1.7% ∆(E8): 86.8% ± 3.2% H(E8p3)-a: 9.7% ± 0.4% 881-nt (1.5% ± 1.4%)

c.966-2A > G [−]3′SS (7.3→−0.7)
[+]3′SS(7) 3-nt upstream - ∆(E8): 86.7% ± 0.5% H(E8p3)-b:11.0% ± 0.4% 881-nt (1.2% ± 0.0%)

940-nt (1.1% ± 0.2%)

c.966-2A > T [−]3′SS (7.3→−1.1)
[+]3′SS(7.6) 3-nt upstream - ∆(E8): 89.1% ± 0.3% H(E8p3)-c:5.9% ± 0.1% 881-nt (2.8% ± 0.3%)

940-nt (2.2% ± 0.0%)

c.1026 + 5_1026 + 7del [−]5′SS(2→?)
(NNSplice: 0.8→ <0.1) - ∆(E8): 79.5% ± 1.4%

H(E8q41): 3.3% ± 0.2% ∆(E8q18):13.8% ± 0.7% 881-nt (2% ± 0.6%)
778-nt (1.4% ± 1.6%)

c.1026 + 5G > T [−]5′SS(2→?)
(NNSplice: 0.8→ <0.1) - ∆(E8): 78.0% ± 0.5%

H(E8q44): 1.4% ± 0.2% ∆(E8q18):18.7% ± 0.5% 881-nt (1.9% ± 0.2%)

1 Variants without any trace (or ≤5%) of the full-length transcript are underlined. 2 [−] site disruption; [+] new site; [↓] reduction of MES score. 3 PTC: Premature Termination Codon; ∆,
loss of exonic sequences; H inclusion of intronic sequences; E (exon), p (acceptor shift), q (donor shift). When necessary, the exact number of nt inserted or deleted is indicated.
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2.2. Functional Analysis

Since all candidate variants were located in exons 2 to 8 (Table 1), we designed a 3731-bp insert
containing these seven exons (Figure S1) and cloned this insert into the pSAD vector [41], representing
the minigene mgR51C_ex2-8 (Figure 1A). This clone produced a full-length transcript in MCF-7 cells of
an expected size (1062 nt), sequence, and structure (V1-RAD51C_ex2 to ex8-V2) (Figure 1B), so it was
suitable to assess a possible effect of the variants on pre-mRNA splicing. The wild type (wt) construct
also generated residual amounts (1.4%) of an unknown 1106-nt transcript that could not be characterized.
To identify physiological alternative splicing events, RNA from the host cells (MCF-7) and from the human
breast control were analyzed by RT-PCR as well. The expected full-length transcript (957-nt) was detected
by fluorescent fragment electrophoresis together with some alternative splicing isoforms, of which exon
7 skipping was the main event (Figure 1C).
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Figure 1. Structure of the minigene mgR51C_ex2-8 and functional validation. (A) Schematic representation
of the RAD51C minigene with exons 2 to 8. Exons are indicated by boxes, broken arrows indicate the expected
splicing reactions in eukaryotic cells and black arrows locate specific vector RT-PCR primers. (B) Functional
assay of the wild type minigene mgR51C_ex2-8. cDNAs were amplified with primers SD6-PSPL3_RTFW
and RTpSAD-RV (full-length transcript V1-RAD51C ex2-8-V2 = 1062 nt). The RT-PCR product was run
by agarose gel electrophoresis (left) and fluorescent capillary electrophoresis (right), where the full-length
transcript is shown as a blue peak and the LIZ1200 size standard as orange/faint peaks. (C) Agarose gel
(left) and fluorescent capillary electrophoresis (right) of transcripts produced by MCF-7 cells (above) and
human breast RNA (below). cDNAs were amplified with primers RTR51C_ex1-FW and RTR51C_ex9-RV
(full-length transcript = 957nt). FAM-labelled products (blue peaks) were run with LIZ1200 (orange peaks)
as the size standard. FL, full-length transcript.
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The 20 selected variants were genetically engineered into the wt minigene and then were introduced
into MCF-7 cells. Nineteen variants (95%) impaired splicing, 18 of which produced no trace or residual
amounts of the full-length transcript (Table 1; Figure 2B). Eight variants affected the classical ±1,
2 positions of the 5′ and 3′SS (c.572-1G > T, c.706-2A > C, c.706-2A > G, c.837 + 2T > C, c.905-2A > C,
c.905-2_905-1del, c.966-2A > G, and c.966-2A > T), five changed the +5 position (c.571 + 5G > A,
c.705 + 5G > C, c.965 + 5G > A, c.1026 + 5_1026 + 7del, and c.1026 + 5G > T), two modified the
last exon nt (c.404G > A and c.705G > T), another two substituted the -3 nt (c.905-3C > G and
c.966-3C > A), one disrupted the +4 nt (c.571 + 4A > G), and another one altered the polypyrimidine
tract (c.405-6T > A). Only variant c.146-3C > T did not disrupt splicing.
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Figure 2. Splicing functional assays of selected RAD51C variants. (A) Map of tested variants. (B) fluorescent
fragment analysis of transcripts generated by the wild type and mutant minigenes. cDNAs were amplified
with primers SD6-PSPL3_RTFW and RTpSAD-RV (full-length transcript V1-RAD51C ex2-8-V2 = 1062 nt).
FAM-labelled products (blue peaks) were run with LIZ1200 (orange peaks) as the size standard. For transcript
descriptions see Table S2; FL, full-length transcript.
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2.3. Transcript Analysis

