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ABSTRACT 
 

Advanced maternal-age is a major factor adversely affecting oocyte quality, consequently worsening pregnancy 
outcomes. Thus, developing strategies to reduce the developmental defects associated with advanced maternal-
age would benefit older mothers. Multiple growth factors involved in female fertility have been extensively 
studied; however, the age-related impacts of various growth factors remain poorly studied. In the present study, 
we identified that levels of insulin-like growth factor 2 (IGF2) are significantly reduced in the serum and oocytes 
of aged mice. We found that adding IGF2 in culture medium promotes oocyte maturation and significantly 
increases the proportion of blastocysts: from 41% in the untreated control group to 64% (50 nM IGF2) in aged 
mice (p < 0.05). Additionally, IGF2 supplementation of the culture medium reduced reactive oxygen species 
production and the incidence of spindle/chromosome defects. IGF2 increases mitochondrial functional activity in 
oocytes from aged mice: we detected increased ATP levels, elevated fluorescence intensity of mitochondria, 
higher mitochondrial membrane potentials, and increased overall protein synthesis, as well as increased 
autophagy activity and decreased apoptosis. Collectively, our findings demonstrate that IGF2 supplementation 
in culture media improves oocyte developmental competence and reduces meiotic structure defects in oocytes 
from aged mice. 
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INTRODUCTION 
 

Oocyte quality, an indicator of female fertility, is 

essential for early embryonic developmental 

competency and pregnancy outcomes. Among known 

factors correlated with oocytes quality, advanced 

maternal age is understood as a major deleterious factor 

which is accompanied by declining oocyte quality [1–

3]. Age-related decline in oocyte quality is associated 

with a range of defects, including reduced oocyte 

meiotic maturation, mitochondrial dysfunction, 

impaired spindle assembly and chromosomes 

misalignment in oocytes [4, 5]. Mitochondria, as 

indispensable contributors to cellular energy meta-

bolism in oocytes, are necessary for cellular calcium 

homeostasis, meiosis, regulation of apoptosis, and 

cellular translation during oocyte and embryo 

development [6–8]. Mitochondrial dysfunction in 

oocytes due to advanced maternal age contributes to 

higher chromosomal abnormalities, elevated ROS 

production, and ultimately failure of molecular and 

cellular process which lead to infertility [9, 10]. Such 

defects during meiosis promote the chances of 

infertility, miscarriage, and congenital malformation. 

Thus, it should be useful to elucidate the changes in 

cellular functions of compromised oocytes that occur 

with advanced age, potentially thereby helping to 

develop strategies for reducing these defects. Such 

knowledge would very likely have a significant impact 

on improving the success rates of assisted reproductive 

technologies (ART). 

 

Growth factors are ligands that interact with specific 

receptors and regulate signaling cascades. A number 

of growth factors that are involved in female fertility 

have been extensively studied [11]; however, the age-

related impacts of various growth factors remain 

poorly studied. Previous studies have shown that 

different growth stimulants essential for early 

embryonic development and implantation success are 

secreted from the female reproductive tract [12, 13]. 

Different growth factors are known to confer 

beneficial effects for oocyte and embryo 

developmental competency when added in culture 

medium [14]. Among known reproduction-related 

growth factors of the insulin-like growth factors 

(IGFs) family, insulin-like growth factor 2 (IGF2) is 

particularly well-studied; it is highly expressed in 

granulosa cells, follicles, oocytes, and embryos of 

diverse mammalian species [15–18], and is 

understood as an essential regulator of the human 

ovarian system [16]. 

 

IGF2 is a highly conserved 67-amino acid, single chain 

secreted protein with multiple known physiological 

functions affecting female fertility [19]. Previous work 

has established functional roles for IGF2 in processes 

including follicular growth, oocyte and embryo 

development, reducing placental apoptosis and 

increasing fetal growth [20–23]. In addition, our 

recently published experimental finding and other 

clinical studies have demonstrated a functional impact 

for IGF2 on human and mouse embryo development 

[20, 24, 25]. Furthermore, recent reports about adult 

neuronal culture-derived cell lines have also 

demonstrated that IGF2 increases mitochondrial 

functional activity by reducing oxidative stress, as well 

as by increasing immunofluorescence staining intensity 

for mitochondria and increasing mitochondrial 

membrane potential [26, 27]. Despite these numerous 

basic studies, the potential application of IGF2 is 

relatively unexplored, so little is known at the cellular 

and molecular level about how manipulation of IGF2 

levels in for example oocytes from aged females may 

confer improvements in embryonic growth or even 

overall pregnancy outcomes. 

