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While functional connectivity networks are often extracted from resting-state fMRI scans,

they have been shown to be active during task performance as well. However, the effect

of an in-scanner task on functional connectivity networks is not completely understood.

While there is evidence that task-evoked positive BOLD response can alter functional

connectivity networks, particularly in the primary sensorimotor cortices, the effect of

task-evoked negative BOLD response on the functional connectivity of the Default

mode network (DMN) is somewhat ambiguous. In this study, we aim to investigate

whether task performance, which is associated with negative BOLD response in the

DMN regions, alters the time-course of functional connectivity in the same regions

obtained by independent component analysis (ICA). ICA has been used to effectively

extract functional connectivity networks during task performance and resting-state.

We first demonstrate that performing a simple visual-motor task alters the temporal

time-course of the network extracted from the primary visual cortex. Then we show that

despite detecting a robust task-evoked negative BOLD response in the DMN regions, a

simple visual-motor task does not alter the functional connectivity of the DMN regions.

Our findings suggest that different mechanisms may underlie the relationship between

task-related activation/deactivation networks and the overlapping functional connectivity

networks in the human large-scale brain networks.

Keywords: negative BOLD response, functional connectivity, Default mode network (DMN), visual network,

task-evoked activity, fMRI BOLD, functional neuroimaging (fMRI), brain large-scale networks

INTRODUCTION

Recent advances in the acquisition and analysis of functional magnetic resonance image (fMRI)
have made it possible to discover numerous large-scale brain networks based on their spontaneous,
but synchronized, low frequency fluctuations at resting-state, as well as during task performance
(Biswal et al., 1995; Greicius et al., 2003; Greicius and Menon, 2004; Power et al., 2011; Smith
et al., 2013; Cole et al., 2014). Functional connectivity (FC) analyses extract these networks solely
based on their interregional temporal coherence, and independently of whether the subject is
engaged in a task or is resting (Friston, 1994; Biswal et al., 2010; Di et al., 2013). Alternatively,
positive and negative blood oxygenation level dependent (BOLD) signal, which gives rise to
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activation/deactivation networks, can only be extracted from
task-based fMRI (tb-fMRI) scans, and is often based on the time-
course of the task being performed. Both task-evoked BOLD
response and FC networks during task and rest have been used to
investigate the functional architecture of the human brain (Cole
et al., 2014; Krienen et al., 2014; Stern et al., 2014). However, some
studies have shown that functional architecture identified during
resting-state fMRI (rs-fMRI) will give rise to all the possible task-
related activation networks; suggesting that tb-fMRI may not
be necessary to investigate the functional organization of the
human brain (Fair et al., 2007; Fox and Raichle, 2007; Vincent
et al., 2007). Cognitive networks such as the default mode, dorsal-
attention, fronto-parietal, salience, and executive networks have
frequently been detected by using rs-fMRI scans to extract them
as resting-state FC (rs-FC) networks (Damoiseaux et al., 2006)
and less frequently by using tb-fMRI scans to extract them
as task-based FC (tb-FC) networks (Cole et al., 2010; Barch
et al., 2013). Furthermore, the convenience of acquiring rs-fMRI
scans has resulted in their greater popularity in the field of
human neuroimaging, such that the rs-FC networks have become
the standard terminology to refer to FC networks. Despite the
significant number of studies investigating these rs-FC networks,
the effect or influence of task performance on the FC networks
is not completely understood. While some studies report a high
spatial correspondence between the rs-FC and tb-FC networks
(Fox et al., 2006; Fair et al., 2007; Toro et al., 2008; Smith et al.,
2009), others claim there are substantive differences between
them (Buckner et al., 2013; Hermundstad et al., 2013; Mennes
et al., 2013). Gaining a more complete understanding of the
accordance and discordance between rs-FC networks and tb-
FC networks, therefore, is crucial toward estimating the true
underlying functional architecture of the human brain.

In this study our main focus is on the Default mode network
(DMN), which is perhaps the most studied large-scale brain
network (Bluhm et al., 2008; Buckner et al., 2008). Discovery of
the “default mode” in the human brain, dating back two decades,
was based on the observation of consistent decreases in cerebral
blood flow in a set of brain regions during engagement in a wide
range of goal-oriented tasks (Shulman et al., 1997; Raichle et al.,
2001). This mechanism of decreases in cerebral blood flow in
the DMN is also thought to underlie the task-evoked negative
BOLD response that is often detected in the same regions when
subjects are engaged in a variety of tasks (Lustig et al., 2003;
Pihlajamäki and Sperling, 2009; Sperling et al., 2009). The DMN
plays a pivotal role in understanding brain resting state activities,
as these regions are shown to have a higher metabolic rate of
oxygen and glucose at rest (Vaishnavi et al., 2010; Lu et al., 2011;
Spetsieris et al., 2015; Oh et al., 2016). It is also hypothesized
that engagement in any task will suppress resting state activity
in these regions, and the metabolic resources will instead be
redirected to the regions involved in task performance (Raichle
et al., 2001). However, the relationship between the task-evoked
negative BOLD response in DMN regions and their FC networks
during task or at rest is not completely understood (Greicius and
Menon, 2004).