High sensitivity fluorescent fragment analysis allowed us to detect at least 35 transcripts (from 1
to 5 transcripts per variant), 22 of which could be characterized (Table S2, Table 1). Sixteen transcripts
introduced premature termination codons (PTC), including 11 predicted to undergo NMD (PTC-NMD
transcripts) and 5 disrupting the reading-frame but not predicted to undergo NMD (PTC transcripts).
On the other hand, six RNA isoforms kept the open reading-frame, but five of them were minor. ∆(E5)
was the most abundant in-frame transcript induced by c.706-2A > G and c.837 + 2T > C (65.4% and
89.3%, respectively). RAD51C exon 5 encodes for 44 amino acids, 26 of which are strictly conserved in
vertebrates and contain the Walker-B domain between (p.238–242; Figure S2) [45], which plays a relevant
role in RAD51C function. ∆(E8q18) was produced by variants c.1026 + 5_1026 + 7del and c.1026 + 5G > T
(13.8% and 18.7%, respectively). This transcript encodes for a deletion of six amino acids (Val337 to
Lys342, of which only Ile 341 is strictly conserved in vertebrates), which removes six out of the seven
amino acids of the essentialβ-strand-8, suggesting a plausible protein dysfunction (Figure S2). However,
no pathogenic missense mutations have been recorded at the ClinVar database in this region, so we
cannot confirm that transcript ∆(E8q18) encodes for inactive RAD51C. Of note, variants c.966-3C > A,
c.966-2A > G, and c.966-2A > T of the exon 8 3′SS produced three different versions of a 3-nt intronic
insertion (acceptor shift; Table 1): H(E8p3)-a (r. [966-3c > a,965_966ins966-3_966-1]; 9.7%), H(E8p3)-b
(r. [966-2a > g,965_966ins966-3_966-1]; 11.0%), and H(E8p3)-c (r. [966-2a > u,965_966ins966-3_966-1];
5.9%), respectively. These would provoke three different effects on protein translation, i.e., p.Arg322dup,
p.Arg322delinsSerGly and p.Arg322delinsSerTrp, respectively. Arg322 is strictly conserved, indicating
that this residue might be important for protein function (Figure S2). On the other hand, three missense
changes have been reported in ClinVar at codon 322 (p.Arg322Lys, p.Arg322Thr, and p.Arg322Ser),
all of them classified as VUS, so protein dysfunctionality by any of these three transcripts could not be
supported. The remaining in-frame transcript ∆(E3q114) showed a relative proportion below 5% in
variants c.571 + 4A > G and c.571 + 5G > A, where 12 out of the 38 deleted amino acids are strictly
conserved (Figure S2).

2.4. ACMG/AMP-Like Classification of RAD51C Variants Based on PS3/BS3 Functional Evidence

On the basis of the data acquired using minigene analysis, the ACMG/AMP-like classification
approach classifies 15 variants as pathogenic/likely pathogenic and 5 variants as of uncertain significance
(Table 2; Methods; Figure S3). Incorporating splicing functional data into the ACMG/AMP framework
proved to be non-trivial and raised several relevant issues, including the identification of what we
think are internal inconsistences of the framework (see Discussion).
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Table 2. Proposed clinical classification of RAD51C variants according to ACMG/AMP-based criteria.

c.HGVS 1 Clinvar 2 PVS1 3 PP3/BP4 4 PS3/BS3 5 PS4 6 PM2 7 PM 8
Proposed pSAD-Based

ACMG/AMP-Like
Variant Classification 9

c.146-3C > T Conflicting (*)
LB (2), VUS, (2) N/A (−4%) N/A BS3 N/A (4/303,851) N/A N/A (BS3 only) Uncertain

Significance

c.404G > A LP (**) N/A (−99.5%) PP3 PS3_VS N/A (1/300,225) PM2 N/A (PS3_VS + PM2) Likely
Pathogenic

c.405-6T > A VUS (*) N/A (−79%) PP3 PS3_VS N/A (0/304,932) PM2 N/A (PS3_VS + PM2) Likely
Pathogenic

c.571 + 4A > G
Conflicting (*)
LB (1), LP(1),

VUS (6)
N/A (−30.5%) PP3

(88%VS + 4%S +
5%N/A)