 

Here, after detecting significant reductions in IGF2 

levels in the serum and oocytes of aged mice, we 

observed increased developmental competency and 

reduced meiotic defects in oocytes from aged mice after 

adding IGF2 in the culture medium. Our findings 

strongly support the application potential of IGF2 for 

helping to overcome age-related meiotic structural 

developmental defects. IGF2 can potentially help to 

improve the currently standard culturing conditions 

used for assisted reproduction technologies. 

 

RESULTS 
 

Aged mice have reduced serum IGF2 protein levels 

and their oocytes have reduced Igf2 expression  
 

In light of previous reports of fertility-promoting roles 

for IGF2, we investigated the potential involvement of 

this growth factor in oocyte development in aged mice 

of 9 months. We first evaluated the IGF2 level in blood 

sera samples from young (4 weeks) and aged (9 

months) mice using ELISA, which revealed that the 

aged mice had significantly reduced IGF2 

concentrations (Figure 1A). Further associating an age-

related decline in IGF2 levels with age-related declines 

in fertility, a qPCR analysis of GV-stage and MII-stage 

oocytes retrieved from young and aged mice also 

revealed reductions in the mRNA levels of Igf2  

[28] (Figure 1B). Further, we detected significant 

reductions in the levels of known antioxidant and 

oocyte-specific genes, including Sirt1, Bmp15, Gdf9, 

and Sod1 (Figure 1B). Collectively, these findings 
suggest that reduced IGF2 levels may be involved in the 

impaired oocyte development known to occur in aged 

mice. 
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Treatment of oocytes from aged mice with IGF2 

improves meiotic maturation and early embryonic 

development 

 

Previous studies have shown that adding IGF2 to 

cultured medium increases the meiotic maturation of 

porcine oocytes [22]. To investigate whether IGF2 

supplementation in culture media functionally impacts 

oocytes development in aged mice, GV-stage oocytes 

were collected from aged mice and cultured in medium 

with or without 50 nM IGF2 (Figure 2A). We observed 

that the presence of IGF2 had no effect on meiotic 

resumption; as no difference in the percentage of 

germinal vesicle breakdown (GVBD) was noticed after 

3 h of in vitro culture (Figure 2B). However, IGF2 

increased the polar body (Pb1) extrusion rate 

significantly (p < 0.05) (Figure 2C–2E). We observed a 

significant increase in oocyte maturation in the presence 

of IGF2: whereas a majority of the control oocytes 

arrested at the GVBD-stage, more than 79% percent of 

the IGF2-exposed oocytes proceeded into the MII-stage 

(Figure 2C–2E). 

 

We additionally explored potential functional impacts 

of IGF2 on embryonic development by culturing 

zygotes from aged mice in M16 medium with or 

without 50 nM IGF2. The presence of IGF2 in the 

culture medium increases the proportion of zygotes 

that developed into blastocysts: from 41% in the 

untreated control group to 64% in the IGF2 group 

(p < 0.05) (Figure 2D, 2E). Note that most of the 

embryos in control group arrested at the compact 

morula-stage (Figure 2E). We also examined 

developmental-fate-related effects of IGF2-treatment 

in vivo with an embryo transfer experiment which 

showed that pregnancy rates did not differ between 

control and IGF2-treated embryos (Figure 2F). These 

results suggest that IGF2 does not apparently enhance 

embryonic development in vivo. Thus, our data 

suggest that IGF2 may have the potential to improve 

the meiotic maturation and early embryonic 

developmental competency of oocytes from aged 

mice. 

 

IGF2 promotes the spindle assembly and chromosome 

alignment while also reducing ROS levels in aged 

mouse oocytes 

 

Previous studies have established that oocytes quality is 

influenced by multiple factors including spindle 

morphology, chromosome alignment, mitochondrial 

activity, and studies of aged mouse oocytes have 

reported aberrantly high frequencies of spindle and 

chromosomal abnormalities [29]. We investigated 

whether administration of IGF2 during in vitro culture 

could improve the quality of oocytes from aged mice. 