Multivariate techniques such as independent component
analysis (ICA) have been shown to consistently detect numerous

FC networks throughout the entire brain at rest as well as
during task performance (McKeown et al., 1998b; Greicius
et al., 2003). While studies frequently demonstrate a high spatial
correspondence between the rs-FC networks and the tb-FC
networks (Fox et al., 2005; Cole et al., 2014; Krienen et al., 2014),
there is currently no consensus about the temporal characteristics
of these overlapping FC networks. For example, in a simple visual
stimulation task, the tb-FC networks in the primary visual cortex
show clear modulation by task performance (McKeown et al.,
1998a; McKeown, 2000). This modulation is so strong that some
studies claim that extracting task-evoked BOLD response can be
performed more effectively with FC analysis (i.e., ICA) than with
conventional general linear modeling (GLM) analysis, which
requires information about the time-course of the tasks (Xu et al.,
2013). However, such strong task-relatedmodulation in the time-
course of the DMN FC has not usually been reported, even
though there is almost a perfect overlap in the spatial pattern of
the DMN tb-FC, rs-FC and task-evoked negative BOLD response
(Greicius and Menon, 2004). This is rather striking because the
existence of overlapping task-evoked negative BOLD response
in DMN regions has been frequently reported in the literature
(Lustig et al., 2003; Pihlajamäki and Sperling, 2009). The main
goal of this study is to investigate whether or not task-evoked
negative BOLD response alters the temporal characteristics of the
tb-FC network when both are extracted from the DMN regions.
Answering this question not only provides crucial information
about the functional architecture of the DMN, but also sheds
some light on the ongoing debate about the relationship between
rs-FC and tb-FC networks.

To investigate the task-related alteration in the temporal
characteristics of the tb-FC network extracted from DMN
regions, we used a simple visual-motor task, a low-level
sensorimotor task consisting of a flashing checkerboard and
button press response. Using conventional GLM analysis, we
first obtained the task-evoked BOLD response in the primary
visual cortex as well as in the DMN regions. Then, we
removed the task-related variability from the tb-fMRI data;
henceforth called residualized tb-fMRI data. Next, FC analyses
were performed using ICA on both original tb-fMRI as well as
residualized tb-fMRI data. We demonstrate here that removing
task-related activity from the tb-fMRI data significantly alters the
temporal/spatial characteristics of the tb-FC networks extracted
from primary visual cortex, whereas it has no significant effect
on the temporal/spatial characteristics of the tb-FC networks
extracted from DMN regions, thus providing evidence that task-
evoked negative BOLD response does not alter overlapping FC in
DMN regions.

MATERIALS AND METHODS

Participants
Our dataset included 30 healthy, young, right-handed
participants (age = 25 ± 3.5 years, m/f = 10/20) recruited
from the Columbia University Medical Center. All participants
signed informed consent documents before scanning, and were
compensated for their time spent participating in the study. The
recruitment procedure, and the experimental design used in
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this study were approved by Columbia University institutional
review board.

fMRI Experimental Design
Subjects were presented with visual/audio stimuli (flashing
checkerboard/alternating tone) with random onsets (at least 55
events spaced at mean = 6.2 s, range = 4 ∼ 18 s) and durations
(mean = 1.2 s, range = 0.5 ∼ 3.5 s). Participants were asked to
attend to the visual stimuli and press a button with their right
index finger at the end of each visual stimulus, and to ignore the
auditory stimuli.

MRI Acquisition Parameters
All fMRI scans were acquired using a 3.0 Tesla Achieva Philips
scanner, with a T∗

2-weighted echo-planar imaging (EPI) sequence
(TR/TE = 1,000/20ms; flip angle = 72◦; FOV = 240 × 240mm;
matrix size = 80 × 80; voxel size = 3.0 × 3.0 × 5.5mm;
18 axial slices). The duration of the tb-fMRI scans was 6min
(360 volumes). An accompanying T1-weighted magnetization-
prepared rapid gradient-echo (MPRAGE) structural image
(TR/TE = 6.5/3ms; flip angle = 8◦; FOV = 25.6 × 25.6 cm;
matrix size = 256 × 256; voxel size = 1.0 × 1.0 × 1.0mm;
165 axial slices) was collected for the localization and spatial
normalization of the functional data in each participant.

