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Abstract Genomic studies of cancer cell alterations, such as mutations, copy number variations

(CNVs), and translocations, greatly promote our understanding of the genesis and development

of cancers. However, the 3D genome architecture of cancers remains less studied due to the
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complexity of cancer genomes and technical difficulties. To explore the 3D genome structure in clin-

ical lung cancer, we performed Hi-C experiments using paired normal and tumor cells harvested

from patients with lung cancer, combining with RNA sequenceing analysis. We demonstrated

the feasibility of studying 3D genome of clinical lung cancer samples with a small number of cells

(1 � 104), compared the genome architecture between clinical samples and cell lines of lung cancer,

and identified conserved and changed spatial chromatin structures between normal and cancer sam-

ples. We also showed that Hi-C data can be used to infer CNVs and point mutations in cancer. By

integrating those different types of cancer alterations, we showed significant associations between

CNVs, 3D genome, and gene expression. We propose that 3D genome mediates the effects of cancer

genomic alterations on gene expression through altering regulatory chromatin structures. Our study

highlights the importance of analyzing 3D genomes of clinical cancer samples in addition to cancer

cell lines and provides an integrative genomic analysis pipeline for future larger-scale studies in lung

cancer and other cancers.
Introduction

Lung cancer is the leading cause of cancer death [1,2], of which
lung adenocarcinoma (ADC) is the most common histological

subtype. Genomic alterations in ADC such as point mutations,
aneuploidy, copy number variations (CNVs), and DNA
methylation have been comprehensively characterized to dis-

cover novel molecular subtypes, cancer-driving pathways,
and therapeutic targets [3,4]. Recently, the 3D genome struc-
tures have been studied with various experimental and compu-
tational methods [5–9], and the reorganization of spatial

chromatin interactions in cancer cells is recognized as a new
type of genomic alterations [10,11]. For example, non-coding
CNVs or mutations at topologically associated domain

(TAD) boundaries or chromatin loop anchors result in de novo
chromatin interactions and domains, which lead to activation
of proto-oncogenes [12–14].

Most of the 3D cancer genome studies were performed on
human cancer cell lines since a high number of cells
(> 1 � 106) are required for chromosome conformation cap-
ture experiments such as Hi-C and ChIA-PET to interrogate

3D genome interactions [6,7,15–17]. There is also a lack of
the comparison between the 3D genomes of cancer cell lines
and clinical cancer samples to confirm cancer cell lines as

proper and accurate models to study the reorganization of
3D cancer genomes. Therefore, clinical applications of 3D
genome techniques for patient samples and integration of 3D

genome data with DNA sequencing and RNA sequencing
(RNA-seq) data will better illuminate causes and consequences
of cancer genome alterations [18].

In the present study, we explores the clinical application of
3D genome analyses by applying Hi-C to lung ADC samples
and paired normal lung tissues using as few as 1 � 104 cells.
By integrating the 3D genome reorganization in lung cancer

samples with CNVs, mutations, and gene expression changes
in the same samples, we reveal the correlations between differ-
ent data types and propose a model that 3D genome mediates

functional consequences of genomic alterations in lung cancer.

Results

Improving Hi-C experiments with limited number of cells

Due to the low number of cells available in clinical lung cancer
samples, we explored the viability of conducting in situ Hi-C
experiments with fewer cells for the first time [6]. We

performed Hi-C experiments with 1 � 104, 1 � 105, and
1 � 106 cells from the A549 lung ADC cell line and a tumor
sample collected from a patient (named 5534T). The raw inter-

action counts in the Hi-C data obtained with different cell
numbers were highly correlated (Figure 1A and B, Figure S1).
The normalized chromatin interactions and TADs identified

with 1 � 104 cells were highly similar to those identified using
1 � 105 and 1 � 106 cells, for both the A549 cell line and the
5534T tumor sample (Figure 1C). Specifically, 88% of the 3300
TADs identified using 1 � 106 A549 cells were also found using

1 � 104 cells, and 93% of the 3137 TADs identified using
1 � 104 A549 cells were confirmed using 1 � 106 cells
(Figure 1D). Similar proportions were observed in the 5534T

tumor sample (Figure 1E). These results demonstrate that
1 � 104 cells are sufficient for the identification of TADs and
chromatin interactions with high sensitivity and accuracy using

Hi-C experiments.

