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Simple Summary: Meta-analysis and systems-biology analysis revealed molecular plant defense
responses in Arabidopsis thaliana when attacked by various pathogens. Differentially expressed
genes were involved in several biosynthetic metabolic pathways, including those responsible for the
biosynthesis of secondary metabolites and pathways central to photosynthesis and plant–pathogen
interactions. In addition, WRKY40, WRKY46, and STZ transcription factors served as major points
in protein–protein interactions. Overall, the findings highlighted genes that are commonly ex-
pressed during plant–pathogen interactions and will be useful in the development of novel genetic
resistance strategies.

Abstract: Following a pathogen attack, plants defend themselves using multiple defense mechanisms
to prevent infections. We used a meta-analysis and systems-biology analysis to search for general
molecular plant defense responses from transcriptomic data reported from different pathogen attacks
in Arabidopsis thaliana. Data from seven studies were subjected to meta-analysis, which revealed a total
of 3694 differentially expressed genes (DEGs), where both healthy and infected plants were considered.
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis further
suggested that the DEGs were involved in several biosynthetic metabolic pathways, including those
responsible for the biosynthesis of secondary metabolites and pathways central to photosynthesis
and plant–pathogen interactions. Using network analysis, we highlight the importance of WRKY40,
WRKY46 and STZ, and suggest that they serve as major points in protein–protein interactions. This is
especially true regarding networks of composite-metabolic responses by pathogens. In summary,
this research provides a new approach that illuminates how different mechanisms of transcriptome
responses can be activated in plants under pathogen infection and indicates that common genes vary
in their ability to regulate plant responses to the pathogens studied herein.
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1. Introduction

Plants are continually confronted with a wide range of organismal infections and
insect attacks, often leading to major losses in quantity and quality of plant products. In
response to different types of pathogens, plants have adopted intricate defense systems
that are structurally multilayered. These include PAMP triggered immunity (PTI), effector-
triggered immunity (ETI), and RNA silencing [1–3]. In addition, plants have developed
miRNA/target regulation pathways to maintain plant resistance by modifying the level of
gene expression involved in plant defense systems [4]. Plant immunity is fundamentally
based on the recognition of non-host organisms and protection against alien molecules [5].
In response to a pathogenic attack, plants reconfigure their cellular metabolism and induce
a fine-tuned defense route that is compatible with the feeding behavior of pathogens.
When pathogens are recognized through transmembrane pattern-recognition receptors
(PRRs), for example, a cascade of responses is initiated, which ultimately results in the
activation of first-line defense, known as PTI [6]. Some pathogens can adapt to this PTI
defense by secreting effectors into the host cell. However, plants can prevail against the
pathogenic repression of PTI via a second layer of the plant immune system, ETI [7,8]. A
localized induction of ETI frequently leads to a broad-spectrum immunity that suppresses
pathogenic infection in distal plant tissues, a phenomenon known as systemic acquired
resistance (SAR) [9].

There have been extensive studies on plant transcriptome profiling against various
pathogens [3,10–12]. Nonetheless, to the best of our knowledge, there is a lack of sys-
tematic information on the comparison of transcriptomic data across plant pathogen
experiments [13–15]. With advances in high-throughput technology, such as RNA se-
quencing, large numbers of plant transcriptome responses to environmental stresses are
becoming publicly available [16,17]. However, such experiments usually report responses
to specific pathogens under experimental conditions.

A meta-analysis is a powerful tool that integrates results from several studies to draw
general conclusions from several datasets, thereby enabling the detection of core gene hubs
that are regulatory centers for complex biological processes in plants [18,19]. Whereas
meta-analyses on transcriptome data (including microarrays and RNA-Seq data) have been
widely applied in human and animal genome studies, only a limited number have focused
on plants. Even fewer have explored plant responses to pathogenic infections [3,13,20].
Given the triple-layered challenges in agricultural systems [21], meta-analyses are useful
tools that assist in summarizing current knowledge from which alternative solutions can
be identified [22].

Performing a meta-analysis allows transcriptomic data across differentially expressed
genes (DEG) to be integrated, thereby facilitating the discovery of major genes of general
importance to plant stress-response [13,16,23]. These results can be used to validate singular
transcriptomic works and assist researchers in gaining insights into general plant responses.
In addition, pooling plant responses to various pathogens can allow researchers to uncover
common features of plant–pathogen interactions [17]. Studying the transcriptome of
Arabidopsis thaliana as a model plant, focusing on its various responses to stress, has
generated large amounts of data that could potentially be used in a meta-analysis [3].

To understand the common transcriptional regulation of plants subjected to pathogen
infection, we included publicly available RNA-Seq data from studies on Arabidopsis thaliana
and its response to biotic stress. This was done to search for key determinants (including
central genes, pathways, gene set categories, and protein–protein interaction networks)
through meta-analysis and functional enrichment analyses. We identified DEGs involved
in several diverse metabolic pathways, including transcription factors (TFs) and miRNA
families. Moreover, a systems-biology analysis was employed to identify key regulatory
hubs. The integrative approaches of this study provided insights into the mechanisms
that regulate common defense responses of Arabidopsis when confronted by a variety
of pathogens.
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2. Materials and Methods
2.1. Data Collection and Preprocessing

The raw expression data (RNA-Seq) for biotic responses included those of fungi,
oomycete, bacteria, and one viral strain in Arabidopsis. These RNA-Seq were obtained from
the ArrayExpress of the European Molecular Biology Laboratory–European Bioinformat-
ics Institute (http://www.ebi.ac.uk/arrayexpress, accessed on 1 March 2021) (Table 1).
The keywords “biotic stress”, “pathogen”, “plant-pathogen interaction”, and various
combinations of these were used to search the database. The datasets were filtered for
Arabidopsis thaliana to include RNA-Seq data only. The search yielded seven entries in seven
papers [24–30]. From these, we obtained transcript data of 284 individual plants, 103 of
which were untreated controls and 181 of which were infected with pathogens, as detailed
in Table 1.

Table 1. Transcriptomic raw data related to plant–pathogen interaction studies of Arabidopsis thaliana
used for the current meta-analysis.

Accession Number Pathogen Species Samples Number Control Number Plant Part Related Article

E-MTAB-4151 Pseudomonas syringae pv. maculicola 12 12 Leaf [25]
E-GEOD-53641 Hyaloperonospora arabidopsidis 144 72 Aerial shoots [24]
E-GEOD-34241 Fusarium oxysporum 4 4 Whole plants [29]
E-MTAB-4416 Pseudomonas syringae 3 3 Leaf [26]
E-GEOD-56922 Cabbage leaf curl virus 4 4 Leaf [30]
E-MTAB-4281 Botrytis cinerea 2 2 Whole plants [28]
E-MTAB-4450 Pseudomonas syringae 12 6 Leaf [27]

EBI The European Bioinformatics Institute.

The raw data were filtered during a quality control step. More specifically, reads
with an N rate > 10% and bases on their Phred quality scores with Q ≤ 20 were
eliminated [31]. Quality-checked reads were mapped onto the Arabidopsis reference
genome. The Arabidopsis thaliana reference genome sequence (version TAIR10, release 31)
was obtained from the EnsemblPlants database. Expression profiling analysis was carried
out using CLC Genomic Workbench version 10 (CLC Bio, Qiagen, Hilden, Germany). The
raw expression data pertaining to each dataset was normalized as counts per million (CPM).
The workflow is presented in Figure 1.
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Figure 1. Schematic overview of the integrative strategy for understanding aspects of common
responses of Arabidopsis to various pathogens.

2.2. Meta-Analysis of Expression Dataset

The meta-analysis was performed on an integrated dataset pertaining to DEGs in plant–
pathogen interactions; about 20% of the genes with low expression levels were excluded
to reduce the number of false positives in the samples. Each dataset was grouped into a

http://www.ebi.ac.uk/arrayexpress
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stress class and a healthy class, according to the type of pathogen. Before the meta-analysis,
the SVA package in R was used to correct the batch effect according to the empirical Bayes
method [32]. Fisher’s method was used for detecting DEGs involved in plant–pathogen
interactions. The adjusted p-values (FDR < 0.01) [33] were considered significant, and
were used for further analysis. The log ratio of means (ROM), i.e., the natural log of the
ratio [34], was applied to measure gene expression values. ROM was calculated using the
following formula:

ygn = ln
[

rgr

rgs

]
where ygn, rgr, and rgs represent the ROM, and the mean expression level of the stress
and healthy class, respectively, for each gene in the dataset. Data were preprocessed and
analyzed using Bioconductor packages (http://www.bioconductor.org, accessed on 5 April
2021), including MetaMA.