Analysis of fMRI Data
All fMRI data were analyzed using the FSL (V5.0.7) software
package. Realignment of the fMRI scans was performed by
rigid-body registration of all the volumes to the middle one.
Next, slice-timing correction was performed by shifting the time-
series for each slice to the instance when the middle slice was
acquired. High-pass filtering was performed with a non-linear
Gaussian kernel with cut-off frequency of 0.01Hz. Then three
dimensional spatial smoothing was performed with the full width
half maximum (FWHM) of 5mm (Smith and Brady, 1997).
Spatial normalization was performed by rigid-body registration
of the first fMRI volume to its T1-weighted structural image and
then by non-linear registration of the structural image to the
MNI template. Finally, intensity normalization was performed by
global scaling of the data to have amedian of 104. First-level GLM
analysis was performed by modeling the fMRI data with three
predictors of interest, which were obtained by convolving the
canonical HRF with the timing (zero-one boxcar function) of the
visual, and audio stimulation as well as motor response (Boynton
et al., 2012). The results fed into a second-level analysis to derive
group maps of the activations and deactivations using a mixed-
effects modeling technique implemented in FSL (Woolrich et al.,
2004). The residual of the first-level GLM analysis was then added
to the fMRI temporal mean volume to generate the residualized
fMRI dataset.

Independent Component Analysis
We used ICA to extract the spatial extent and temporal time-
course of the FC networks. The same preprocessed data that
were fed into the first-level GLM analysis were also fed into
a multivariate exploratory linear optimized decomposition into
independent components (MELODIC) analysis with temporal

concatenation of all subjects (Beckmann and Smith, 2004). The
residualized fMRI data were also fed into the MELODIC analysis
to perform group level ICA with temporal concatenation.
Subject-wise ICA was performed using MELODIC on pre-
processed but not spatially normalized fMRI data as well
as residualized fMRI data in the subjects’ native space. The
number of the ICs was estimated automatically using the
Laplace approximation to the Bayesian evidence of the model
order (Minka, 2000). In order to generate one single IC that
corresponded to both significantly activated and deactivated
regions, we manually lowered the number of IC to as low as 20
components to examine whether or not the visual network and
DMN would get combined to generate a single FC network.

Obtaining the Equivalency Interval
Any additional processing of the fMRI data tends to slightly alter
the results of the ICA. However, this alteration should not exceed
the equivalency interval in which the natural variability in the
temporal and spatial characteristics of the extracted networks
can occur. For instance, removing the task-related variability
should slightly alter the temporal and spatial characteristics
of the FC networks even if the network fluctuations are
completely independent from the task time-course. However, the
alteration cannot exceed the equivalency interval which needs
to be obtained by generating the null distribution for such
alterations. To generate the null distribution for removing un-
related variability we first permuted the time-course of the tasks
across all participants and re-ran the first-level analysis. Each
subject had a unique task timing for visual and audio stimulation,
thus the results of first-level GLM analysis with permuted task
timing should detect no significant activation/deactivation for
any of the participants. Next, the residual of the GLM analysis
with the permuted task timing was added to the fMRI mean
volume to generate the residualized fMRI dataset. The difference
here is that the residualizing process now removes only random
and task-irrelevant variance from the fMRI data. Performing
group ICA and subject-wise ICA on the residualized fMRI
data with respect to permuted task timing should generate very
similar networks as those obtained from the original fMRI data.
Comparison between the temporal and spatial characteristics of
the obtained network before and after residualizing of permuted
task timing will give us the distribution of the natural alteration
in the extracted networks due to any random residualizing.
Any significant deviation from this natural variability should be
interpreted as true and significant change in the temporal time-
course or spatial pattern of the extracted networks. We used
simple Pearson correlation coefficients (Pcc) to determine the
similarity between the two time-courses or spatial patterns of
each network.

RESULTS

Figure 1 shows the design and timing of the fMRI paradigm
that was used in this study to show the consistency of DMN FC
during task performance. As shown, we used an event-related
design with at least 55 visual (blue) and 55 audio (red) events of
stimulation that were presented to the participants with random
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FIGURE 1 | The time course of the visual-motor task in our event-related fMRI task paradigm. The blue line shows typical timing for visual stimuli and the red line

shows typical timing for audio stimuli. The green bars represent the time of the motoric response to the stimulus. There were at least 55 visual as well as 55 audio

stimuli in each run, with mean duration of 1.2 s (ranging from 0.5–3.5 s).