TADs and chromatin loops are altered significantly in clinical

lung cancer samples

We next performed Hi-C and RNA-seq experiments on paired
normal lung tissues and tumor samples from two lung ADC
patients (patients 5534 and 6405; Figure 2A and B; Table 1,

Table S1). Approximately 30%–40% of cells isolated from
the tumor sample from patient 5534 were cancer cells, while
the proportion of cancer cells was 10%–20% in the tumor sam-

ple from patient 6405 (Figures S2 and S3). The raw chromatin
interaction matrices for the paired normal and tumor samples
were largely correlated but showed noticeable differences (Fig-

ure 2C). We compared the raw Hi-C matrices between normal
and cancer cell lines and primary tissues from the lung, pros-
tate, and breast. The chromatin interactions among the samples
from the lung and breast were highly similar and distinct from

those in the samples from the prostate (Figure S4A and B),
likely due to differences in the cell origins between the prostate
cancer samples and the lung and breast cancer samples [19].

To more closely explore the 3D genome differences between
normal and tumor tissues, we compared the TADs and A/B
compartments [5,20] derived from the chromatin interaction

data across cell lines, tissue samples, and cancer types using
caICB-normalized Hi-C data [21]. Unlike a previous study
on prostate cancer cell lines [11], we did not observe a decrease

in the overall length of TADs in our lung cancer tissue samples
or in public Hi-C data for the MCF7 breast cancer cell line



Figure 1 Detecting the 3D genome of clinical lung cancer samples

A549 cell line and the 5534T cancer sample were used for in situ Hi-C at three cell number gradients. A. Plot showing SCC scores

calculated by HiCRep among different Hi-C experiments. B. Correlations of Hi-C matrices between normal lung tissue (from Schmitt

et al. [36]) and 5534T/A549 cells with different cell numbers calculated by HiCRep (resolution: 40 kb). C. Example of conserved and

changed TADs in a region (chr8: 30–36 Mb) by comparing A549 and 5534T cells. D. and E. The number of conserved and changed TADs

detected by Hi-C using different numbers of A549 cells (D) and 5534T cells (E). SCC, stratum-adjusted correlation coefficient; 5534T, a

tumor sample collected from patient 5534; TAD, topologically associated domain.
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Figure 2 3D genome structures of clinical normal and lung cancer samples

A. Histopathological images of normal and tumor clinical samples stained with hematoxylin and eosin. B. Outline of experiments and

analyses in this study. C. Similarity of chromatin interactions evaluated by HiCRep in samples from patient 5534 at different resolutions.

D. The length distribution of TADs in normal and cancer tissue samples as well as cell lines. E. Example of conserved and changed TADs

in a region (chr16: 3–9 Mb) by comparing paired normal and tumor samples from lung cancer patients. F. The number of conserved and

changed TADs between normal and tumor samples of patient 5534. CNV, copy number variation.
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compared to their normal counterparts (Figure 2D). However,
both conserved and altered TADs were detected in paired nor-
mal and tumor lung tissues (Figure 2E). Nearly 24% of TADs

were altered in the lung tumor tissue sample from patient 5534
compared to its normal lung counterpart (Figure 2F), and sim-
ilar differences in TADs were observed between normal and
cancer cell lines from the breast and prostate (Figure S4C).

These results imply that TAD alteration is a significant factor



Table 1 Patient information and characteristics

Patient ID Age Smoking

status

Histological

type

Differentiation Tumor

size (cm)

Lymph node

metastasis

Pathological

stage

Recurrence

or metastasis

5534 46 Non-smoker ADC Well 3 Yes II No

6405 62 Smoker ADC Moderate 2 No I No

Note: ADC, adenocarcinoma.