PS3
N/A (1/84,873) PM2 N/A (PS3 + PM2)

Likely Pathogenic 10

c.571 + 5G > A VUS (**) N/A (−33.9%) PP3 (95% vs. + 5%S)
PS3_VS PS4 (8/336,321) N/A PM3 11 (PS3_VS + PS4 + PM3)

Pathogenic

c.572-1G > T not reported PVS1 N/A PS3_VS N/A (1/304,681) PM2 N/A (PS3_VS + PM2) Likely
Pathogenic

c.705G > T VUS (**) N/A (−75.8%) PP3 PS3_VS N/A (2/304,499) PM2 N/A (PS3_VS + PM2) Likely
Pathogenic 10

c.705 + 5G > C not reported N/A (−16.8%) PP3 (48%VS + 52%
N/A) N/A N/A (1/304,406) PM2 N/A (PM2 only) Uncertain

Significance

c.706-2A > C LP (**) PVS1 N/A (95%VS + 5% S)
PS3_VS N/A (0/336,207) PM2 N/A (PS3_VS + PM2) Likely

Pathogenic

c.706-2A > G P/LP (**) PVS1 N/A (34%VS + 65%
S) PS3 PS4 12 (10/336,207) N/A N/A (PS3 + PS4) Pathogenic

c.837 + 2T > C LP (**) PVS1 N/A (90% S + 2% VS)
PS3 N/A (0/304,832) PM2 N/A (PS3 + PM2) Likely

Pathogenic

c.905-3C > G not reported N/A (−92.8%) PP3 PS3 N/A (1/336,187) PM2 N/A (PS3 + PM2) Likely
Pathogenic

c.905-2A > C P/LP (**) PVS1 N/A PS3 PS4 (5/336,191) N/A N/A (PS3 + PS4) Pathogenic

c.905-2_905-1del P/LP (**) PVS1 N/A PS3 PS4 (4/304,579) N/A N/A (PS3 + PS4) Pathogenic
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Table 2. Cont.

c.HGVS 1 Clinvar 2 PVS1 3 PP3/BP4 4 PS3/BS3 5 PS4 6 PM2 7 PM 8
Proposed pSAD-Based

ACMG/AMP-Like
Variant Classification 9

c.965 + 5G > A LP(1);
VUS(2) N/A (−59.9%) PP3 PS3 N/A (2/304,579) PM2 N/A (PS3 + PM2) Likely

Pathogenic

c.966-3C > A not reported N/A (−35.3%) PP3 (90%S +
10%N/A) N/A N/A (1/304,818) PM2 N/A (PM2 only) Uncertain

Significance

c.966-2A > G LP (*) PVS1 N/A (90%S +
10%N/A) N/A N/A (0/304,818) PM2 N/A (PM2 only) Uncertain

Significance

c.966-2A > T not reported PVS1 N/A (90%S +
10%N/A) N/A N/A (0/304,818) PM2 N/A (PM2 only) Uncertain

Significance

c.1026 + 5_1026
+ 7del P/LP (**) N/A (−98.8%) PP3 PS3 PS4 (6/304,853) N/A N/A (PS3 + PS4) Pathogenic

c.1026 + 5G > T not reported N/A (−98.8%) PP3 PS3 N/A (0/304,840) PM2 N/A (PS3 + PM2) Likely
Pathogenic

1 NM_058216.3. 2 ClinVar as 10/07/2020. LB (likely benign), VUS (variant uncertain significance), LP (Likely Pathogenic), P (Pathogenic). ClinVar review status is summarized as follows;
two stars (**) for criteria provided + multiple submitters + no conflicts, and one star (*) for criteria provided + single submitter, or for conflicting interpretations of pathogenicity. In the
latter case, the number of submitters supporting each interpretation is indicated. 3 PVS1 (pathogenic very strong), 4 PP3/BP4 (computational evidence supports a deleterious effect/suggest
no impact). 5 PS3/PS3_VS/BS3 (functional data supports damaging effect/very strongly supports damaging effect/shows no effect). pSAD read-outs (transcripts) were interpreted as per
ClinGen-SVI PVS1 recommendations. If transcripts with different evidence strengths were observed, the approximated % is shown. In these cases, final PS3 strength was based on expert
judgment (see methods). 6 PS4 (strong pathogenic based on association studies). For association evidence, we compared MAF in BC cases (60,466 BRIDGES BC cases) and controls
(53,461 BRIDGES controls + gnomADv2.1 NFE). 7 PM2 (moderate pathogenic based on rarity). For rarity evidence, we counted alleles in 53,461 BRIDGES controls + gnomADv2.1 global.
8 PM3 (moderate pathogenic based on detection in trans with pathogenic variant in a recessive disorder) 9 Predictive evidence codes (PVS1/PP3/BP4) are excluded from our pSAD-based
ACMG/AMP-like classification approach (see Discussion). 10 ACMG/AMP guidelines are not intended to identify “intermediate risk variants”. Yet, we think that is worth considering this
possibility for variants expressing the variable proportion of (likely) functional mRNAs (see Supplementary Methods) 11 [46]. 12 [47].
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3. Discussion