FIGURE 2 | The network of activated/deactivated regions during a simple visual-motor task obtained by GLM group-level analysis. Positive BOLD response is

thresholded at z > 3 and color-coded with hot color (red to yellow corresponding to z = 3 to z = 8) and negative BOLD response is thresholded at z < −3 and

color-coded with cold color (blue to light-blue corresponding to z = −3 to z = −8). The green overlay is the spatial pattern of two separate functional connectivity

networks extracted by ICA, and thresholded at z > 3: (A) one overlapping with positive BOLD response in the primary visual cortex, and (B) another overlapping with

negative BOLD response in the DMN regions. Three orthogonal and most informative slices are selected for this illustration.

onsets and durations. The green bars illustrate the instance when
each response was made.

Group-Level Analysis With General Linear
Modeling
Using GLM analysis we obtained the pattern of task-evoked
positive BOLD response (activation) and negative BOLD
response (deactivation) in response to visual stimulation.
Figure 2 illustrates the significance of group-level activations
with hot colors (red to yellow) and deactivations with cold
colors (dark-blue to light-blue) using z statistics. Activation
and deactivation maps are overlaid on three orthogonal and
most informative slices of the brain in Figures 2A and 2B,
respectively. As expected, visual stimulation generates a bilateral
positive BOLD response (activation) in the primary visual cortex
and negative BOLD response (deactivation) in DMN regions.
The auditory stimulation and motor response also resulted in
significant bilateral activation in the primary auditory cortex
and significant unilateral activation in the contralateral motor
cortex, respectively (results are not shown). As seen in Figure 2,
there were also significant negative BOLD response in bilateral
ventricular regions.

Group-Level Analysis With ICA
Using group-level ICA analysis with temporal concatenation of
the fMRI data in the same dataset we obtained FC networks
during task performance. Group-level ICA detected 105
independent components (IC); the 2nd component accounted
for 1.13% of explained variance and showed a high degree of

spatial overlap with activated regions in the primary visual cortex
(shown as green overlap in Figure 2A), and the 17th component
accounted for 1.02% of explained variance and showed a high
degree of spatial overlap with the DMN deactivated regions
(shown as green overlay in Figure 2B). The time-course of the
visual network predicted the time-course of the task (r = 0.537,
df = 28, p = 0.001) whereas the time-course of the DMN was
not related to task timing (r = 0.075, df = 28, p = 0.34). We
could not find any IC that showed a high degree of spatial overlap
with both activated and deactivated regions, even when we force
ICA analysis to produce many fewer components (as few as 20
components).

Group-Level Analysis With ICA on
Residualized fMRI Data
To further examine the relationship between FC networks and
task-evoked BOLD response in DMN regions we removed task-
related variability from the fMRI data and re-ran the group-level
ICA. This time the group-level ICA detected 100 independent
components (IC); the 3rd component accounted for 1.17% of
explained variance and showed a high degree of spatial overlap
with the positive BOLD response in primary visual cortex, and
the 22th component accounted for 1.06% of explained variance
and showed a high degree of spatial overlap with the negative
BOLD response in the DMN regions.

Removing task-related variability altered the temporal
characteristic of the visual network such that its similarity to the
original time-course dropped to 0.792, measured by Pcc, whereas
for the DMN it remained relatively high at Pcc = 0.9. On the
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other hand, removing task-related variability caused a subtle
change to the spatial pattern of the visual network such that its
similarity to the original pattern was as high as 0.97 using Pcc or
0.83 using the Dice overlap measure for voxels with significance
level of z = 3 or higher. Strikingly, this spatial similarity for
DMN dropped to 0.69 using Pcc or 0.51 using Dice. The high
temporal similarity of the DMN and low temporal similarity
of visual networks were expected due to the fact that only the
temporal time-course of the visual network was related to the
task time-course. However, the finding of high spatial similarity
of the visual network before and after residualizing, and low
spatial similarity of the DMN before and after residualizing
was somewhat unexpected. Since the time-course of the DMN
activity was not related to task timing, one would have expected
that removing task-related variance should have no effect on the
temporal and spatial characteristics of the DMN. On the other
hand, since almost 30% of the variance in the time-course of the
visual network was accounted for by the time-course of the task,
one might have expected that removing task-related variability
would significantly alter the spatial characteristics of the visual
network as well. One methodological challenge in group-level
ICA is the spatial normalization step required for temporal
concatenation of all participants’ fMRI data. We have previously
reported the deterioration of the FC networks (Razlighi et al.,
2014) as well as task-evoked BOLD response (Liu et al., 2017)
due to inaccuracy in this spatial normalization step. To overcome
this methodological challenge we also performed a subject-level
ICA analysis. Subject-wise ICA method circumvents the need
for inaccurate spatial normalization and can be performed in
participant’s native space, however it requires tedious manual
identification of different ICs for each participant.