Figure 3 A/B compartment switching of different cancer cell lines and tissues

A. The A/B compartments of chromosome 10 inferred from Hi-C data of various samples. The percentage of chromosome 10 with A/B

compartment switching in different samples was compared to 5534N. B. The percentage of genome with A/B compartment switching

between paired normal and lung tumor tissues or between paired normal and cancer cell lines for breast and prostate.
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in lung cancer evolution since the alteration of TAD structures
can lead to de novo interactions between enhancers and pro-

moters [14,22].
To identify the changes in chromatin loops, we applied the

Fit-Hi-C [23] and HiCCUPS [6] methods to paired normal and

tumor Hi-C data, and evaluated both shared and sample-
specific chromatin loops in normal and tumor samples (Fig-
ure S5A and B). To confirm the accuracy of the identified loop

interactions, aggregate peak analysis (APA) was performed
and the enrichment heatmaps confirmed the identified loop
interactions as well as the differences between the samples
(Figure S5C and D). Similar to a previous study showing that

TADs are more stable than chromatin loops [6], the loop inter-
actions varied substantially between paired normal and tumor
samples (Figure S5A and B).
A/B compartments are largely conserved in normal and lung

tumor samples

In contrast to TADs, fewer differences in the frequency of A/B
compartment changes were observed between normal and lung

tumor samples than between different tissue types (Figure 3A).
In the tumor sample from patient 5534, 3.9% of genomic
regions changed from compartment B to A, while 2.8% chan-

ged from compartment A to B, compared to the compartments
in the paired normal sample (Figure 3B). The corresponding
values were 3.3% and 3.6% in the samples from patient

6405 (Figure 3B). These changes were smaller than those
observed between paired normal and cancer cell lines for the
prostate and breast (Figure 3B), possibly due to the different

genetic backgrounds of the paired cell lines. The results suggest



Figure 4 Cancer CNVs identified from Hi-C data

A. Comparison of Hi-C-detected CNVs in lung cancer clinical samples and lung cancer cell line A549. Red represents copy number gain,

blue represents copy number deletion, and green represents normal copy number. The ‘‘TCGA” row represents the average CNVs of 120

lung ADC patients from TCGA [3]. B. Correlation of CNVs of A549 cells detected from Hi-C data with the CNVs of various lung cancer

cell lines detected by SNP microarrays in the CCLE database. TCGA, The Cancer Genome Atlas; ADC, adenocarcinoma; SNP, single

nucleotide polymorphism; CCLE, Cancer Cell Line Encyclopedia; PCC, Pearson correlation coefficient.
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that genome alterations in lung cancer cells have a greater
impact on smaller-scale factors such as TAD and loop struc-

tures, but have a less impact on larger-scale factors such as
A/B compartments. Larger sample cohorts are needed to con-
firm these results.

Successful CNV detection from Hi-C data

Hi-C interaction counts from cancer cells are influenced by

CNVs and should be properly adjusted to obtain copy
number-independent chromatin interactions [21]. This also
implies that Hi-C reads can be analyzed to identify CNVs

using an approach similar to that used for whole-genome
sequencing (WGS) data. We used the HiCnv software [24] to
obtain genome-wide CNVs from a previously published mye-

loma cell line (RPMI-8226) with Hi-C and WGS data (Fig-
ure S6A). The CNVs obtained from Hi-C were consistent
with those obtained from WGS data (> 70% overlap, Fig-

ure S6B) and were not affected by the sequencing depth
(Figure S6C).



Figure 5 Point mutations identified from tumor samples by Hi-C

A. Distribution of high-quality read depth of SNVs identified by WGS and Hi-C data in chromosome 22 of the U266 multiple myeloma

cell line. B. Intersections of SNVs called by WGS and Hi-C data in chromosome 22 of U266 cells. C. Flowchart of the SNV calling and

filtering to identify mutations from paired normal and lung tumor Hi-C data of patient 5534. D. Genome distribution of the mutations in

patient 5534 called with Hi-C data. E. Mutation rates across the whole genome (chromesomes 1–22 and X) at the bin size of 1 Mb for

patient 5534. F. Mutation-affected genes in lung cancer patient 5534 are prioritized based on their mutation frequencies in public lung

cancer data sets using ANNOVAR-Phenolyzer. SNV, single nucleotide variation; WGS, whole-genome sequencing; LOH, loss of

heterozygosity; UTR, untranslated region; ncRNA, non-coding RNA.
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We then identified genome-wide CNVs from the Hi-C data
of A549 cells and lung samples (Figure 4A). Among the lung
cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE)
database, CNVs of the A549 cell line detected using Hi-C

showed the highest correlation with those of the A549 cell line
detected using a single nucleotide polymorphism (SNP) array
[25] (P < 0.01, Student’s t-test; Figure 4B, Figure S6D). CNVs

detected in the 5534T lung tumor sample using Hi-C showed
alteration patterns similar to those of typical CNVs in ADC
samples available in The Cancer Genome Atlas (TCGA) [3],

including copy number gains in chromosomes 1q, 7p, 8q,
and 17q (Figure 4A). In contrast, the paired normal sample
(5534N) showed no CNVs. We did not detect CNVs in the
paired normal and tumor lung tissue samples from patient
6405, either because this patient had early-stage ADC (Table 1)

or the tumor cell content in the sample was low.
Successful mutation detection from Hi-C data and validation