Specifically, we retrieved immature GV-stage oocytes 

from aged mice and cultured them in M16 medium  

with or without 50 nM IGF2 until MII-stage. 

Immunofluorescence analysis of MII-stage oocytes

 

 
 

Figure 1. Reduced serum IGF2 protein levels and reduced Igf2 expressions in oocytes from aged mice. (A) Serum IGF2 

concentration in young and aged mice assessed via ELISA. n=3 for each group. (B) qPCR results showing mRNA levels of Igf2 and target genes 
in GV-stage and MII-stage oocytes from young and aged mice. Student’s t-test (two-tailed). *p < 0.05. Error bars indicate the SEM. 
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Figure 2. IGF2 administration in culture medium improves the oocytes maturation and early embryonic developmental 
competence of aged mice. (A) Schematic diagram showing IGF2-treatment of oocytes and early embryos in M16 medium in vitro. (B, C) 

Quantitative analysis of GVBD (B) and Pb1 extrusion in control oocytes (n = 164) and IGF2-treated oocytes (n = 180) (C). (D) Quantitative 
analysis of blastocysts in control embryos (n = 218) and IGF2-treated embryos (n = 222). (E) Morphology of in vitro cultured oocytes and 
embryos examined for development within specific time frames. Arrows indicate the oocytes which failed to extrude a polar body; 
arrowheads denote embryos which failed to develop into blastocysts. Scale bar, 100 μm. (F) Quantitative analysis of the pregnancy rate in the 
control and IGF2-treated embryos. 15 blastocysts were transferred into the uterus of each female. n here indicates the numbers of females 
used as recipients. *p < 0.05. A Student’s t-test (two-tailed). NS, not significant. 
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revealed that the IGF2 treatment resulted in a significant 

reduction in both spindle and chromosomal alignment 

abnormalities (Figure 3A, 3B). We found that the 

majority of the IGF2-treated oocytes displayed typical 

barrel-shaped spindles with well-aligned chromosomes 

(Figure 3A). In addition, we found that the ROS level 

was significantly reduced in the IGF2-treated oocytes 

compared to controls (Figure 3C, 3D) and also detected 

significantly increased ATP content in the IGF2-treated 

oocytes (Figure 3E). Collectively, these in vitro results 

show that IGF2 can improve the quality of oocytes from 

aged mice, specifically by promoting spindle assembly 

and chromosomes alignment and by reducing ROS 

levels. 

 

 
 

Figure 3. IGF2 ameliorates the meiotic defects of aged mouse oocytes. (A) Representative images of spindle/chromosome 
organization in control and IGF2-treated oocytes from aged mice. Spindles were stained with an antibody against α-tubulin (green), and 
chromosomes were counter-stained with Hoechst 33342 (blue). Scale bar = 30 μm. (B) Quantification of abnormal spindle/chromosomes 
oocytes in control (n = 95) and IGF2-treated (n =105) oocytes groups. A Student’s t-test (two-tailed). *p < 0.05. Error bars indicate the SEM. 
(C) Representative images of CM-H2DCFDA fluorescence (green) in control and IGF2-treated oocytes. Scale bar = 20 μm. (D) Quantification of 
ROS signals in control oocytes (n = 25) and IGF2-treated oocytes (n = 21). A Student’s t-test (two-tailed). *p < 0.05. Error bars indicate the 
SEM. (E) Adenosine triphosphate (ATP) contents in control oocytes (n = 50) and IGF2-treated oocytes (n = 50). A Student’s t-test (two-tailed). 
*p < 0.05. Error bars indicate the SEM. 
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IGF2 improves mitochondrial function in oocytes 

from aged mice  

 

Recall that mitochondrial activity is known to be 

indicative of oocytes quality [30]; previous work with 

oocytes from aged mice has revealed highly defective 

mitochondrial function, including defects in 

mitochondrial distribution and reduced mitochondrial 

membrane potential (MMP) [31]. We examined the 

impacts of IGF2 on mitochondrial function in oocytes 

from aged mice with experiments wherein in vitro-

matured MII-stage oocytes were cultured with or 

without IGF2. Immunofluorescence analysis revealed 

that IGF2 treatment resulted in significantly increased 

immunofluorescence staining intensity for mitochondria: 

higher fluorescence intensity of Mitotacker Green FM 

was observed in IGF2-treated oocytes compared to  

un-treated control oocytes (Figure 4A, 4B). Moreover, 

JC-1 staining assays revealed that treatment of aged 

mouse oocytes with IGF2 increased the MMPs index 

(Figure 4C, 4D), clearly indicating a role for IGF2 in 

somehow promoting mitochondrial function in aged 

oocytes. 