2.3. Gene Enrichment Analysis and Functional Analysis

The genes were analyzed after being selected for the meta-analysis. The obtained lists
were compared with a list of genes involved in plant immunity responses and signaling
processes. These included pattern recognition receptors, signaling complex, Ca2+ signaling
system, G-protein signaling, reactive oxygen species (ROS) signaling system, nitric oxide
(NO) signaling system, mitogen-activated protein kinase signaling system, salicylic acid
signaling system, jasmonate signaling system, ethylene signaling system, and pathogen
resistance proteins [4,6,35–37].

Enrichment analysis of Gene Ontology (GO) was performed on significant DEGs
obtained from the meta-analysis, using the AgriGO platform [38]. Information on gene on-
tology was extracted based on GO terms for cellular components, biological processes, and
molecular functions when a significant threshold of FDR < 0.05 was obtained. Pathway anal-
ysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://david.abcc.ncifcrf.gov/,
accessed on 15 April 2021) was used to elucidate significantly enriched pathways of the
DEGs. To identify transcription factors among the DEGs, a list of Arabidopsis transcrip-
tion factors was obtained from the AGRIS database (https://agris-knowledgebase.org/
AtTFDB/, accessed on 15 April 2021).

2.4. Protein-Protein Interactions and Network Construction

A network analysis on protein–protein interactions (PPI) was performed to uncover
any plausible interactions among proteins for which the DEGs were found to be significantly
different. TF genes and genes in the literature review that overlapped with significantly
differentiated DEGs were considered for the PPI analysis. The STRING database [39] was
employed to enable the PPI network analysis. Cytoscape software was used for visualizing
the interaction networks.

2.5. Prediction of Potential miRNAs

MicroRNAs associated with plant diseases must be identified before plant–pathogen
interactions can be studied. This identification is also necessary to understand how plants
defensively respond to pathogens. Identifying potential and small RNAs is possible
using the psRNATarget server, wherein parameters are set to a default, except in the
case of maximum expectation, which was set to 2 for this study. psRNATarget eval-
uates complementarity between small RNA and target gene transcripts using a scor-
ing scheme originally implemented by miRU. psRNATarget uses the popular Smith-
Waterman implementation of SSEARCH (version 36.x), because it is guaranteed to find
the most alignments between small very short RNA sequences and mRNA sequences
(http://plantgrn.noble.org/psRNATarget/, accessed on 1 May 2021).

http://www.bioconductor.org
http://david.abcc.ncifcrf.gov/
https://agris-knowledgebase.org/AtTFDB/
https://agris-knowledgebase.org/AtTFDB/
http://plantgrn.noble.org/psRNATarget/
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3. Results and Discussion
3.1. Identification of Differentially Expressed Genes

To identify host genes responsive to pathogens that commonly infect Arabidopsis, RNA-
Seq data were retrieved from seven independent experiments, consisting of 181 samples
of infected plants that had been infected either by fungi, oomycete, bacteria, or viruses.
Another set of RNA-Seq data were also retrieved from 103 samples of mock-inoculated
plants (Table 1). Of these, 3694 DEGs were significantly different from the healthy control
plants, with 1909 up-regulated and 1785 down-regulated DEGs (Table S1). Not surprisingly,
the data overrepresented defense-related genes that are already known in plants. These
genes include PR12 (AT1G75830), FMO1 (AT1G19250), LECRK-I.1 (AT3G45330), GLIP1
(AT5G40990), WRKY75 (AT5G13080), and WRKY51 (AT5G64810), all of which were highly
induced [40]. An enhanced defense-related gene, FMO1, involved in basal resistance
against virulent pathogens was identified. It contributes to the regulation of EDS1 and
induces resistance by causing the death of plant cells at pathogenically infected sites [41,42].
The membrane-spanning receptor-like kinase, LECRK-I.1, is required for environmental
stress responses [43]. Lectin receptor-like kinases belong to a specific PRR group that
perceives PAMPs and initiates defense responses [44,45]. GLP 1 regulates plant immu-
nity by regulating ethylene signaling [46,47] and by members of the WRKY transcription
factor gene family (e.g., WRKY75 and WRKY51). These two are known to be involved in
prompting the plant response to oxidative stress and ROS homeostasis, respectively [48–50],
whereas WRKY-75 and -51 are involved in defense responses that are possibly induced by
jasmonic acid.

In contrast with defense-related genes, those involved in cellular and metabolic pro-
cesses, such as photosynthesis, were generally down-regulated in this study. In particular,
this was evident in genes that regulate photosystem-II; i.e., PSBP-2 (AT2G30790), DEG13
(AT3G27690), and PsbP-2 (AT2G30790) [51,52].

3.2. Gene Ontology Confirmed Strong Impact on Diverse Cellular Processes

To investigate the functions of the DEGs, a GO was performed to explore the plant–
pathogen interaction. There were 59 genes related to cellular components whose expression
was significantly altered after infection, 26 of which were up-regulated and 33 of which
were down-regulated. Expression was also significantly altered in 23 genes that shape
molecular functions, 13 of which were up-regulated and 10 of which were down-regulated.
In addition, there were notable alterations in the expression of 60 genes related to bio-
logical processes, 42 of which were up-regulated and 18 of which were down-regulated
(Figure 2, Table S2). The up-regulated genes were largely involved in oxidation-reduction
processes (GO: 0055114), protein phosphorylation (GO: 0006468), and defense responses
(GO: 0006952); down-regulation also occurred in genes that code for oxidation-reduction
processes (GO: 0055114), as well as photosynthesis (GO: 0015979) and response to cold
(GO: 0009409) (Figure 2a,b). Oxidation-reduction signaling acts as a general plant response
to most pathogens [53]. Some genes associated with reduction-oxidation (redox) processes,
such as NADPH oxidases and catalases, are required for immunity, suggesting that the
redox state might add an additional layer of regulation to plant defense responses [54].
Thus, our findings verify the hypothesis that multiple ROS signals are integrated together
during a defense response [55].

Furthermore, plant molecular functions including ATP binding (GO: 0005524), kinase
activity (GO: 0016301), and protein serine/threonine kinase activity (GO: 0004674) were
up-regulated, whereas oxidoreductase (GO: 001649), catalytic (GO: 0003824), and rRNA
binding (GO: 0019843) activities were down-regulated (Figure 2c,d). In support of molecular
functions and biological processes, up-regulation occurred in DEGs responsible for the
integral component of cellular membranes (GO: 0016021), the plasma membrane (GO:
0005886), and cytoplasm (GO: 0005737), whereas down-regulation was observed in the case
of integral component of membranes (GO: 0016021), the plasma membrane (GO: 0005886),
and chloroplasts (GO: 0009507) (Figure 2e,f).



Biology 2022, 11, 1155 6 of 15

Biology 2022, 11, x FOR PEER REVIEW 6 of 16 
 

 

3.2. Gene Ontology Confirmed Strong Impact on Diverse Cellular Processes 
To investigate the functions of the DEGs, a GO was performed to explore the plant–

pathogen interaction. There were 59 genes related to cellular components whose expres-
sion was significantly altered after infection, 26 of which were up-regulated and 33 of 
which were down-regulated. Expression was also significantly altered in 23 genes that 
shape molecular functions, 13 of which were up-regulated and 10 of which were down-
regulated. In addition, there were notable alterations in the expression of 60 genes related 
to biological processes, 42 of which were up-regulated and 18 of which were down-regu-
lated (Figure 2, Table S2). The up-regulated genes were largely involved in oxidation-re-
duction processes (GO: 0055114), protein phosphorylation (GO: 0006468), and defense re-
sponses (GO: 0006952); down-regulation also occurred in genes that code for oxidation-
reduction processes (GO: 0055114), as well as photosynthesis (GO: 0015979) and response 
to cold (GO: 0009409) (Figure 2a,b). Oxidation-reduction signaling acts as a general plant 
response to most pathogens [53]. Some genes associated with reduction-oxidation (redox) 
processes, such as NADPH oxidases and catalases, are required for immunity, suggesting 
that the redox state might add an additional layer of regulation to plant defense responses 
[54]. Thus, our findings verify the hypothesis that multiple ROS signals are integrated 
together during a defense response [55]. 