We next asked whether point mutations can be identified from
the Hi-C data of cancer samples. Using previously generated



Figure 6 Correlative analysis between genome, 3D genome, and gene expression changes

A. Boxplot showing expression changes of genes grouped by A/B compartment changes between normal and lung tumor samples. B. GO

enrichment analysis for DEGs between normal and lung tumor samples of patient 5534 with concordant A/B compartment switching (top)

or without A/B switching (bottom). C. Scatter plots showing the proportion of chromosome (or genes in a chromosome) that have altered

CNVs, TADs, or DEGs in patient 5534. The chromosomes are indicated by numbers in the plot. D. Mutation rates across the

whole genome (chromesomes 1–22 and X) at the bin size of 500 kb for patient 5534, colored by these bins’ A/B compartment states. GO,

Gene Ontology; DEG, differentially expressed gene.
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WGS and Hi-C data for a multiple myeloma cell line U266
[17], we called single nucleotide variations (SNVs) for each
data type using the same number of total reads (30�). The

data were filtered for SNVs with at least three unique reads
containing high-quality non-reference bases and differential
variability (DV) � 3. Taking chromosome 22 as an example,

although the average read depth for the SNVs detected from
Hi-C data was smaller than that detected from WGS data
(Figure 5A), Hi-C detected 39% of the SNVs called from

WGS data. Additionally, 90% of SNVs identified from Hi-C
data were also detected from WGS data, demonstrating that
the Hi-C-based SNV calls have moderate sensitivity and high
precision (Figure 5B).

We hypothesized that the 10% of SNVs detected by Hi-C
but not WGS were due to better sequence capture efficiency
at genomic regions near restriction enzyme cutting sites in

Hi-C experiments. The DV distribution showed that most of
the SNVs uniquely detected by Hi-C had less than three reads
in the WGS data (Figure S7A), indicating that the genomic

regions containing these SNV sites were poorly captured by
WGS experiments. In addition, the distances between SNVs
and the nearest MboI cutting sites were significantly shorter

for Hi-C-called SNVs than those for WGS-called SNVs
(P < 0.01, Student’s t-test; Figure S7B), supporting the theory
of a genome capture preference in Hi-C experiments. We fur-
ther selected ten SNVs for validation by Sanger sequencing

and obtained results for nine SNV sites (one site was not suc-
cessfully sequenced because of PCR failures). Sanger sequenc-
ing showed that several SNVs uniquely detected by Hi-C were

real variations of the reference sequence (Figure S7C).
We then called SNVs from the Hi-C data for primary lung

tumor samples from patient 5534 and classified differences in

SNVs between paired normal and tumor lung tissue samples
as somatic mutations in cancer. In total, the paired Hi-C data
for patient 5534 (Figure 5C) contained 10,386 mutations dis-

tributed across the entire genome (Figure 5D) and enriched
in certain mutation hotspots (Figure 5E). Among them, 117
mutations affected the exons of 44 protein-coding genes and
33 mutations altered protein coding. We sorted these 44 genes

using the ANNOVAR Web server according to the mutation
frequencies in public lung cancer datasets (Figure 5F). Among
the top genes in the list, PIK3AP1 encodes a Toll-like receptor

(TLR) signaling adapter crucial for linking TLRs to
phosphoinositide-3-kinase (PI3K) activation and regulating
tumor inflammatory responses [26]. Therefore, in addition to

detecting 3D genomic structures, Hi-C can also detect genomic
alterations such as CNVs and mutations in clinical samples of
lung cancer.