Massive parallel sequencing of breast and/or ovarian cancer genes has allowed the genetic testing of
thousands of patients in a high throughput and cost-effective strategy. The goal of the BRIDGES initiative
was to firmly establish the breast cancer association of genes tested by commercial multigene panels with
the narrowest confidence intervals of risk estimates currently available. BRIDGES analyzed 34 known or
suspected BC genes that were sequenced in 60,466 patients and 53,461 controls [44]. Nonsense, frameshift,
and ±1, 2 splice site variants (sometimes collectively referred to as protein truncating variants or PTVs)
are usually assumed to be pathogenic or likely pathogenic. This assumption might work well for certain
epidemiological studies but cannot be taken for granted in the clinic (e.g., spliceogenic variants, including±1,
2 splice site variants, are not necessarily pathogenic, as they may cause in-frame alterations preserving
function). Many other variants (e.g., rare missense changes) are considered VUS, due to their unknown
impact on gene function and disease risk [48]. In fact, clinical management of VUS carriers (and non-carrier
relatives) is complex, since risk evaluation is solely based on family history [49,50].

The RAD51C gene was one of the 34 genes analyzed by BRIDGES given its role in breast and ovarian
cancer [6,51]. A statistically significant association for PTVs has been found for ER-negative breast cancer
and breast and ovarian cancer [44,52]. In this work, we have carried out the most comprehensive splicing
study of germline variants of RAD51C to date. Forty variants located within the intron/exon boundaries
were selected and analyzed by MES or NNSplice. In keeping with the standards indicated in Materials and
Methods, 20 candidate variants were chosen (Table 1) for subsequent RNA assays.

In the absence of patient RNA, splicing reporter minigenes provide a straightforward and robust
method for the initial characterization of putative spliceogenic variants for several reasons. The assay
(i) uses a simple and clean analysis of a single mutant allele; (ii) is performed in a cell type relevant
for the disease; (iii) circumvents the NMD interference with the use of an inhibitor; (iv) uses a single
construct for testing multiple variants, among other benefits of this technology. Here, we envisioned
a construct that contained a synthesized insert with seven (exons 2–8) out of the nine exons of the
RAD51C gene, so that all the selected variants (Figure 2A) could be evaluated in one single minigene.

Remarkably, all but one variant disrupted splicing, underlining the specificity of our criteria.
MES or NNSplice predicted correctly an effect on RNA splicing (either splice-site disruptions or
significant score reductions) in 19 variants (Table 1). Only one variant, c.146-3C > T, did not alter
splicing, indeed, the MES score was just slightly reduced (−8.5%) because the most frequent −3
nucleotide (C) is substituted by the second most frequent one (T). However, other -3 non-conservative
changes in which the nucleotide substitution was different, such as c.905-3C > G and c.966-3C > A,
caused total or almost total splicing disruptions. Likewise, a double effect was precisely predicted by
MES for c.405-6T > A: 3′SS disruption and generation of a strong de novo 3′SS 4-nt upstream that,
in fact, was mainly used by the splicing machinery (H(E3p4), 95.2%). MES did not identify the exon
8 donor site, although the NNSplice did. In this case, both +5 variants (c.1026 + 5_1026 + 7del and
c.1026 + 5G > T) totally disrupted splicing without any trace of the full-length isoform. Conversely,
another +5 variant (c.705 + 5G > C) yielded 51.6% of the full-length isoform with a relatively low
MES decrease (−20.8%). It is also worthy to mention that c.571 + 4A > G slightly reduced the MES
score (−22.5%) but the resultant mutant donor site was still strong (MES = 8.1). However, this change
induced an almost complete aberrant splicing with a residual amount of the full-length transcript
(5.4%). Finally, the different splicing outcomes of the two changes at the same position, c.706-2A > C
and -2A > G, should be highlighted (Table 1). Variant c.706-2A > C mainly caused the use of a cryptic
3′SS 10-nt downstream (∆(E5p10); 91.4%), while c.706-2A > G mainly generated ∆(E5) (65.4%) but
also ∆(E5p10) (33.5%). However, MES scores of the cryptic 3′SS of both changes (3.3 vs. 3.2) were low
and not significantly different. One possible explanation could be that the c.706-2A > C is a purine to
pyrimidine change that would strengthen the polypyrimidine tract of the internal cryptic acceptor site
10-nt downstream (used in ∆(E5p10)), whereas c.706-2A > G (purine to purine) would not.