 
Figure 2. Gene ontology enrichment analysis of the DEGs. The enriched genes were sorted into three 
categories according to gene function: (a,b) biological process (e.g., active in defense responses and 
photosynthesis), (c,d) genes involved in molecular functions (redox and energy metabolism), and 
(e,f) genes responsible for synthesis and organization of cellular components (e.g., with importance 
for membrane and organelle structures). Up-regulated genes are listed on the left panel (dark grey) 
and down-regulated genes on the right (light grey). 

Figure 2. Gene ontology enrichment analysis of the DEGs. The enriched genes were sorted into three
categories according to gene function: (a,b) biological process (e.g., active in defense responses and
photosynthesis), (c,d) genes involved in molecular functions (redox and energy metabolism), and
(e,f) genes responsible for synthesis and organization of cellular components (e.g., with importance
for membrane and organelle structures). Up-regulated genes are listed on the left panel (dark grey)
and down-regulated genes on the right (light grey).

The plasma membrane in plant cells is a main barrier against pathogenic attack, as it
mediates the interactive relationship between plant cells and pathogens. In the first step,
pathogens are recognized by plant cells at the plasma membrane. Many of the initial cellular
reactions to pathogenic infections are coordinated by ion channels and plasma membrane-
localized enzymes [56]. As a result, multiple downstream responses to pathogenic invasions
are expressed in the plasma membrane. For pathogens, finding access to plant cells and
their nutrients requires the manipulation of host cells in a manner that would suppress their
defensive responses. Accordingly, the membrane is expected to serve multiple functions
in plant–pathogen interactions [57,58]. The recognition of PAMPs (pathogen-associated
molecular pattern) is mediated by recognition receptors in plasma membrane-localized
patterns, often belonging to a class of enzymes known as Receptor-Like protein Kinases
[RLKs], such as CERK1 [56]. Upon recognizing PAMPs, RLKs quickly activate their co-
receptors (i.e., BAK1, SERK4, BIR2, CRK28, IOS1, PSKR1, ERECTA, or RLP51) as the first
step in intracellular signaling, thereby regulating cellular activity even as the pathogen
infection prompts the release of cell wall components, antimicrobial compounds, and
defense-related proteins [56,59–61]. The GO analysis revealed that similar mechanisms
in functional responses are induced, even though the analyses explored the differential
responses of plants to different pathogens (Figure 2).
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3.3. Enrichment Analysis of the KEGG Pathway Highlights the Reticulate Nature of Defense
Metabolism in Plants

KEGG pathway enrichment analyses were performed on DEGs with p-values lower
than 0.05. It appeared that 11 pathways are significantly up-regulated and 18 are down-
regulated in response to infection (Table S3). The enriched metabolic pathways included
those responsible for the biosynthesis of secondary metabolites and amino acids, along
with genes involved in photosynthesis and plant–pathogen interactions (Table 2). The
metabolic signature of the KEGG pathway analyses highlights the reticulate nature of the
metabolic plant responses, characterized by crosstalk among hormones and features of
the biosynthesis of specialized products, in addition to general changes in metabolism
and plant function [62–64]. Pathogen or pathogen-derived elicitors alter the metabolism
of carbohydrates, amino acids, and lipids [65–68], with amino acids and sugars being
intermediates of the pathways that synthesize specialized defense metabolites [1,11,69].

Table 2. The KEGG pathway enrichment of the total of differentially expressed genes (DEGs).

Pathway Gene Count Adjusted p Value

Metabolic pathways 382 0.000010

Biosynthesis of secondary metabolites 239 0.000000
Carbon metabolism 76 0.000006
Biosynthesis of amino acids 74 0.000006
Plant-pathogen interaction 47 0.000293
Proteasome 37 0.000000
Glutathione metabolism 32 0.000192
Glycolysis/Gluconeogenesis 32 0.006589
Photosynthesis 29 0.000070
Glycine, serine and threonine metabolism 25 0.000993
2-Oxocarboxylic acid metabolism 25 0.001530
Glyoxylate and dicarboxylate metabolism 25 0.001530
Phenylalanine, tyrosine and tryptophan biosynthesis 20 0.003251
Pentose phosphate pathway 19 0.004130
Arginine biosynthesis 14 0.005035

For instance, the biosynthesis of amino acids occurs by previously identified genes
that encode arogenate dehydratase 4 (ADT4), anthranilate synthase beta subunit 1 (ASB1),
tryptophan synthase beta-subunit 1 (TSB1), tryptophan synthase alpha chain (TSA1), and
tyrosine aminotransferase 3 (TAT3). These amino acids were found to be collectively in-
volved in plant responses to stress. Plant immune responses against pathogens can include
the biosynthesis of bioactive molecules in plants, most of which have antimicrobial effects
that are either ‘phytoanticipins’ and/or ‘phytoalexins’ [70,71]. In this regard, 239 genes
were identified in the biosynthesis of the secondary metabolite pathway as the second
largest DEG pathway. The synthesis of secondary metabolites is a defense mechanism in
response to phytopathogens. Secondary metabolites, including terpenes, phenolics, nitro-
gen (N), and sulphur (S) containing compounds act as chemical barriers that protect plants
against biotic and abiotic stresses [72]. Antimicrobial secondary metabolites are classified
into phytoalexins and phytoanticipins [73]. Phytoalexins are a defensive compound and
a secondary metabolite induced by the hypersensitive response during plant–pathogen
infection [74]. These defense-related compounds are based on the prominent biochemical
capacity of a plant. Many plants’ defensive arsenals are taken from amino acid precursors,
for example glucosinolates products, which are pivotal in defensive responses of plants
against pathogenic invasion [71,75,76]. Previous studies demonstrate that the metabolism
of amino acids and peptides is essential for the biosynthesis of many natural substances
that protect plants from pathogenic invasion. As a result, they promote the plant immune
system [77–79]. However, a series of studies on Arabidopsis thaliana concluded that the
significance of amino acid metabolism, when playing a role in plant–pathogen interactions,
goes far beyond functions in secondary metabolite production [80,81].
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In this study, 29 genes were found to be involved in photosynthesis, including FNR1
(AT5G66190), PETC (AT4G03280), FNR2 (AT1G20020), PDE334 (AT4G32260), and ATPD
(AT4G09650). The expression level of these genes was affected in response to the presence
of pathogens. Several studies have shown the suppression of photosynthesis in infected
plants, perhaps reflecting active responses by plants that restrict carbon availability, and
thus limit the growth of pathogen(s) in the plant. Photosynthetic functions may also be
suppressed because plants favor the establishment of defense over other physiological
processes at times of pathogenic attack [82,83]. Photosynthesis takes place in the chloro-
plasts and generates important substances such as carbohydrates, ATP, and NADPH, which
are utilized in several biosynthetic pathways that produce amino acids, hormones, and
secondary metabolites. They are also instrumental for the success of immune responses
and for cells to identify environmental stress signals. Chloroplasts are basic generators of
ROS and NO, which are pivotal for defensive barriers in plants. Defense-related signaling
molecules and hormones may also influence photosynthesis. Exogenous treatments of
plants with these substances reduced photosynthetic pigments and tended to cause stom-
atal closure [84,85]. Notably, salicylic acid (SA), ethylene (ET), and ROS can have both
positive and negative effects on photosynthetic function [86,87]. Furthermore, excess quan-
tities of ROS can damage photosynthetic complexes, especially PSII, thereby instigating
photo inhibition [88–91].