 

Previous work has shown that protein metabolism is 

highly defective in aged mouse oocytes [32]. To test 

whether IGF2 administration could improve global 

protein synthesis in oocytes from aged mice, control 

and IGF2-treated MII-stage oocytes were incubated in a 

medium containing L-homopropargylglycine (HPG, a 

methionine analogue that is incorporated into nascent 

proteins during active protein synthesis) for 1 h at 37° C. 

HPG signals are indicative of overall translational 

activity [33], and our data revealed that administration 

of IGF2 in culture medium could improve the 

translation activity in oocytes from aged mice: 

increased HPG signal intensity was detected in IGF2-

treated oocytes relative to control oocytes (Figure 4E, 4F). 

Taken together, these results suggest that administration 

of IGF2 can activate mitochondrial function in a way 

that consequently improves the quality of oocytes from 

aged mice. 

 

IGF2 improves the ultrastructure of mitochondria of 

oocytes from aged mice  

 

Given our finding that IGF2 administration mediates the 

functional activity of mitochondria, we next assessed 

whether IGF2 supplementation exerts any functional 

impact(s) on the ultrastructure of mitochondria in oocytes 

from aged mice. Transmission electron microscopy of 

MII-stage oocytes from aged mice revealed a normal 

morphology for mitochondria shape, with defined cristae 
in IGF2-treated oocytes; in contrast many mitochondria 

in un-treated control oocytes had vacuolated cristae 

(Figure 5A, 5B). Most IGF2-treated oocytes had 

mitochondria with clearly visible intact inner membranes, 

outer membranes, and well-defined intermembrane 

spaces, whereas un-treated control oocytes contained 

many ruptured and discontinuous inner and outer 

membranes with disrupted intermembrane structures 

(Figure 5C). Thus, IGF2 treatment can improve  

the ultrastructure of mitochondria in oocytes from aged 

mice. 
 

IGF2 promotes the autophagy and also reduces the 

apoptotic index of oocytes from aged mice 
 

Autophagy is an essential cellular process that degrades 

degenerated proteins and cellular organelles to recycle 

their components in the cytoplasm. Previous reports 

have shown that increased autophagy can be induced in 

oocytes from aged cow via supplementation with 

resveratrol in the culture medium, and such up-

regulated autophagy was associated with improved 

early embryonic development outcomes [34, 35]. We 

examined whether supplementation with IGF2 may 

promote autophagy in aged mouse oocytes in 

experiments using the total LC3 level as an indicator for 

autophagy activity. The autophagy index of oocytes 

from aged mice was significantly increased by 

supplementation with IGF2 in the culture medium 

compared to controls (Figure 6A, 6B). 
 

A previous study reported that inhibition of autophagy 

increases apoptosis in porcine oocytes, which 

consequently reduced oocyte meiotic maturation [36], 

and IGF2 was shown to reduce apoptosis in cultured 

BeWO cells [23]. We checked whether IGF2 

supplementation of culture medium has any impact(s) 

on the extent of oocyte apoptosis in aged mice, and 

found that IGF2-treatment significantly reduced 

apoptosis compared to controls after 16 h of culturing 

(Figure 6C, 6D). 
 

Previously, it was shown that increased expressions of 

sirutin family member (SIRT1) and antioxidant relevant 

genes are indicator of oocytes development in aged 

mouse oocytes [29, 37]. We found that administration 

of IGF2 to the culture medium significantly induced the 

expression of genes including Sirt1, Bmp15, Gdf9, and 

Sod1 in oocytes from aged mice compared to controls 

(Figure 6E). Overall, these results suggest that IGF2 can 

maintain the autophagy level and can reduce the 

apoptotic index of oocytes from aged mice. 

 

DISCUSSION 
 

The quality of gametes is dictated by cytoplasmic and 

meiotic competence during oocyte maturation [38]. The 

decline in oocyte quality associated with advanced 

maternal-age reduces embryonic developmental 
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competency, which adversely affects female fertility [39]. 