Given this and the unpredictability of splicing outcomes, with 35 different transcripts, RNA assays
are strongly recommended to investigate the impact of genetic variants on splicing. Fluorescent capillary
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electrophoresis of the RT-PCR products also offered high resolution and sensitivity, being capable
of distinguishing isoforms that differ only in a few nucleotides [53], such as the full-length and
H(E8p3)-a,b,c transcripts that just contain a 3-nt insertion.

Interestingly, 12 transcripts (H(E2q27), ∆(E2q175), ∆(E2q22), ∆(E2), ∆(E3), ∆(E4), ∆(E4_5), ∆(E5),
∆(E7), ∆(E7_8), ∆(E8), andH(E8p3)) had been previously characterized as naturally occurring isoforms
of RAD51C [54], suggesting that physiological alternative events may somehow predict variant splicing
profiles [55–57]. Moreover, minigene assays are capable of mimicking pathological patterns of variants.
Thus, minigene experiments reproduced previous results of patient RNA assays of several variants
inducing very similar or even identical outcomes: c.571 + 4A > G (∆(E3)) [58], c.706-2A > G (∆(E5)) [59],
c.905-2_905-1del (∆(E7)) [60], and c.1026 + 5_1026 + 7del (∆(E8)) [61]. Moreover, variants c.837 + 2T > C
and c.905-3C > G/c.905-2A > C mimicked previous results of c.837 + 1G > A and c.905-2A > G of
the same splice sites, respectively [62,63]. Finally, variants c.404G > C/G > T, at the same position
as c.404G > A, promoted the use of the same cryptic splice site 27-nt downstream (H(E2q27)) of the
canonical donor site [64]. Altogether these results lend support to the reproducibility of the minigene
approach. However, while in patient samples, the major and apparently unique aberrant transcript of
each of the variants c.571 + 4A > G, c.706-2A > G, and c.1026 + 5_1026 + 7del was the main outcome
in minigene assays (∆(E3)-76.5%, ∆(E5)-65.4%, and ∆(E8)-78.0%, respectively), the minor minigene
transcripts were not detected in patient RNAs (Table 1). These slight variations may be due to several
reasons, including: (i) tissue-specific alternative splicing, since patient RT-PCRs are usually performed
from blood RNA; (ii) the high sensitivity of the fluorescent fragment analysis, which allows the
identification of rare isoforms; (iii) the use of NMD inhibitors in minigene experiments (patient samples
are not usually NMD-inhibited), which improves the detection of low-abundant PTC-transcripts;
(iv) the interference of the wild type allele in patient samples; (v) the high transcription rate triggered
by a strong minigene SV40 promoter [38]. Likewise, the wild type construct did not exactly replicate
the splicing profile of MCF-7 or control breast samples that showed minor alternative transcripts
(Figure 1C). Hence, other factors should be considered, such as the absence of the natural genomic
context in the minigene that actually contains shortened introns 2, 3, 4, 5, 6, 7, and 8 (Supplementary
Figure S1). Therefore, we might speculate that the absence of putative regulatory intronic elements
and the natural exon/intron architecture might somewhat influence splicing outcomes of the wild type
and mutant minigenes [65].

Clinical Interpretation of Variants

The clinical interpretation of variants cannot be done solely on the basis of the functional data
presented in this manuscript. From a clinical perspective, the data presented here are to assist in
classifying genetic variants. Yet, the analysis of spliceogenic variants is an especially challenging and
laborious mission. The presence of numerous RAD51C abnormal transcripts and the production of
several transcripts by many variants are proofs of this arduous undertaking. From a simple functional
viewpoint, the biological indicators of pathogenicity of a particular variant are the strong reduction of
the expression of wild type transcript and the presence of severe splicing anomalies that are predicted
to result in protein truncation or loss of critical protein domains. On this basis, 18 variants with severe
splicing anomalies (Table 1) should be classified as deleterious or likely deleterious.

However, more complex and comprehensive guidelines have been developed for the clinical
interpretation of variants, such as those of the ACMG-AMP [66]. Here, we propose a clinical classification of
our findings on the basis of these guidelines. Overall, we think that our ACMG/AMP-like classification
of 20 RAD51C pre-selected variants based on minigene data is rigorous, with most variants placed in
the pathogenic/likely pathogenic category, but highlighting as well up to four variants (c.705 + 5G > C,
c.966-3C > A, c.966-2A > G, c.966-2A > T) that despite being spliceogenic, require further studies to be
definitely classified.