3.4. Identification of Transcription Factors

The capacity of transcription factors is a key tool for the regulation of plant responses
to stress. It is therefore essential to identify genes that encode transcription factors. In the
current study, we found that transcription factors belonging to the WRKY-family were
mostly induced by pathogens. Up-regulation was observed in Alfin-like, CCAAT-HAP3,
E2F-DP, RAV, VOZ-9, HSF, and NAC, whereas down-regulation occurred in ARF, ARID,
ARR-B, C2C2-CO-like, C2C2-YABBY, CCAAT-HAP2 G2-like, GeBP, GRAS, NLP, PHD, SBP,
and ZF-HD families (Figure 3). Alfin-like, ARID, CCAAT-HAP2, CCAAT-HAP3, E2F-DP,
G2-like, GeBP, RAV, and VOZ-9 all belong to single-gene families represented by only
one gene per family (Figure 3). Further information about the transcription factors of
genes is given in Table S4. Transcription factors-encoding genes may be differentially up-
regulated or down-regulated under stress conditions. As such, there is a significant overlap
in immune response pathways which allows different defense signals to be integrated.
This process is expected to promote plant defense against pathogenic attack [92,93]. TFs
involved in the defense pathways and responses against pathogens mostly belong to the
WRKY and NAC families. The relation between these families might have a positive
role in plant resistance and could increase plant immune responses against pathogens via
regulating defense gene expression.

3.5. Protein–Protein Interaction of Transcription Factors and Hub Genes Identification

To better understand the diverse landscape of defense-related activated genes, PPI
networks were constructed based on the DEGs results. The resulting PPI network re-
vealed 199 nodes and 579 edges (Figure 4); the most significant nodes (hubs) were WRKY40,
WRKY46, STZ, WRKY18, NPR1, RHL41, WRKY70, WRKY25, WRKY53, EDS1, MYB15,
MPK11, SARD1, AT5G66070, PDF1.2, TIP, NAC062, BZIP60, FRK1, and SCL13. This set of
proteins includes proteins that are directly or indirectly regulated by pathogens and are dif-
ferentially expressed when cells are infected by pathogens. Some of the proteins associated
with the plasma membrane play important roles in the immune response to pathogens, in-
cluding NAC062 and E3 ubiquitin ligase (AT5G66070). E3 Ub-ligases are associated with the
regulation of cellular perception of pathogens by PRRs at the plasma membrane, and also
having a role in defense-related signaling. E3 ubiquitin-ligases regulate cellular perception
of pathogens when the innate immunity in plants functions normally [94].
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The WRKY family members also play a pivotal role in plant defensive responses [95].
WRKY40 and WRKY18 play a role in pathogen-induced HR, in association with the induc-
tion of SA-mediated immune responses that contribute to systemic acquired resistance.
These WRKYs negatively affect resistance to hemibiotrophic pathogens [96]. WRKY53 is
a component of the systemic acquired resistance signaling network [97,98] that interacts
with the ESR and inducible proteins involved in jasmonic acid-related responses to me-
diate the negative crosstalk between senescence and pathogen resistance [99]. Genetic
analyses suggest that WRKY53 is able to regulate the expression of WRKY46 and WRKY70
in basal resistance [100]. WRKY25 is an essential regulator of SA-mediated immune re-
sponses [101,102], whereas WRKY70 converges between signals of SA and JA in plant
defense responses [103]. NONEXPRESSOR PATHOGENESIS-RELATED GENES1 (NPR1)
is a hub regulator of defense responses mediated by SA [104], and involved in defense
layers of PTI and ETI. It is also a fundamental molecular regulator for the programing of
cell death in ETI. EDS1 is a positive switch of basal resistance, which is needed for ETI [105].

3.6. Identification of Potential miRNAs

MicroRNAs (miRNAs) are a class of short endogenous non-coding small RNA molecules.
Many of these molecules play substantial roles in the defense response at times of biotic
stress. To find putative miRNAs associated with DEGs, we utilized the computational
algorithm psRNATarget with high specificity based on the choice of penalty score (≤2 being
highly stringent). We detected 180 miRNAs, of which 39 belonged to conserved families
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(Figure 5). The miR5021 family possesses the highest frequency (39 members), followed by
miR156, miR5658, and miR414 (20 members each), in addition to several members having
already-known stress response associations (i.e., miR169, miR395, miR399, miR393, miR156,
miR171, miR172, miR161, miR163, and miR165) as regulators of PTI and ETI [106].
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4. Conclusions

The analysis of transcriptomic datasets available for similar plant host responses to
different biotic stressors provided a unique opportunity to obtain critical knowledge about
genes that are commonly expressed during pathogen infection, and will be useful in the
development of novel genetic resistance strategies. Considering the inevitable variation be-
tween different studies and their considerable effects in the type and number of transcripts—
owing to variations in host plant ecotype, pathogen species or isolate, and experimental
conditions—we integrated the available transcriptomic datasets of Arabidopsis thaliana dur-
ing responses to several pathogens in a coherent approach that identified commonalities
pertaining to pathogenic stress responses in other host plants. Transcriptomic analysis
and the PPI network analysis helped researchers to visualize and introduced key node
proteins that counteracted pathogenic infections. More importantly, they could serve as
new biomarkers in diagnosing and guiding management strategies of plant disease. This
study highlights the importance of TFs as regulators of plant responses against pathogens.
Future research can be directed at candidate genes as general indicators of resistance
and encompass different mechanisms of defense against a broad range of pathogens in
Arabidopsis. Further studies are required to elucidate the molecular mechanisms of DEGs,
TFs, and miRNAs, and uncover the relation between them in plant disease resistance
against pathogens.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11081155/s1. Table S1: List of the 3694 DEGs identified
by meta-analysis; 1909 were up-regulated and 1785 were down-regulated, Table S2: Gene ontology
enrichment analysis of the down- and up-regulated DEGs, Table S3: KEGG pathway enrichment of
the down- and up-regulated DEGs, Table S4: Transcription factors with significant response to the
pathogen treatment, with indication of di-rection for change of gene activity.

Author Contributions: Conceived and designed the experiments: Y.B. Analyzed the data: Y.B. and
A.T. (Ahmad Tahmasebi). Wrote the paper: Y.B. Authored and reviewed the manuscript: A.T. (Ahmad
Tahmasebi), B.R.A., A.A., A.T. (Aminallah Tahmasebi) and P.P. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding. Open access was funded by the Helsinki
University Library.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

https://www.mdpi.com/article/10.3390/biology11081155/s1
https://www.mdpi.com/article/10.3390/biology11081155/s1


Biology 2022, 11, 1155 12 of 15

Data Availability Statement: The data presented in this study are available in the Supplementary Materials.

Acknowledgments: Péter Poczai thanks the support of iASK Grant.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [CrossRef] [PubMed]
2. Moore, J.W.; Loake, G.; Spoel, S.H. Transcription dynamics in plant immunity. Plant Cell 2011, 23, 2809–2820. [CrossRef] [PubMed]
3. Jiang, Z.; He, F.; Zhang, Z. Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced

by different pathogens. Plant Mol. Biol. 2017, 94, 453–467. [CrossRef] [PubMed]
4. Zhang, R.; Zheng, F.; Wei, S.; Zhang, S.; Li, G.; Cao, P.; Zhao, S. Evolution of disease defense genes and their regulators in plants.

Int. J. Mol. Sci. 2019, 20, 335. [CrossRef]
5. Andolfo, G.; Ercolano, M.R. Plant Innate Immunity Multicomponent Model. Front. Plant Sci. 2015, 6, 987. [CrossRef]
6. Li, B.; Meng, X.; Shan, L.; He, P. Transcriptional regulation of pattern-triggered immunity in plants. Cell Host Microbe 2016, 19,

641–650. [CrossRef] [PubMed]
7. Yu, X.; Feng, B.; He, P.; Shan, L. From chaos to harmony: Responses and signaling upon microbial pattern recognition. Annu. Rev.

Phytopathol. 2017, 55, 109–137. [CrossRef] [PubMed]
8. Cui, H.; Tsuda, K.; Parker, J.E. Effector-triggered immunity: From pathogen perception to robust defense. Annu. Rev. Plant Biol.