Currently, ART has been widely used for the treatment 

of infertile couples; however, the reduced quantity and 

compromised quality of oocytes from aged women is 

still a pressing challenge facing patients, clinicians, and 

embryologists. Thus, developing strategies to reduce 

age-related developmental and organizational defects in 

oocytes would benefit older mothers. 

 

 
 

Figure 4. IGF2 improves the mitochondrial functional activity of oocytes from aged mice. (A) Mitochondria were stained with 
mitotracker Green FM (green). Scale bar = 20 μm. (B) Quantification of mitochondrial distribution signals in control oocytes (n = 26) and IGF2-
treated oocytes (n = 25). A Student’s t-test (two-tailed). *p < 0.05. Error bars indicate the SEM. (C) JC-1 staining showing the mitochondrial 
membrane potential (MMP) in control and IGF2-treated oocytes. (D) Quantification of the red/green fluorescence intensity ratio in control 
oocytes (n = 40) and IGF2-treated oocytes (n = 35). A Student’s t-test (two-tailed). *p < 0.05. Error bars indicate the SEM. (E) HPG Fluorescent 
staining showing total protein synthesis in MII-stage oocytes with or without IGF2-treatment. Oocytes were incubated in M16 medium with 
50 µM HPG for 1 h prior to staining. Scale bar = 30 μm. (F) Quantification of HPG signal intensity in control (n = 28) and IGF2-treated (n = 29) 
oocytes. *p < 0.05. A Student’s t-test (two-tailed). Error bars indicate the SEM. 
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The functional activity and involvement of IGF2 in 

folliculogenesis and in the development of oocytes, 

embryos, fetuses, and placenta has been established in 

previous studies [20, 22, 40, 41]. However, to our 

knowledge ours is the initial study examining impacts 

of IGF2 supplementation on the development of oocytes 

from aged mice, and our finding that IGF2 can 

positively impact the organization of meiotic structures 

is highly promising. We found reduced IGF2 levels  

in serum and decreased Igf2 mRNA expression in 

oocytes of aged mice, consistent with previous reports 

about reduced serum IGF2 levels upon aging and a  

decline in Igf2 mRNA expression in an animal stress 

model [42–44]. Our experiments indicated that IGF2 

supplementation of culture media improved the in vitro 

development of oocytes from aged mice, assessed in 

terms of both meiotic maturation and blastocyst 

formation. Note that the choice of the 50nM IGF2 

concentration was based on dose-depended trials in  

our previously published work [20]. Previous studies 

have reported potential functional impacts of IGF2  

for increasing embryonic developmental competency  

in mice and humans [20, 25]. Previously, IGF2 

supplementation in culture medium was shown to 

 

 
 

Figure 5. IGF2 improves the mitochondrial ultrastructure of oocytes from aged mice. (A) Representative TEM micrographs of 

mitochondria from control and IGF2-treated oocytes at 2,500x magnification. Scale bar = 1 μm. Note the normal (Mn) and vacuolated (Mv) 
mitochondria. (B) Quantification of mitochondria per defined region of interest (ROI) in control and IGF2-treated oocytes. n=9 oocytes for 
each group. A Student’s t-test (two-tailed). *p < 0.05. Error bars indicate the SEM. (C) Representative TEM micrographs of mitochondria from 
control and IGF2-treated oocytes at 60,000x magnification. Inner membrane (IM), outer membrane (OM), and intermembrane space (IMS). 
Scale bar = 200 nm. 
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Figure 6. IGF2 reduces the apoptosis and promotes the level of autophagy in aged mouse oocytes. (A) LC3 staining showing the 

extent of autophagy occurring in control and IGF2-treated oocytes. (B) Quantification of LC3 intensity in control (n = 34) and IGF2-treated 
oocytes (n = 25). A Student’s t-test (two-tailed). *p < 0.05. Error bars indicate the SEM. (C) TUNEL assay of control and IGF2-treated oocytes 
from aged mice. A green fluorescence signal indicates TUNEL-positive oocytes. Apoptotic signals were observed after 16 h of in vitro culture. 
DNA was counterstained with DAPI. Scale bar = 30 μm. (D) The percentage of apoptosis-positive oocytes in control (n = 61) and IGF2-treated 
oocytes group (n = 44). A Student’s t-test (two-tailed). *p < 0.05. Error bars indicate the SEM. (E) qPCR results showing mRNA levels of Sirt1, 
Bmp15, Gdf9, and Sod1 in MII-stage oocytes after in vitro maturation with or without IGF2-treatment. *p < 0.05. A Student’s t-test (two-
tailed). Error bars indicate the SEM. 
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improve the meiotic maturation of porcine oocytes [22]. 