Integrating genome, 3D genome, and gene expression alterations

in lung cancer

To explore whether the 3D genome mediates the effect of

genomic alterations on gene expression in lung cancer, we
investigated the correlations between CNVs, mutations, and
3D genomic structures detected using Hi-C and the transcrip-

tome detected using RNA-seq in the same samples. Switches
between compartments A and B were associated with changes
in gene expression (Figure 6A). Genes that changed from com-

partment B to A were up-regulated, while those that changed
from compartment A to B were down-regulated, consistent
with the findings in breast cancer [10]. Among the differentially
expressed genes (DEGs) between paired normal and tumor
samples from patient 5534, 5% of DEGs were located in geno-

mic regions with concordant A/B compartment switching and
92% were in genomic regions without compartment switching.
This suggests that most expression dysregulations in cancer are

due to trans-regulatory mechanisms. Notably, cell adhesion
pathways were enriched in both gene groups (Figure 6B), sug-
gesting that the dysregulation of specific pathways in lung can-

cer is likely related to 3D genomic alterations.
We next assessed the correlations between chromosome-

wise alterations in gene expression, copy numbers, and 3D
genomic structures. In the 5534T tumor sample, chromosomes

in which more regions were affected by CNVs contained more
changes in TADs and dysregulated genes (Figure 6C). In addi-
tion, mutation hotspots in the 5534T tumor sample occurred

primarily in constitutive compartment B in both the normal
and tumor samples (Figure 6D), consistent with the known
associations between repressive chromatin regions and higher

mutation frequencies [27].

Discussion

The exploration of 3D genome architectures provides funda-
mental insights into key cellular processes such as DNA repli-
cation [28,29] and gene regulation [30,31], but there have been

few studies on 3D cancer genomes using clinical cancer sam-
ples. In the present study, we attempted to resolve the issue
of performing 3D genome experiments using a limited number

of cells from clinical samples and analyzing cancer multi-omics
data. We demonstrated that 1 � 104 cells are sufficient for
in situ Hi-C experiments and for obtaining spatial structure

information, including TADs and A/B compartments in both
cancer cell lines and clinical samples. We illustrated the feasi-
bility of identifying CNVs and point mutations from Hi-C
data for tumor samples. CNVs identified by Hi-C showed

good concordance with those identified by WGS, and Sanger
sequencing confirmed that Hi-C can better identify SNVs in
chromosomal regions with more restriction enzyme cutting

sites. These results provide a cost-effective solution for obtain-
ing mutation, SNV, and 3D genome information using only
Hi-C experiments. Notably, mutation detection with Hi-C

has not been explored previously and is worth further opti-
mization both experimentally and analytically.

Previous studies on 3D cancer genomes mostly utilized can-

cer cell lines. In this study, we showed that the 3D genome
structure of primary lung cancer cells from ADC patients is
significantly different from that of lung cancer cell lines. TADs
identified in paired normal and tumor lung samples had similar

length distributions and differed from previous findings in
prostate cancer cell lines [11]. Moreover, the switching fre-
quency between compartments A and B was much lower

between paired normal and tumor samples from the same
patient (~ 6%) than between normal and cancer cell lines with
different genetic backgrounds (20%–25%). These findings

highlight the importance of studying 3D genome architecture
using primary lung cancer samples to confirm the findings
obtained with cancer cell lines.

Integrating 3D genome and gene expression information

for paired normal and tumor samples can yield clues regarding
the pathways and mechanisms that drive cancer evolution. We



Figure 7 A model for how the 3D genome mediates the effect of

genome alterations on transcriptome
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identified a set of DEGs with concordant A/B compartment
switching, which enriched genes with cell adhesion functions

including CEACAM1 and Osteopontin (OPN). The CEACAM
gene family belongs to the immunoglobulin superfamily, which
contains 12 members in humans, and CEACAM1 is an inde-

pendent prognostic factor in ADC patients who undergo sur-
gery [32]. The overexpression of OPN is associated with
more aggressive phenotypes in human non-small cell lung can-

cer (NSCLC) [33]. Therefore, specific genes and pathways
involving lung cancer development may be associated with
3D genomic alterations. We also demonstrated significant cor-
relations between the copy numbers, 3D genome, and gene

expression alterations, supporting the theory that certain can-
cer genomic alterations impact gene expression through the
alteration of 3D genomic structures [11,12] (Figure 7). This

model also incorporates previous findings that 3D genome
structures in normal cells induce specific chromosomal translo-
cations in cancer [34,35].