2015, 66, 487–511. [CrossRef] [PubMed]
9. Fu, Z.Q.; Dong, X. Systemic acquired resistance: Turning local infection into global defense. Annu. Rev. Plant Biol. 2013, 64,

839–863. [CrossRef]
10. Bolton, M.D. Primary metabolism and plant defense—Fuel for the fire. Mol. Plant.-Microbe Interact. 2009, 22, 487–497. [CrossRef]
11. Piasecka, A.; Jedrzejczak-Rey, N.; Bednarek, P. Secondary metabolites in plant innate immunity: Conserved function of divergent

chemicals. New Phytol. 2015, 206, 948–964. [CrossRef] [PubMed]
12. Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K. Regulation of primary plant metabolism during plant-pathogen interactions

and its contribution to plant defense. Front. Plant Sci. 2014, 5, 17. [CrossRef] [PubMed]
13. Cohen, S.P.; Leach, J.E. Abiotic and biotic stresses induce a core transcriptome response in rice. Sci. Rep. 2019, 9, 6273. [CrossRef]
14. Peyraud, R.; Dubiella, U.; Barbacci, A.; Genin, S.; Raffaele, S.; Roby, D. Advances on plant–pathogen interactions from molecular

toward systems biology perspectives. Plant J. 2017, 90, 720–737. [CrossRef] [PubMed]
15. Rejeb, I.B.; Pastor, V.; Mauch-Mani, B. Plant responses to simultaneous biotic and abiotic stress: Molecular mechanisms. Plants

2014, 3, 458–475. [CrossRef] [PubMed]
16. Ashrafi-Dehkordi, E.; Alemzadeh, A.; Tanaka, N.; Razi, H. Meta-analysis of transcriptomic responses to biotic and abiotic stress

in tomato. PeerJ 2018, 6, e4631. [CrossRef] [PubMed]
17. Atkinson, N.J.; Lilley, C.J.; Urwin, P.E. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and

abiotic stresses. Plant Physiol. 2013, 162, 2028–2041. [CrossRef] [PubMed]
18. Sharifi, S.; Pakdel, A.; Ebrahimi, M.; Reecy, J.M.; Farsani, S.F.; Ebrahimie, E. Integration of machine learning and meta-analysis

identifies the transcriptomic bio-signature of mastitis disease in cattle. PLoS ONE 2018, 13, e0191227. [CrossRef] [PubMed]
19. Tahmasebi, A.; Ebrahimie, E.; Pakniyat, H.; Ebrahimi, M.; Mohammadi-Dehcheshmeh, M. Tissue-specific transcriptional

biomarkers in medicinal plants: Application of large-scale meta-analysis and computational systems biology. Gene 2019, 691,
114–124. [CrossRef] [PubMed]

20. Balan, B.; Marra, F.P.; Caruso, T.; Martinelli, F. Transcriptomic responses to biotic stresses in Malus x domestica: A meta-analysis
study. Sci. Rep. 2018, 8, 1970. [CrossRef] [PubMed]

21. Brooks, J.; Koen, D.; Giner, C. Three Key Challenges Facing Agriculture and How to Start Solving Them. Available online:
https://www.oecd.org/agriculture/key-challenges-agriculture-how-solve/ (accessed on 1 February 2022).

22. Westman, S.M.; Kloth, K.J.; Hanson, J.; Ohlsson, A.B.; Albrectsen, B.R. Defence priming in Arabidopsis–A Meta-Analysis. Sci. Rep.
2019, 9, 13309. [CrossRef] [PubMed]

23. Tahmasebi, A.; Ashrafi-Dehkordi, E.; Shahriari, A.G.; Mazloomi, S.M.; Ebrahimie, E. Integrative meta-analysis of transcriptomic
responses to abiotic stress in cotton. Prog. Biophys. Mol. Biol. 2019, 146, 112–122. [CrossRef] [PubMed]

24. Asai, S.; Rallapalli, G.; Piquerez, S.J.; Caillaud, M.-C.; Furzer, O.J.; Ishaque, N.; Wirthmueller, L.; Fabro, G.; Shirasu, K.; Jones, J.D.
Expression profiling during Arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses
to salicylic acid. PLoS Pathog. 2014, 10, e1004443. [CrossRef] [PubMed]

25. Bernsdorff, F.; Döring, A.-C.; Gruner, K.; Schuck, S.; Bräutigam, A.; Zeier, J. Pipecolic acid orchestrates plant systemic acquired
resistance and defense priming via salicylic acid-dependent and-independent pathways. Plant Cell 2016, 28, 102–129. [CrossRef]
[PubMed]

26. Filichkin, S.A.; Cumbie, J.S.; Dharmawardhana, P.; Jaiswal, P.; Chang, J.H.; Palusa, S.G.; Reddy, A.; Megraw, M.; Mockler, T.C.
Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis. Mol. Plant
2015, 8, 207–227. [CrossRef] [PubMed]

http://doi.org/10.1038/nature05286
http://www.ncbi.nlm.nih.gov/pubmed/17108957
http://doi.org/10.1105/tpc.111.087346
http://www.ncbi.nlm.nih.gov/pubmed/21841124
http://doi.org/10.1007/s11103-017-0617-5
http://www.ncbi.nlm.nih.gov/pubmed/28540497
http://doi.org/10.3390/ijms20020335
http://doi.org/10.3389/fpls.2015.00987
http://doi.org/10.1016/j.chom.2016.04.011
http://www.ncbi.nlm.nih.gov/pubmed/27173932
http://doi.org/10.1146/annurev-phyto-080516-035649
http://www.ncbi.nlm.nih.gov/pubmed/28525309
http://doi.org/10.1146/annurev-arplant-050213-040012
http://www.ncbi.nlm.nih.gov/pubmed/25494461
http://doi.org/10.1146/annurev-arplant-042811-105606
http://doi.org/10.1094/MPMI-22-5-0487
http://doi.org/10.1111/nph.13325
http://www.ncbi.nlm.nih.gov/pubmed/25659829
http://doi.org/10.3389/fpls.2014.00017
http://www.ncbi.nlm.nih.gov/pubmed/24575102
http://doi.org/10.1038/s41598-019-42731-8
http://doi.org/10.1111/tpj.13429
http://www.ncbi.nlm.nih.gov/pubmed/27870294
http://doi.org/10.3390/plants3040458
http://www.ncbi.nlm.nih.gov/pubmed/27135514
http://doi.org/10.7717/peerj.4631
http://www.ncbi.nlm.nih.gov/pubmed/30038850
http://doi.org/10.1104/pp.113.222372
http://www.ncbi.nlm.nih.gov/pubmed/23800991
http://doi.org/10.1371/journal.pone.0191227
http://www.ncbi.nlm.nih.gov/pubmed/29470489
http://doi.org/10.1016/j.gene.2018.12.056
http://www.ncbi.nlm.nih.gov/pubmed/30620887
http://doi.org/10.1038/s41598-018-19348-4
http://www.ncbi.nlm.nih.gov/pubmed/29386527
https://www.oecd.org/agriculture/key-challenges-agriculture-how-solve/
http://doi.org/10.1038/s41598-019-49811-9
http://www.ncbi.nlm.nih.gov/pubmed/31527672
http://doi.org/10.1016/j.pbiomolbio.2019.02.005
http://www.ncbi.nlm.nih.gov/pubmed/30802474
http://doi.org/10.1371/journal.ppat.1004443
http://www.ncbi.nlm.nih.gov/pubmed/25329884
http://doi.org/10.1105/tpc.15.00496
http://www.ncbi.nlm.nih.gov/pubmed/26672068
http://doi.org/10.1016/j.molp.2014.10.011
http://www.ncbi.nlm.nih.gov/pubmed/25680774


Biology 2022, 11, 1155 13 of 15

27. Howard, B.E.; Hu, Q.; Babaoglu, A.C.; Chandra, M.; Borghi, M.; Tan, X.; He, L.; Winter-Sederoff, H.; Gassmann, W.; Veronese, P.
High-throughput RNA sequencing of pseudomonas-infected Arabidopsis reveals hidden transcriptome complexity and novel
splice variants. PLoS ONE 2013, 8, e7418. [CrossRef]

28. Lai, Z.; Schluttenhofer, C.M.; Bhide, K.; Shreve, J.; Thimmapuram, J.; Lee, S.Y.; Yun, D.-J.; Mengiste, T. MED18 interaction with
distinct transcription factors regulates multiple plant functions. Nat. Commun. 2014, 5, 3064. [CrossRef]

29. Zhu, Q.-H.; Stephen, S.; Kazan, K.; Jin, G.; Fan, L.; Taylor, J.; Dennis, E.S.; Helliwell, C.A.; Wang, M.-B. Characterization of the
defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene 2013, 512, 259–266.
[CrossRef]