Clinically, the IGF2 level in human follicular fluid has 

also been used to assess the developmental capacity of 

human oocytes, suggesting that IGF2 may be a useful 

biomarker of meiotic resumption [24]. These studies 

support the notion of an oocyte and embryo growth-

promoting potential for IGF2 in the culture medium. 

Previously, it was shown that the growth-promoting 

activity of IGF2 is mediated by its receptors (IGF-1R, 

IGF-2R, INSR); IGF2 binds to these specific receptors, 

which induces phosphorylation and subsequent 

activation of the PI3K/Akt signaling pathway and 

promotes embryo development and cell proliferation 

[45–48]. 

 

Mitochondria generate ATP via oxidative metabolism, 

and mitochondrial activity can be used to assess the 

quality of oocytes. Previous studies have established 

requirements for a low ROS index and for a relatively 

high ATP level for proper spindle assembly and 

chromosome alignment in oocytes; both ROS and ATP 

metabolism are directly associated with mitochondrial 

functional responses [49, 50]. Advanced maternal-age is 

known to adversely affect mitochondrial function in 

oocytes, and there are reports that aged oocytes exhibit 

increased abnormalities in spindle and chromosome 

organization, elevated ROS indices, and reduced MMP 

values [51, 52]. Our results indicated that IGF2 

supplementation of culture media can help to minimize 

these meiotic defects. A previous report in adult 

neuronal culture-derived cells showed that IGF2 

supplementation can reduce oxidative damage and 

promote mitochondrial activity, resulting in an overall 

improvement in the functional activity of mitochondria 

and increased MMP [26]. 

 

Previous studies have shown that cellular translation 

machinery is essential for maintaining normal spindle 

morphology and chromosome alignment during the 

meiotic maturation of oocytes, and this machinery is 

also required for early embryonic development [53, 54]. 

We know that translational machinery in aged mouse 

oocytes is highly disturbed, and this has been assumed 

to confer profound deleterious impacts on the 

development of gametes [32]. Our results show that 

translational activity can be increased in oocytes from 

aged mice after adding IGF2 to the culture media. A 

previous study of an embryonal carcinoma cell line 

reported that IGF2 activates translation initiation [55]. It 

is known that autophagy is essential for proper meiotic 

maturation of porcine oocytes, and the reduced 

autophagy levels that characterize oocytes from aged 

mice lead to diverse meiotic defects [36, 56]. Our 
results are consistent with previous work reporting a 

functional impact of IGF2 in maintaining relatively high 

autophagy levels in osteosarcoma cells (which induced 

an autophagic state of dormancy that protects cells 

against stress) [57, 58]. The reduced autophagy and 

increased mitochondrial dysfunction that occurs during 

the maturation of oocytes activate the mitochondrial-

related apoptotic signaling pathway [36, 59]. Previous 

reports have shown the increased apoptotic level in 

oocytes from aged mice and human consequently 

impairs meiotic maturation and causes embryonic 

developmental defects [60–62]. Previous studies have 

shown that IGF2 triggers anti-apoptotic signaling 

pathways in human trophoblast cells and also in mice 

placental cells [23, 63], findings consistent with our 

observation of reduced apoptosis in oocytes from aged 

mice that were cultured in media supplemented with 

IGF2. 
 

In conclusion, our study indicates that IGF2 promotes 

the developmental competence of oocytes from aged 

mice and may specifically impact the meiotic structures 

in these oocytes. Our work confirms age-related 

decreases in IGF2 levels and clearly highlights the 

strong clinical promise for deploying IGF2 in ART to 

reduce age-related meiotic developmental defects. 

Given reports of IGF2 deficits in non-aged female 

infertility patients (e.g., oocytes from obese women), 

perhaps IGF2 supplementation in in vitro culture 

systems could improve the yield of quality embryos 

derived from obese women, which should also benefit 

implantation success and improve overall pregnancy 

outcomes. Notably, our ongoing initial trials of IGF2 

supplementation of media for culturing oocytes from 

obese mice is also indicating that IGF2 can improve 

developmental efficiency of oocytes and early embryos. 