In conclusion, we performed a pioneering 3D genome study
using paired normal and tumor samples from clinical lung can-
cer patients. We showed that Hi-C data can be used to discover
cancer CNVs and mutations and provide multiple types of

information regarding the genome and 3D genomic alter-
ations. Our study highlights the importance of analyzing the
3D genome of clinical cancer samples and comparing the

results with findings from cancer cell lines. The results also
provide analysis workflows for future larger-scale 3D genome
studies of cancer samples. The correlative findings require

experimental validation such as genome-editing to confirm
potential causative relationships among genome alterations,
3D genome, and gene expression dysregulation in cancer.

Materials and methods

Cell line and human samples

The human NSCLC cell line A549 was acquired from

American Type Culture Collection (ATCC). Tumor and adja-
cent normal samples were collected from two adjuvant
chemotherapy-naı̈ve patients with lung ADC at the Zhong-

shan Hospital of Fudan University (Shanghai, China). Infor-
mation about patient characteristics is summarized in
Table 1. The adjacent normal tissue refers to the tissue that
locates away from the tumor more than 5 cm in the lobectomy
specimen, which is also confirmed by hematoxylin and eosin
staining.

The Hi-C data used in this study included: 1) 5534N/T and
6405N/T (paired normal and tumor lung tissues from this
study); 2) A549 (lung cancer cell line from this study); 3) Nor-

mal (normal lung tissue data from Schmitt et al. [36]); 4) PrEC
(normal prostate epithelial cell line data from Taberlay
et al. [11]); 5) PC3 (prostate cancer cell line data from Taberlay

et al. [11]); 6) MCF-10A (mammary epithelial cell line data
from Barutcu et al. [10]); 7) MCF-7 (breast cancer cell line
data from Barutcu et al. [10]); and 8) GM12878 (normal B cell
data from Rao et al. [6]).

Cell preparation

For cell lines, A549 cells were maintained in RPMI-1640 (Cat-

alog No. 11875, Life Technologies, Carlsbad, CA) supple-
mented with 10% fetal bovine serum (FBS) at 37 �C in a
humidified atmosphere containing 5% CO2. Cells were cul-

tured to about 80% confluence, and digested by trypsin (Cat-
alog No. 25300054, ThermoFisher Scientific, Waltham, MA).
Detached cells were centrifuged at 300 g for 5 min, and a final

pellet was obtained. For human samples, tissues were har-
vested into a tissue culture dish, and washed with phosphate-
buffered saline (PBS) for several times. A small part was cut
and saved into RNAlater RNA stabilization solution at

�80 �C for RNA-seq. Tissue left were minced into pieces of
1–2 mm with sterile scissors, and transferred into a 15-ml con-
ical tube. After 10 ml of collagenase II solution (0.5 mg/ml in

PBS) was added, it was incubated at room temperature on a
shaker for 30 min. And then cell suspension was filtered
through a 70-mm cell strainer to eliminate clumps and debris.

Cells were collected in a conical tube and centrifuged at
1100 r/min for 10 min at room temperature. The pellet was
resuspended in BD lysing buffer and incubated 5–10 min at

room temperature to lyse red blood cells. Cell suspension
was collected and centrifuged at room temperature as above.
The pellet was resuspended in PBS and filtered through a
40-mm cell strainer. Cells were centrifuged and then the final

pellet was obtained. The final pellets of both A549 cell line
and human samples were resuspended respectively in fresh
PBS. Cell count was performed. And then cell suspension of

a final concentration of 1 � 106 cells per ml in PBS was
prepared. The following Hi-C crosslinking experiment was
performed immediately.

Hi-C libraries

The Hi-C experiments were performed as previously described

[6] to generate Hi-C libraries derived from A549 cell line and
human lung tissues. Cross-linked cells of the A549 cell line
and human sample 5504T were divided into three groups, at
cell numbers of 1 � 106, 1 � 105, and 1 � 104, to test the qual-

ity of Hi-C library of various cell numbers.

RNA-seq experiments and analyses

mRNA extraction and library construction were performed
following the user’s instructions (Catalog No. E7645, NEB,
Beverly, MA). Each sample had two biological repeats and
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at least 20 million paired-end reads were sequenced for each
repeat. TopHat2 was used for read mapping (hg19) and Cuf-
flinks for quantifying gene expression [37]. DESeq2 [38] was

used for the downstream analyses.