30. Zorzatto, C.; Machado, J.P.B.; Lopes, K.V.; Nascimento, K.J.; Pereira, W.A.; Brustolini, O.J.; Reis, P.A.; Calil, I.P.; Deguchi, M.;
Sachetto-Martins, G. NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature 2015,
520, 679–682. [CrossRef]

31. Ewing, B.; Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998, 8, 186–194.
[CrossRef] [PubMed]

32. Leek, J.T.; Johnson, W.E.; Parker, H.S.; Jaffe, A.E.; Storey, J.D. The sva package for removing batch effects and other unwanted
variation in high-throughput experiments. Bioinformatics 2012, 28, 882–883. [CrossRef] [PubMed]

33. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R.
Stat. Soc. Ser. B 1995, 57, 289–300. [CrossRef]

34. Hu, P.; Greenwood, C.M.; Beyene, J. Using the ratio of means as the effect size measure in combining results of microarray
experiments. BMC Syst. Biol. 2009, 3, 106. [CrossRef] [PubMed]

35. Osuna-Cruz, C.M.; Paytuvi-Gallart, A.; Di Donato, A.; Sundesha, V.; Andolfo, G.; Aiese Cigliano, R.; Sanseverino, W.; Ercolano,
M.R. PRGdb 3.0: A comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res. 2018,
46, D1197–D1201. [CrossRef] [PubMed]

36. Sanseverino, W.; Roma, G.; De Simone, M.; Faino, L.; Melito, S.; Stupka, E.; Frusciante, L.; Ercolano, M.R. PRGdb: A bioinformatics
platform for plant resistance gene analysis. Nucleic Acids Res. 2010, 38 (Suppl. S1), D814–D821. [CrossRef] [PubMed]

37. Vidhyasekaran, P. Switching on Plant Innate Immunity Signaling Systems: Bioengineering and Molecular Manipulation of PAMP-PIMP-
PRR Signaling Complex; Springer: Berlin/Heidelberg, Germany, 2016.

38. Du, Z.; Zhou, X.; Ling, Y.; Zhang, Z.; Su, Z. agriGO: A GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010,
38 (Suppl. S2), W64–W70. [CrossRef]

39. Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou,
K.P. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452.
[CrossRef]

40. De Coninck, B.M.; Sels, J.; Venmans, E.; Thys, W.; Goderis, I.J.; Carron, D.; Delauré, S.L.; Cammue, B.P.; De Bolle, M.F.; Mathys, J.
Arabidopsis thaliana plant defensin AtPDF1. 1 is involved in the plant response to biotic stress. New Phytol. 2010, 187, 1075–1088.
[CrossRef]

41. Bartsch, M.; Gobbato, E.; Bednarek, P.; Debey, S.; Schultze, J.L.; Bautor, J.; Parker, J.E. Salicylic acid–independent ENHANCED
DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and
the nudix hydrolase NUDT7. Plant Cell 2006, 18, 1038–1051. [CrossRef]

42. Mishina, T.E.; Zeier, J. The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced
systemic acquired resistance. Plant Physiol. 2006, 141, 1666–1675. [CrossRef]

43. Wang, L.; Cao, C.; Ma, Q.; Zeng, Q.; Wang, H.; Cheng, Z.; Zhu, G.; Qi, J.; Ma, H.; Nian, H. RNA-seq analyses of multiple meristems
of soybean: Novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol. 2014, 14, 169. [CrossRef]
[PubMed]

44. Luo, X.; Xu, N.; Huang, J.; Gao, F.; Zou, H.; Boudsocq, M.; Coaker, G.; Liu, J. A lectin receptor-like kinase mediates pattern-
triggered salicylic acid signaling. Plant Physiol. 2017, 174, 2501–2514. [CrossRef] [PubMed]

45. Wang, Y.; Bouwmeester, K. L-type lectin receptor kinases: New forces in plant immunity. PLoS Pathog. 2017, 13, e1006433.
[CrossRef]

46. Kim, H.G.; Kwon, S.J.; Jang, Y.J.; Chung, J.H.; Nam, M.H.; Park, O.K. GDSL lipase 1 regulates ethylene signaling and ethylene-
associated systemic immunity in Arabidopsis. FEBS Lett. 2014, 588, 1652–1658. [CrossRef] [PubMed]

47. Kim, H.G.; Kwon, S.J.; Jang, Y.J.; Nam, M.H.; Chung, J.H.; Na, Y.-C.; Guo, H.; Park, O.K. GDSL LIPASE1 modulates plant
immunity through feedback regulation of ethylene signaling. Plant Physiol. 2013, 163, 1776–1791. [CrossRef]

48. Bakshi, M.; Oelmüller, R. WRKY transcription factors: Jack of many trades in plants. Plant Signal. Behav. 2014, 9, e27700.
[CrossRef] [PubMed]

49. Encinas-Villarejo, S.; Maldonado, A.M.; Amil-Ruiz, F.; de los Santos, B.; Romero, F.; Pliego-Alfaro, F.; Muñoz-Blanco, J.; Caballero,
J.L. Evidence for a positive regulatory role of strawberry (Fragaria× ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins
in resistance. J. Exp. Bot. 2009, 60, 3043–3065. [CrossRef]

50. Guo, P.; Li, Z.; Huang, P.; Li, B.; Fang, S.; Chu, J.; Guo, H. A tripartite amplification loop involving the transcription factor
WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell 2017, 29, 2854–2870. [CrossRef]

51. Yi, X.; Hargett, S.R.; Frankel, L.K.; Bricker, T.M. The PsbP protein, but not the PsbQ protein, is required for normal thylakoid
architecture in Arabidopsis thaliana. FEBS Lett. 2009, 583, 2142–2147. [CrossRef]

http://doi.org/10.1371/journal.pone.0074183
http://doi.org/10.1038/ncomms4064
http://doi.org/10.1016/j.gene.2012.10.036
http://doi.org/10.1038/nature14171
http://doi.org/10.1101/gr.8.3.186
http://www.ncbi.nlm.nih.gov/pubmed/9521922
http://doi.org/10.1093/bioinformatics/bts034
http://www.ncbi.nlm.nih.gov/pubmed/22257669
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://doi.org/10.1186/1752-0509-3-106
http://www.ncbi.nlm.nih.gov/pubmed/19891778
http://doi.org/10.1093/nar/gkx1119
http://www.ncbi.nlm.nih.gov/pubmed/29156057
http://doi.org/10.1093/nar/gkp978
http://www.ncbi.nlm.nih.gov/pubmed/19906694
http://doi.org/10.1093/nar/gkq310
http://doi.org/10.1093/nar/gku1003
http://doi.org/10.1111/j.1469-8137.2010.03326.x
http://doi.org/10.1105/tpc.105.039982
http://doi.org/10.1104/pp.106.081257
http://doi.org/10.1186/1471-2229-14-169
http://www.ncbi.nlm.nih.gov/pubmed/24939556
http://doi.org/10.1104/pp.17.00404
http://www.ncbi.nlm.nih.gov/pubmed/28696275
http://doi.org/10.1371/journal.ppat.1006433
http://doi.org/10.1016/j.febslet.2014.02.062
http://www.ncbi.nlm.nih.gov/pubmed/24631536
http://doi.org/10.1104/pp.113.225649
http://doi.org/10.4161/psb.27700
http://www.ncbi.nlm.nih.gov/pubmed/24492469
http://doi.org/10.1093/jxb/erp152
http://doi.org/10.1105/tpc.17.00438
http://doi.org/10.1016/j.febslet.2009.05.048


Biology 2022, 11, 1155 14 of 15

52. Longoni, P.; Douchi, D.; Cariti, F.; Fucile, G.; Goldschmidt-Clermont, M. Phosphorylation of the light-harvesting complex II
isoform Lhcb2 is central to state transitions. Plant Physiol. 2015, 169, 2874–2883. [CrossRef]

53. Frederickson Matika, D.E.; Loake, G.J. Redox regulation in plant immune function. Antioxid. Redox Signal. 2014, 21, 1373–1388.
[CrossRef] [PubMed]

54. Mhamdi, A.; Van Breusegem, F. Reactive oxygen species in plant development. Development 2018, 145, dev164376. [CrossRef]
[PubMed]

55. Karapetyan, S.; Dong, X. Redox and the circadian clock in plant immunity: A balancing act. Free. Radic. Biol. Med. 2018, 119,
56–61. [CrossRef]