Further investigations regarding the potential 

application of IGF2 for ART of oocytes from aged 

women, including assessment of pregnancy outcomes 

and safety evaluations, are warranted; these will be 

needed to assess the feasibility and safety of any IGF2-

based clinical interventions. 

 

MATERIALS AND METHODS 
 

Mice 
 

Young (4 weeks) and aged (42–45 weeks old) ICR 

female mice (Charles River Laboratories China Inc) were 

selected for this experiment. All animal experimental 

protocol was performed accordance to the ethical 

guidelines approved by the Animal Care and Research 

Committee of Shandong University. 
 

Oocytes collection and culture  
 

To get fully grown GV-stage oocytes, aged mice were 

superstimulated with 5 IU pregnant mare’s serum 

gonadotropin (PMSG) injection. After 48 h of PMSG 
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injection, cumulus oocytes complex were obtained by 

manually rupturing the ovarian follicles structure. The 

oocytes were collected and randomly divided into two 

groups. Oocytes with or without 50 nM IGF2 (100-12, 

Peprotech), were cultured in the small drops of M16 

(M7292; Sigma-Aldrich), and maintained in 5% CO2 

at 37° C. For collection of MII-stage oocytes, mice 

received an injection of 5 IU PMSG followed  

by 5 IU human chorionic gonadotrophin (hCG) after 

44 h. MII-stage oocytes were collected after 16 h  

of hCG and used for in vitro fertilization (IVF) 

experiment. 

 

Zygotes culture and embryo transfer  

 

MII-stage oocytes were collected and IVF experiment 

was performed by using sperms from wild-type (WT) 

male. Zygotes were cultured in M16 medium with or 

without 50 nM IGF2, and incubated at 37° C in 5% CO2 

for observing their embryonic developmental 

competence. Embryos development and morphology 

were examined with a stereomicroscope (Nikon 

SMZ1500). In an experiment related to embryo transfer, 

blastocysts obtained with or without IGF2-treatment 

were transferred. WT female mice were used as the 

recipients (15 embryos were transferred to the uterus of 

each mouse), and pregnancy rates to term were recorded. 

 

Estimation of serum IGF2 concentration 

 

The concentration of IGF2 was measured in mouse 

serum samples by following the manufacturer’s 

instructions using ELISA kit (RnD system, MG200). 

Briefly, blood from young and aged mice were 

collected and put at room temperature for 1 h. Samples 

were centrifuged at 3000×g for 10 min at 4° C. Serum 

was collected and stored at -80° C for subsequent assay. 

The IGF2 concentration was determined in triplicate. 

The standard curves were generated, and the IGF2 

content was calculated using the formula derived from 

the standard curve. 

 

RNA extraction and qRT-PCR validation 

 

Total RNA was extracted using RNeasy mini kit 

(Qiagen) following the manufacturer’s instructions. 

Genomic DNA (gDNA) was eliminated by digesting 

with RNase-free genomic DNA eraser buffer (Qiagen), 

and cDNA was obtained by reverse transcription of 

RNA using PrimeScriptTM reverse transcriptase 

(Takara). Power SYBR Green Master Mix (Takara) was 

used on a Roche 480 PCR system for qRT-PCR 

analysis. The qRT-PCR reactions were performed in 
triplicate for gene specific primers. The mRNA level 

was calculated by normalizing to the endogenous 

mRNA level of actin (internal control) using Microsoft 

Excel. Primer sequences are shown (Supplementary 

Table 1, Supporting Information). 

 

Immunofluorescence  
 

To detect relevant protein, the oocytes were fixed in 4% 

paraformaldehyde for 30 min, permeabilized with 0.3% 

Triton X-100 for 20 min. After washing three times, the 

oocytes were blocked in blocking buffer in PBS with 1% 

BSA. Oocytes were incubated with a fluorescein 

isothiocyanate (FITC)-conjugated anti-mouse Alpha 

tubulin (1:200 dilution, Sigma) antibody, anti-γ-H2AX 

(1:300 dilution, Abcam), anti-apoptotic (1:1000 dilution, 

Abcam), and anti-LC3 (1:300, Abcam) for 1 h at room 

temperature. After washing three times, oocytes were 

incubated with respective secondary antibodies. DNA 

was counterstained with DAPI (Sigma) for 10 min at 

room temperature. Oocytes were washed and mounted on 

the glass slides and observed under confocal laser 

microscope (Zeiss LSM 780, Carl Zeiss AG, Germany). 