Hi-C data analysis

Read mapping and filtering of the Hi-C data were performed
following previous methods [6]. First, reads were aligned to
the human reference genome (hg19) with Bowtie2, and low

mapping quality reads (MAPQ < 10) and PCR duplicates
were removed separately by SAMtools and Picard tools. Then,
we used the filtered contacts to create chromatin contact maps

at different resolutions (40 kb, 500 kb) by HiC-Pro. We uti-
lized a linear regression-based chromosome-level adjustment
method called caICB to normalize raw interaction matrices
[21]. The correlation between raw interaction count matrices

of Hi-C samples was evaluated by HiCRep [39].

A/B compartment analysis

We used caICB-normalized interaction matrices at 500-kb
resolution to detect chromatin compartment types by
R-package HiTC [40]. By doing principal component analysis

(PCA), we segregated all chromosomal bins into two parts
according to signs of PC1. Then the bins with higher overall
gene density were assigned as A compartments, and the other
bins were assigned as B compartments.

TAD analysis

We used caICB-normalized interaction matrices at 40-kb reso-

lution to call TADs by a Perl script matrix2insulation.pl
(https://github.com/blajoie/crane-nature-2015) [41]. Then we
converted adjacent TAD boundaries to corresponding TADs,

and TADs were filtered through the following steps. First, only
TADs with a length larger than 200 kb were kept. Second,
TADs located in telomeres or centromeres were removed.

We used BEDtools (intersectBed -f 0.80 -r) to identify con-
served TADs that have more than 80% overlapping regions
between two samples.

Loop analysis

For the HiCCUPS method, Juicer Tools Pre was used to create
the 40-kb normalized Hi-C contact matrix (.hic file) based on

the allValidPairs files from HiC-Pro. Then we used Juicer
Tools hiccups (-m 512 -r 40000 -k KR -f 0.1 -p 1 -i 3 -t
0.02,1.5,1.75,2 -d 80000) to call loops. For Fit-Hi-C method,

we used the script in HiC-Pro to transform the 40-kb normal-
ized Hi-C contact result matrix to a raw interaction count file
and a bias file calculated by ICE. Then, Fit-Hi-C was done

with default parameters. Finally, significant interactions were
selected with q-value < 0.01.

Calling CNVs and point mutations from Hi-C data

CNVs were called by the HiCnv software at 40-kb resolution
with the ‘‘*.bwt2merged.bam” files from the output of
HiC-Pro. We filtered out restriction enzyme fragments with
GC content < 0.2 and mappability < 0.5 as HiCnv recom-
mended and called CNVs separately for normal and tumor

samples. SNVs were called by SAMtools/BCFtools (samtools
mpileup -q10 -t DP,DV -f ref.fa sample.bam | bcftools call -
vm), filtered with arguments (DP > 8, DV > 4) and dbSNP

Ver. 146, followed with ANNOVAR annotation [42].

Gene Ontology enrichment analysis

We used the DAVID (https://david.ncifcrf.gov) Bioinformat-
ics Resources 6.7 for Gene Ontology (GO) enrichment analysis
[43]. All human genes were used as the background gene list.
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Stütz AM, et al. Pan-cancer analysis of somatic copy-number

alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat

Genet 2017;49:65–74.

[15] Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB,

et al. An oestrogen-receptor-alpha-bound human chromatin

interactome. Nature 2009;462:58–64.

[16] Wang Z, Cao R, Taylor K, Briley A, Caldwell C, Cheng J, et al.

The properties of genome conformation and spatial gene interac-

tion and regulation networks of normal and malignant human cell

types. PLoS One 2013;8:e58793.

[17] Wu P, Li T, Li R, Jia L, Zhu P, Liu Y, et al. 3D genome of

multiple myeloma reveals spatial genome disorganization associ-

ated with copy number variations. Nat Commun 2017;8:1937.

[18] Bonev B, Cavalli G. Organization and function of the 3D genome.

Nat Rev Genet 2016;17:661–78.

[19] Packer JR, Maitland NJ. The molecular and cellular origin of

human prostate cancer. Biochim Biophys Acta

2016;1863:1238–60.

[20] Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant

N, et al. Spatial partitioning of the regulatory landscape of the X-

inactivation centre. Nature 2012;485:381–5.

[21] Wu HJ, Michor F. A computational strategy to adjust for copy

number in tumor Hi-C data. Bioinformatics 2016;32:3695–701.

[22] Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V,
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