We would like to highlight as well that, at some point, our classification is based on decisions
not necessarily shared by other experts in the field (e.g., replacing in silico predictions by functional
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evidence rather than combining both, see rationale below and in Supplementary Methods). For that
reason, others may propose a different clinical classification. In turn, this highlights a relevant issue in
variant classification, namely, the lack of standardization.

Accordingly, our minigene-based ACMG/AMP-like classification approach (Table 2) was not
intended to produce a definitive (i.e., authoritative) clinical classification of these variants (a prerequisite
for that will be the completion of the ClinGen expert panel adaptation of the ACMG/AMP rules to
RAD51C), but rather to highlight the complexity of determining the appropriate aggregate strength of
combining predictive and functional splicing types of evidence into the ACMG/AMP classification
framework without introducing inconsistences into the system [67].

Internal inconsistences that we have identified in the ACMG/AMP framework are: (i) GT-AG ± 1, 2
variants producing PTC-NMD transcripts being more easily classified as pathogenic (PVS1 + PS3 = Pathogenic)
than nonsense/indels variants introducing equivalent PTC-NMD alterations (PVS1 + ? = Pathogenic),
and (ii) GT-AG ±1, 2 variants being more easily classified as pathogenic that other spliceogenic variants
producing identical RNA outputs (PVS1+ PS3 = Pathogenic vs. PS3 + PP3 = Uncertain Significance).
Further, we think that a system granting likely pathogenic classification for rare GT-AG ± 1, 2 variants
(PM2 + PVS1 = likely pathogenic) fails by discouraging RNA analyses.

In the present study, we propose addressing these issues by a somewhat radical approach:
replacing in silico predictions by functional evidence (rather than combining both). We think that
this approach: (i) avoids the internal inconsistences already mentioned, and (ii) recognizes the
fact that predictive and functional splicing pieces of evidence are not truly independent from each
other. Implicitly, the ACMG/AMP classification framework assumes that each piece of evidence is
independent [68], an assumption hardly met by the predictive and functional criteria as most functional
analyses are performed in pre-selected variants on the basis of bioinformatics predictions such as the
present study.

The ClinGen CDH1 expert panel has proposed to use PVS1_Strong (rather than PVS1) for GT-AG
± 1, 2 variants and combine these with RNA (PS3) or association (PS4) data to reach a pathogenic
classification [69]. In a second iteration of the rules (www.clinicalgenome.org/affiliation/50014/),
the authors refine the approach by stating that for PVS1_Strong variants (GT-AG ± 1, 2), PS3_moderate
(rather than PS3) should be applied.

While the suggestion of “downgrading” the loss-of-function prediction for GT-AG ± 1, 2 variants
(and encouraging RNA analyses) is appealing to us, the approach does not eliminate internal
inconsistences for GT-AG ± 1, 2 vs. other PTC-NMD variants (PVS1_Strong + PS3_moderate = Likely
Pathogenic vs. PVS1only = uncertain significance) and does not even address the issue for spliceogenic
variants other than GT-AG ± 1, 2. Further, nothing is said about the appropriate strength of combining
computational and functional splicing data if the evidence codes go in opposite directions.

In our approach, the computational evidence does not contribute to the final clinical classification
of functionally validated spliceogenic variants, but we do acknowledge a fundamental role for these
predictions in selecting and prioritizing variants for subsequent splicing analyses. Indeed, we recommend
running bioinformatic splicing predictions for all genetic variants regardless of their nature and/or location
(i.e., nonsense, in-frame, and frameshift indels and synonymous, non-synonymous, and intronic variants).
Further, once a variant is selected for splicing analysis, the predictions have a role in designing and/or
validating the corresponding assays. For instance, a negative experimental result (no splicing effect) in
a variant with strong computational evidence might points towards a sub-optimal experimental design
(e.g., multi-exon skipping is missed due to wrong selection of primers). Further on, a positive result (splicing
alteration) for a variant with no strong computational evidence may suggest that it is not the presumed
variant under investigation but another variant in cis (e.g., a deep intronic variant) that is causing the
splicing alteration.

The “quality control” role of computational evidences is probably more relevant for assays
performed in RNA from carriers than in minigene-based assays (e.g., in the latter approach there is no
doubt about the variant under investigation). Yet, we argue that the concordance with computational

www.clinicalgenome.org/affiliation/50014/
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evidence (as observed in the present study) is also relevant to consider minigene outputs strong (or very
strong) evidence towards pathogenicity.

Ultimately, validation of the pathogenicity will need to be based on the observed risk associated
with the variants—either through case-control or family-based studies. It will be extremely challenging
to evaluate risk for individual variants, since they are very rare, but it is possible in principle to evaluate
the classification system as a whole. Furthermore, in BRIDGES, these spliceogenic variants account for
44.9% of all patients carrying a pathogenic/likely pathogenic variant (data not shown), indicating that a
high proportion of RAD51C breast cancer risk-associated alleles displays splicing defects, as previously
described for BRCA1 and BRCA2 [21].