56. Keinath, N.F.; Kierszniowska, S.; Lorek, J.; Bourdais, G.; Kessler, S.A.; Shimosato-Asano, H.; Grossniklaus, U.; Schulze, W.X.;
Robatzek, S.; Panstruga, R. PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmen-
talization reveal novel components of plant immunity. J. Biol. Chem. 2010, 285, 39140–39149. [CrossRef] [PubMed]

57. Hahn, M.; Mendgen, K. Signal and nutrient exchange at biotrophic plant–fungus interfaces. Curr. Opin. Plant Biol. 2001, 4,
322–327. [CrossRef]

58. Ward, J.M.; Mäser, P.; Schroeder, J.I. Plant ion channels: Gene families, physiology, and functional genomics analyses. Annu. Rev.
Physiol. 2009, 71, 59–82. [CrossRef] [PubMed]

59. Gu, Y.; Zavaliev, R.; Dong, X. Membrane trafficking in plant immunity. Mol. Plant 2017, 10, 1026–1034. [CrossRef] [PubMed]
60. Jeworutzki, E.; Roelfsema, M.R.G.; Anschütz, U.; Krol, E.; Elzenga, J.T.M.; Felix, G.; Boller, T.; Hedrich, R.; Becker, D. Early

signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma
membrane anion channels. Plant J. 2010, 62, 367–378. [CrossRef]

61. Montesano, M.; Brader, G.; Palva, E.T. Pathogen derived elicitors: Searching for receptors in plants. Mol. Plant Pathol. 2003, 4,
73–79. [CrossRef] [PubMed]

62. Bednarek, P. Chemical warfare or modulators of defence responses–the function of secondary metabolites in plant immunity.
Curr. Opin. Plant Biol. 2012, 15, 407–414.

63. Miedes, E.; Vanholme, R.; Boerjan, W.; Molina, A. The role of the secondary cell wall in plant resistance to pathogens. Front. Plant
Sci. 2014, 5, 358. [CrossRef] [PubMed]

64. Voigt, C.A. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front. Plant Sci. 2014, 5, 168.
[CrossRef]

65. Less, H.; Angelovici, R.; Tzin, V.; Galili, G. Coordinated gene networks regulating Arabidopsis plant metabolism in response to
various stresses and nutritional cues. Plant Cell 2011, 23, 1264–1271. [CrossRef] [PubMed]

66. Misra, B.B.; de Armas, E.; Chen, S. Differential metabolomic responses of PAMP-triggered immunity and effector-triggered
immunity in Arabidopsis suspension cells. Metabolomics 2016, 12, 61. [CrossRef]

67. Schwachtje, J.; Fischer, A.; Erban, A.; Kopka, J. Primed primary metabolism in systemic leaves: A functional systems analysis. Sci.
Rep. 2018, 8, 216. [CrossRef]

68. Yoo, H.; Greene, G.H.; Yuan, M.; Xu, G.; Burton, D.; Liu, L.; Marqués, J.; Dong, X. Translational regulation of metabolic dynamics
during effector-triggered immunity. Mol. Plant 2020, 13, 88–98. [CrossRef]

69. Hartmann, T. The lost origin of chemical ecology in the late 19th century. Proc. Natl. Acad. Sci. USA 2008, 105, 4541–4546.
[CrossRef]

70. Ahuja, I.; Kissen, R.; Bones, A.M. Phytoalexins in defense against pathogens. Trends Plant Sci. 2012, 17, 73–90. [CrossRef]
71. Bednarek, P.; Osbourn, A. Plant-microbe interactions: Chemical diversity in plant defense. Science 2009, 324, 746–748. [CrossRef]
72. Mazid, M.; Khan, T.A.; Mohammad, F. Role of secondary metabolites in defense mechanisms of plants. Biol. Med. 2011, 3, 232–249.
73. Ishihara, A. Defense mechanisms involving secondary metabolism in the grass family. J. Pestic. Sci. 2021, J21-05. [CrossRef]

[PubMed]
74. Kaur, S.; Samota, M.K.; Choudhary, M.; Choudhary, M.; Pandey, A.K.; Sharma, A.; Thakur, J. How do plants defend themselves

against pathogens-Biochemical mechanisms and genetic interventions. Physiol. Mol. Biol. Plants 2022, 28, 485–504. [CrossRef]
[PubMed]

75. Barth, C.; Jander, G. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect
defense. Plant J. 2006, 46, 549–562. [CrossRef]

76. Wittstock, U.; Burow, M. Glucosinolate breakdown in Arabidopsis: Mechanism, regulation and biological significance. Arab.
Book/Am. Soc. Plant Biol. 2010, 8, e0134. [CrossRef] [PubMed]

77. Halkier, B.A.; Du, L. The biosynthesis of glucosinolates. Trends Plant Sci. 1997, 2, 425–431. [CrossRef]
78. Hu, Z.; Zhang, H.; Shi, K. Plant peptides in plant defense responses. Plant Signal. Behav. 2018, 13, e1475175. [CrossRef] [PubMed]
79. Pascual, M.B.; El-Azaz, J.; de la Torre, F.N.; Cañas, R.A.; Avila, C.; Cánovas, F.M. Biosynthesis and metabolic fate of phenylalanine

in conifers. Front. Plant Sci. 2016, 7, 1030. [CrossRef] [PubMed]
80. Jander, G.; Joshi, V. Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants. Mol. Plant 2010, 3,

54–65. [CrossRef]
81. Zeier, J. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ. 2013, 36,

2085–2103. [CrossRef]
82. Bobik, K.; Burch-Smith, T.M. Chloroplast signaling within, between and beyond cells. Front. Plant Sci. 2015, 6, 781. [CrossRef]

[PubMed]

http://doi.org/10.1104/pp.15.01498
http://doi.org/10.1089/ars.2013.5679
http://www.ncbi.nlm.nih.gov/pubmed/24206122
http://doi.org/10.1242/dev.164376
http://www.ncbi.nlm.nih.gov/pubmed/30093413
http://doi.org/10.1016/j.freeradbiomed.2017.12.024
http://doi.org/10.1074/jbc.M110.160531
http://www.ncbi.nlm.nih.gov/pubmed/20843791
http://doi.org/10.1016/S1369-5266(00)00180-1
http://doi.org/10.1146/annurev.physiol.010908.163204
http://www.ncbi.nlm.nih.gov/pubmed/18842100
http://doi.org/10.1016/j.molp.2017.07.001
http://www.ncbi.nlm.nih.gov/pubmed/28698057
http://doi.org/10.1111/j.1365-313X.2010.04155.x
http://doi.org/10.1046/j.1364-3703.2003.00150.x
http://www.ncbi.nlm.nih.gov/pubmed/20569365
http://doi.org/10.3389/fpls.2014.00358
http://www.ncbi.nlm.nih.gov/pubmed/25161657
http://doi.org/10.3389/fpls.2014.00168
http://doi.org/10.1105/tpc.110.082867
http://www.ncbi.nlm.nih.gov/pubmed/21487096
http://doi.org/10.1007/s11306-016-0984-y
http://doi.org/10.1038/s41598-017-18397-5
http://doi.org/10.1016/j.molp.2019.09.009
http://doi.org/10.1073/pnas.0709231105
http://doi.org/10.1016/j.tplants.2011.11.002
http://doi.org/10.1126/science.1171661
http://doi.org/10.1584/jpestics.J21-05
http://www.ncbi.nlm.nih.gov/pubmed/34908899
http://doi.org/10.1007/s12298-022-01146-y
http://www.ncbi.nlm.nih.gov/pubmed/35400890
http://doi.org/10.1111/j.1365-313X.2006.02716.x
http://doi.org/10.1199/tab.0134
http://www.ncbi.nlm.nih.gov/pubmed/22303260
http://doi.org/10.1016/S1360-1385(97)90026-1
http://doi.org/10.1080/15592324.2018.1475175
http://www.ncbi.nlm.nih.gov/pubmed/30067449
http://doi.org/10.3389/fpls.2016.01030
http://www.ncbi.nlm.nih.gov/pubmed/27468292
http://doi.org/10.1093/mp/ssp104
http://doi.org/10.1111/pce.12122
http://doi.org/10.3389/fpls.2015.00781
http://www.ncbi.nlm.nih.gov/pubmed/26500659