 

Determination of ATP levels 

 

The measurement of total ATP content of MII-stage 

oocytes obtained with and without IGF2-treatment was 

performed by using ATP testing assay kit (Beyotime). 

Briefly, 50 oocytes were added to lysis buffer and 

centrifuged at 12000×g for 10 min. Supernatant was 

mixed with testing buffer, and ATP concentrations were 

measured on a luminescence detector (EnSpire 

Multimode Plate Reader). A 6-point standard curve was 

generated ranging from 0.01 mM to 1 m and total ATP 

contents were calculated. 

 

ROS evaluation 

 

ROS was measured in MII-stage oocytes by using ROS 

assay kit (Beyotime) by following manufacturer’s 

instructions. Briefly, control and IGF2-treated oocytes 

were incubated with 10 μM, 2’,7’ dichlorofluorescein 

diacetate (DCFH-DA) in M16 medium at 37° C in 5% 

CO2 for 30 minutes. After three washes, oocytes were 

mounted on glass slides, and examined under confocal 

laser microscope (Zeiss LSM 780, Carl Zeiss AG, 

Germany). 

 

Detection of mitochondrial distribution and JC-1 

assay 

 

To detect mitochondrial distribution, MII-stage oocytes 

were incubated with 400 nmol/L Mito tracker Green 

FM (Invitrogen) diluted in PBS for 30 minutes at 37° C 

and fixed in 2% paraformaldehyde for 20 minutes. To 
evaluate the mitochondrial membrane potential, the 

oocytes were incubated in M16 culture medium 

containing 10µM JC-1 (Beyotime Institute of 
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Biotechnology) at 37° C for 30 min. After washing 

three times in PBS, the oocytes were mounted on glass 

slides and observed immediately (Zeiss LSM 780, Carl 

Zeiss AG, Germany). The red and green fluorescents 

intensities were determined and mitochondrial 

membrane potential was calculated as the ratio of red 

and green fluorescent pixels. 

 

Detection of protein synthesis 

 

The protein synthesis assay was performed as described 

previously [33] using the Click-iT protein synthesis 

assay kit (C10428, Life Technologies) following the 

manufacturer’s instructions. Briefly, the MII-stage 

oocytes were incubated in culture medium 

supplemented with 50 μM HPG at 37° C with 5% CO2 

for 1 h. Oocytes were fixed with 3.7% formaldehyde 

followed by permeabilization with 0.5% Triton X-100 

for 20 min at room temperature. The HPG signal is 

indicative of the overall level of translation in oocytes. 

 

Electron microscope 

 

Electron microscopy (EM) was performed as described 

previously [64]. Briefly, MII-stage oocytes treated with 

or without IGF2 were collected, visualized and captured 

with a transmission electron microscope (TEM, JEOL). 

The numbers of normal and vacuolated mitochondria 

were quantified in defined region of interests (ROIs) in 

the oocyte cytoplasm using IMAGE J (National 

Institutes of Health, MD, USA). 

 

Statistical analysis 

 

Data are presented as mean ± SEM of three independent 

experiments/samples unless otherwise specified. Group 

comparisons were made by two-tailed unpaired 

Student’s t-tests. *p < 0.05; **P < 0.01, and ***P < 

0.001. All analyses were performed using the GraphPad 

Prism 7 (GraphPad Software, San Diego, CA, USA). 
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SUPPLEMENTARY MATERIALS 

 

 

Supplementary Table 
 

Supplementary Table 1. Primer sequences for qRT-PCR. 

 Forward Reverse 

IGF22 TTCTACTTCAGCAGGCCTTCAA ATATTGGAAGAACTTGCCCACG 

SIRT1 CTGTTGACCGATGGACTCCT GCCACAGCGTCATATCATCC 

BMP15 TCCTTGCTGACGACCCTACAT TACCTCAGGGGATAGCCTTGG 

GDF9 

SOD1 

TCTTAGTAGCCTTAGCTCTCAGG 

GCTGTACCAGTGCAGGTCCTCA 

TGTCAGTCCCATCTACAGGCA 

CATTTCCACCTTTGCCCAAGTC 

 