4. Materials and Methods

4.1. Ethics Approval

Ethical approval for this study was obtained from the Ethics Committee of the Spanish National
Research Council-CSIC (28/05/2018).

4.2. Variant and Transcript Annotations

BRIDGES sequencing data [44] identified a total of 40 different variants located at RAD51C splice
sites (SS), defined for the purpose of the present study as: (i) intron/exon (IVS-10_IVS-1/2nt) boundaries
(3′SS), and (ii) exon/intron (2nt/IVS + 1_IVS + 10) boundaries (5′SS). Variants and alternative transcripts
were annotated according to the Human Genome Variation Society (HGVS) guidelines on the basis of
the RAD51C GenBank sequence NM_058216.3. To simplify transcript annotation, we identified them
with a shortened code that combines the following symbols [56,70]: ∆ (skipping of exonic sequences),
H (inclusion of intronic sequences), E (exon), p (acceptor shift), q (donor shift). When necessary,
the number of deleted or inserted nucleotides is indicated. For example, H (E2q27) indicates the use of
an alternative donor site downstream of exon 2 causing a 27-nt intron insertion.

4.3. Bioinformatics Analysis

All 40 RAD51C variants from the intron-exon boundaries were analyzed to identify potential
splicing variants using splice site prediction software (Table S1). Mutant and wild type sequences
were analyzed with the Max Ent Scan (MES) algorithm of Human Splicing Finder 3.1 [71,72], except
for exon 8 donor variants that were analyzed by NNSplice [73] because this site was not detected by
MES. Potential spliceogenic variants were selected according to the following criteria: (i) splice site
disruption at the AG/GT positions; (ii) important MES score changes (≥15%) [35,74]; (iii) creation of
de novo splice sites; (iv) regardless of computer predictions, variants at other conserved positions of
the acceptor (Y11NCAG|G) and donor (MAG|GTRAGT) consensus sequences, such as Pyrimidine to
Purine changes or deletions at the polypyrimidine tract, nucleotide substitutions of a conserved nt at
the intronic positions −3C, +3R, +4A, +5G, +6T, as well as the first (G) and the last three nucleotides of
the exon (M, A, G).

4.4. Minigene Construction and Mutagenesis

RAD51C has 9 exons but all the potential spliceogenic variants from BRIDGES subjects were
located in exons 2 to 8. Therefore, an insert (3731 bp) with exons 2 to 8 and their respective flanking
intronic sequences was designed in our laboratory and then synthesized at the Genewiz facility
(Genewiz, South Plainfield, NJ, USA) (Figure S1). This fragment was cloned into the splicing vector
pSAD (Patent P201231427-CSIC) [41,75] between the restriction sites BamHI and EcoRI. The wild type
minigene mgR51C_ex2-8 was used as template to generate 20 candidate BRIDGES DNA variants
(Table S2) with the QuikChange Lightning kit (Agilent, Santa Clara, CA, USA). All constructs were
confirmed by sequencing (Macrogen, Madrid, Spain). The whole protocol is outlined in Figure 3.
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Figure 3. Workflow of the minigene protocol. The basic assay includes the following steps: (1) minigene
construction; (2) site-directed mutagenesis; (3) transfection of the wild type and mutant minigenes;
(3) inhibition of nonsense-mediated decay and RNA purification; (4) transcript sequencing and fragment
analysis by fluorescent capillary electrophoresis; (5) data interpretation.

4.5. Transfection of Eukaryotic Cells

Approximately 2 × 105 MCF-7 cells were grown to 90% confluency in 0.5 mL of medium (MEM,
10% Fetal Bovine Serum, 1% nonessential amino acids, 2mM Glutamine and 1% Penicillin/Streptomycin;
Sigma-Aldrich, St. Louis, MO, USA) in 4-well plates (Nunc, Roskilde, Denmark). Cells were transfected
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with 1 µg of the wt and mutant minigenes using 2 µL of Lipofectamine LTX (Life Technologies, Carlsbad,
CA, USA). To inhibit nonsense-mediated decay (NMD), cells were treated with cycloheximide 300µg/mL
(Sigma-Aldrich, St. Louis, MO, USA) for 4 h just before RNA extraction. RNA was purified with the
Genematrix Universal RNA Purification Kit (EURx, Gdansk, Poland) including on-column DNase
I digestion.