Biology 2022, 11, 1155 15 of 15

83. Padmanabhan, M.S.; Dinesh-Kumar, S. All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in
driving plant innate immunity. Mol. Plant-Microbe Interact. 2010, 23, 1368–1380. [CrossRef] [PubMed]

84. Fischer, E.; Raschke, K.; Stitt, M. Effects of abscisic acid on photosynthesis in whole leaves: Changes in CO2 assimilation, levels of
carbon-reduction-cycle intermediates, and activity of ribulose-1, 5-bisphosphate carboxylase. Planta 1986, 169, 536–545. [CrossRef]
[PubMed]

85. Hill, A.C.; Bennett, J. Inhibition of apparent photosynthesis by nitrogen oxides. Atmos. Environ. 1970, 4, 341–348. [CrossRef]
86. Ceusters, J.; Van de Poel, B. Ethylene exerts species-specific and age-dependent control of photosynthesis. Plant Physiol. 2018, 176,

2601–2612. [CrossRef] [PubMed]
87. Janda, T.; Gondor, O.K.; Yordanova, R.; Szalai, G.; Pál, M. Salicylic acid and photosynthesis: Signalling and effects. Acta Physiol.

Plant. 2014, 36, 2537–2546. [CrossRef]
88. Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55,

373–399. [CrossRef] [PubMed]
89. Gururani, M.A.; Venkatesh, J.; Tran, L.S.P. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol. Plant

2015, 8, 1304–1320. [CrossRef]
90. Sewelam, N.; Kazan, K.; Schenk, P.M. Global plant stress signaling: Reactive oxygen species at the cross-road. Front. Plant Sci.

2016, 7, 187. [CrossRef]
91. Torres, M.A. ROS in biotic interactions. Physiol. Plant. 2010, 138, 414–429. [CrossRef]
92. Amorim, A.; Lidiane, L.; da Fonseca dos Santos, R.; Pacifico Bezerra Neto, J.; Guida-Santos, M.; Crovella, S.; Maria Benko-Iseppon,

A. Transcription factors involved in plant resistance to pathogens. Curr. Protein Pept. Sci. 2017, 18, 335–351. [CrossRef]
93. Tsuda, K.; Somssich, I.E. Transcriptional networks in plant immunity. New Phytol. 2015, 206, 932–947. [CrossRef] [PubMed]
94. Duplan, V.; Rivas, S. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity. Front. Plant Sci.

2014, 5, 42. [CrossRef] [PubMed]
95. Dong, X.; Jiang, Z.; Peng, Y.-L.; Zhang, Z. Revealing shared and distinct gene network organization in Arabidopsis immune

responses by integrative analysis. Plant Physiol. 2015, 167, 1186–1203. [CrossRef] [PubMed]
96. Xu, X.; Chen, C.; Fan, B.; Chen, Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18,

WRKY40, and WRKY60 transcription factors. Plant Cell 2006, 18, 1310–1326. [CrossRef]
97. Murray, S.L.; Ingle, R.A.; Petersen, L.N.; Denby, K.J. Basal resistance against Pseudomonas syringae in Arabidopsis involves

WRKY53 and a protein with homology to a nematode resistance protein. Mol. Plant-Microbe Interact. 2007, 20, 1431–1438.
[CrossRef] [PubMed]

98. Wang, D.; Amornsiripanitch, N.; Dong, X. A genomic approach to identify regulatory nodes in the transcriptional network of
systemic acquired resistance in plants. PLoS Pathog. 2006, 2, e123. [CrossRef] [PubMed]

99. Miao, Y.; Zentgraf, U. The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the
jasmonic and salicylic acid equilibrium. Plant Cell 2007, 19, 819–830. [CrossRef] [PubMed]

100. Hu, Y.; Dong, Q.; Yu, D. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen
Pseudomonas syringae. Plant Sci. 2012, 185, 288–297. [CrossRef]

101. Zheng, Z.; Mosher, S.L.; Fan, B.; Klessig, D.F.; Chen, Z. Functional analysis of Arabidopsis WRKY25 transcription factor in plant
defense against Pseudomonas syringae. BMC Plant Biol. 2007, 7, 2. [CrossRef]

102. Zheng, Z.; Qamar, S.A.; Chen, Z.; Mengiste, T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic
fungal pathogens. Plant J. 2006, 48, 592–605. [CrossRef]

103. Li, J.; Brader, G.; Palva, E.T. The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-
mediated signals in plant defense. Plant Cell 2004, 16, 319–331. [CrossRef] [PubMed]

104. Dong, X. NPR1, all things considered. Curr. Opin. Plant Biol. 2004, 7, 547–552. [CrossRef] [PubMed]
105. Wiermer, M.; Feys, B.J.; Parker, J.E. Plant immunity: The EDS1 regulatory node. Curr. Opin. Plant Biol. 2005, 8, 383–389. [CrossRef]

[PubMed]
106. Fei, Q.; Zhang, Y.; Xia, R.; Meyers, B.C. Small RNAs add zing to the zig-zag-zig model of plant defenses. Mol. Plant-Microbe

Interact. 2016, 29, 165–169. [CrossRef] [PubMed]

http://doi.org/10.1094/MPMI-05-10-0113
http://www.ncbi.nlm.nih.gov/pubmed/20923348
http://doi.org/10.1007/BF00392104
http://www.ncbi.nlm.nih.gov/pubmed/24232762
http://doi.org/10.1016/0004-6981(70)90078-8
http://doi.org/10.1104/pp.17.01706
http://www.ncbi.nlm.nih.gov/pubmed/29438047
http://doi.org/10.1007/s11738-014-1620-y
http://doi.org/10.1146/annurev.arplant.55.031903.141701
http://www.ncbi.nlm.nih.gov/pubmed/15377225
http://doi.org/10.1016/j.molp.2015.05.005
http://doi.org/10.3389/fpls.2016.00187
http://doi.org/10.1111/j.1399-3054.2009.01326.x
http://doi.org/10.2174/1389203717666160619185308
http://doi.org/10.1111/nph.13286
http://www.ncbi.nlm.nih.gov/pubmed/25623163
http://doi.org/10.3389/fpls.2014.00042
http://www.ncbi.nlm.nih.gov/pubmed/24592270
http://doi.org/10.1104/pp.114.254292
http://www.ncbi.nlm.nih.gov/pubmed/25614062
http://doi.org/10.1105/tpc.105.037523
http://doi.org/10.1094/MPMI-20-11-1431
http://www.ncbi.nlm.nih.gov/pubmed/17977154
http://doi.org/10.1371/journal.ppat.0020123
http://www.ncbi.nlm.nih.gov/pubmed/17096590
http://doi.org/10.1105/tpc.106.042705
http://www.ncbi.nlm.nih.gov/pubmed/17369373
http://doi.org/10.1016/j.plantsci.2011.12.003
http://doi.org/10.1186/1471-2229-7-2
http://doi.org/10.1111/j.1365-313X.2006.02901.x
http://doi.org/10.1105/tpc.016980
http://www.ncbi.nlm.nih.gov/pubmed/14742872
http://doi.org/10.1016/j.pbi.2004.07.005
http://www.ncbi.nlm.nih.gov/pubmed/15337097
http://doi.org/10.1016/j.pbi.2005.05.010
http://www.ncbi.nlm.nih.gov/pubmed/15939664
http://doi.org/10.1094/MPMI-09-15-0212-FI
http://www.ncbi.nlm.nih.gov/pubmed/26867095

	Introduction 
	Materials and Methods 
	Data Collection and Preprocessing 
	Meta-Analysis of Expression Dataset 
	Gene Enrichment Analysis and Functional Analysis 
	Protein-Protein Interactions and Network Construction 
	Prediction of Potential miRNAs 

	Results and Discussion 
	Identification of Differentially Expressed Genes 
	Gene Ontology Confirmed Strong Impact on Diverse Cellular Processes 
	Enrichment Analysis of the KEGG Pathway Highlights the Reticulate Nature of Defense Metabolism in Plants 
	Identification of Transcription Factors 
	Protein–Protein Interaction of Transcription Factors and Hub Genes Identification 
	Identification of Potential miRNAs 

	Conclusions 
	References