4.6. Reverse Transcription Polymerase Chain Reaction and Fragment Analysis

Retrotranscription was carried out with 400 ng of RNA and the RevertAid First Strand cDNA
Synthesis Kit (Life Technologies, Carlsbad, CA, USA), using the vector-specific primer RTPSPL3-RV
(5′-TGAGGAGTGAATTGGTCGAA-3′). Samples were incubated at 42 ◦C for 1 h, followed by 5 min
at 70 ◦C. Then, 40 ng of cDNA (final volume of 50 µl) were amplified with SD6-PSPL3_RT-FW
(5′-TCACCTGGACAACCTCAAAG-3′) and RTpSAD-RV (Patent P201231427) (size 1062 nt) using
Platinum-Taq DNA polymerase (Life Technologies). Samples were denatured at 94 ◦C for 2 min,
followed by 35 cycles of 94 ◦C/30 sec, 60 ◦C/30 sec, and 72 ◦C (1 min/kb), and a final extension step at
72 ◦C for 5 min. RT-PCR products were sequenced as previously indicated.

In order to quantify all transcripts relatively to each other, semi-quantitative fluorescent RT-PCRs
were performed in triplicate with primers PSPL3_RT-FW and RTpSAD-RV (FAM-labelled) and
Platinum Taq DNA polymerase (Life Technologies, Carlsbad, CA, USA) under the above standard
conditions except that 26 cycles were herein applied [31,41]. FAM-labeled products were run with
LIZ-1200 Size Standard at the Macrogen facility and analyzed with the Peak Scanner software V1.0.
Only peak heights ≥50 RFU (Relative Fluorescence Units) were considered. Furthermore, MCF-7
and Human Breast Total RNAs (Agilent, cat. no. 540045, discontinued) were retrotranscribed with
primer RTR51C_ex9-RV (5′- ACATGCAGAAGTAACAACAG-3′) and then amplified with primers
RTR51C_ex1-FW (5′-GAACTCCTAGAGGTGAAAC-3′) and again RTR51C_ex9-RV labelled with FAM
(amplicon length: 957 bp) in the same above PCR conditions except that the annealing temperature
was set at 58 ◦C. Mean peak areas of three independent experiments of each variant were used to
calculate the relative proportions of each transcript and standard deviations.

4.7. ACMG/AMP-Like Classification of 20 RAD51C Variants Based on PS3/BS3 Functional Evidence

Since no ClinGen RAD51C Expert panel specifications of the American College of Medical Genetics
and Genomics and the Association for Molecular Pathology (ACMG/AMP) variant curation guidelines are
currently available (www.clinicalgenome.org/), we performed a tentative classification (ACMG/AMP-like)
based on: (i) generic ACMG/AMP guidelines [66]; (ii) specific aspects of the ClinGen Sequence Variant
Interpretation Working Group (ClinGen-SVI) recommendations for interpreting the loss-of-function PVS1
and functional PS3/BS3 evidence codes [67,76]; (iii) some non-gene specific approaches developed by the
ClinGen CDH1 variant curation expert panel [69], and (iv) expert judgment.

In addition to PS3/BS3 (functional evidence, in this case based on splicing data obtained from
minigene analysis), only the rarity code (PM2) made a major contribution to the classification process.
In a subset of variants, association with disease (PS4), and detected in trans with a pathogenic variant in
Fanconi Anemia patients’ (PM3) codes (see Table 2 and Methods for further details), also contributed.
Of note, we excluded the use of predictive evidence codes (i.e., PVS1/PP3) from our classification
approach because (i) splicing predictive and functional evidence are not independent from each
other, and (ii) incorporating both types of evidence into the framework creates internal inconsistences
(see Discussion).

5. Conclusions

We have shown that aberrant splicing of RAD51C represents a relevant pathogenic mechanism in
breast cancer susceptibility. The functional study of variants provides critical data that may increase the
number of families that may benefit from preventive or therapeutic measures. In this regard pSAD-derived
minigenes have been proven as robust and high capacity approaches for the primary characterization of

www.clinicalgenome.org/
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variant-associated defective splicing, since they replicate splicing results of patient RNA, as we have shown
in RAD51C and other disease genes [57,77–79]. By these means and the application of ACMG-AMP-based
criteria, we have classified 15 RAD51C variants as pathogenic or likely pathogenic, which constitute the
largest number of spliceogenic variants of this gene reported so far.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/12/3771/s1,
Figure S1. Insert sequence of minigene mgR51C_ex2-8. Figure S2. Amino acid conservation of the deleted in-frame
sequences of the anomalous RAD51C transcripts ∆(E3q114), ∆(E5) and ∆(E8q18). Figure S3. Loss-of-function
annotation of 22 RAD51C altered transcripts. Table S1. Bioinformatics analysis of RAD51C variants with Max
Ent Score. Table S2. Enigma and HGVS annotations according to transcript ENST00000337432.9 of RAD51C.
Table S3. Mutagenesis primers for RAD51C variants. Supplementary Methods. ACMG/AMP-like classification of
20 RAD51C variants based on PS3/BS3 functional evidence.
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