Subject-Wise ICA
We performed subject-wise ICA on both original fMRI data
as well as residualized fMRI data with respect to task-related
variability. Performing subject-wise ICA on original fMRI data
resulted in an average of 79 ICs per participant (range: 62–
99); the same analysis on residualized fMRI data resulted in an
average of 71 ICs per participant (range: 57–90). We were able
to identify visual networks in every participant in which the
time-course always significantly predicted the task time-course
(on average z-statistics = 12.24 ranging from 6.2 to 16.37). In
all participants but one, we were able to identify the DMN, in
which the time-course of activity was not related to the time-
course of the task (except in a couple of cases in which the time
course predicted the task timing, but in opposite directions—
in one participant with z = 3.39 and the other with z =

−3.65). Figure 3 illustrates the spatial and temporal similarity
of the visual network (Figures 3A,C) and DMN (Figures 3B,D)
in a typical participant before and after removing task-related
variability. The spatial extent of the FC network is depicted in red
for original fMRI data, in green for residualized fMRI data, and
in dark-green for regions of overlap. Figure 3 also plots the time-
course of the visual task (in black), and the FC networks before
(in red) and after (in green) removing task-related variability
for the visual network (Figure 3C), and the DMN (Figure 3D).
As evident in the graphs, the time-course of the visual network

significantly predicts the task (z = 16.08, p < 10−8), whereas the
time course of the DMN is not related to the task (z=−2.24, p=
0.98). Removing task-related variability completely changes the
time-course of the visual network (Pcc = 0.66), while the spatial
similarity remains relatively high (Pcc = 0.82). On the other
hand, removing task-related variability had negligible effect on
the time-course (Pcc= 0.98) as well as spatial pattern (Pcc= 0.93)
of the FC in the DMN. While the results in this single participant
suggest that task-evoked negative BOLD response does not alter
FC of the DMN, it is crucially important to generate the null
distribution to assess the significance of our findings.

Generating the Null Distribution
The statistical assessment of the significance of our findings
requires generating a null distribution to obtain the equivalency
interval for spatial and temporal alteration of the IC before and
after removing the task-related variability. We had generated this
distribution by permuting the task timing between subjects and
performing the first-level analyses. In this case, the temporal and
spatial similarity of the extracted IC before and after residualizing
should give the range in which the Pcc can fluctuate as the natural
variation due to removing un-related/random task variability.
Figure 4 shows the distribution of the spatial and temporal
similarity for both the visual network as well as the DMN. Next
to each null distribution is the distribution of the similarity that
we had obtained for spatial and temporal similarity of the visual
network and DMN. Performing a simple pair-wise student t-
test will determine whether the observed alteration in the spatial
and temporal characteristics of the network is significant, or
if they are within the equivalency interval obtained from the
null distribution. As it seen in Figure 4, removing task-related
variability significantly altered temporal time-course (t = 10.17,
p < 10−13) and spatial pattern (t = 3.057, p < 0.003) of the
visual network whereas both temporal time-course (t = −0.35,
p = 0.73) and spatial pattern (t = 0.15, p = 0.88) of the
DMN remained intact despite detecting a robust and overlapping
negative BOLD response within the same regions.

DISCUSSION

Using univariate GLM analysis, we first detected the brain
regions with positive BOLD response (activation) and negative
BOLD response (deactivation) for a simple visual-motor task.
Then we extracted FC networks by applying a multivariate
technique (e.g., ICA) on the same set of fMRI data. While
the regions with positive and negative BOLD response were
obtained simultaneously in response to the same stimuli, we
could not find a single IC that spatially corresponded to both
areas of activation and deactivation. Instead, two separate IC
were detected: one corresponding to the activated regions,
and another corresponding to the deactivated regions. This
separation remained even when we reduced the number of ICs
to 20, suggesting that the time-courses of the BOLD response are
different for activated and deactivated regions, even though they
are both correlated with the time-course of the task. Furthermore,
the time-course of the IC that spatially corresponded to activated
regions (primary visual cortex) were highly correlated with
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FIGURE 3 | Spatial pattern and temporal time-course of the visual network (A,C) and DMN (B,D) obtained by ICA on a single subject before (red) and after (green)

removing task-related variability from the fMRI data. The spatial overlaps in (A,B) are delineated in darker green color. (A,B) Show almost a perfect match between the

spatial patterns of the networks before and after removing the task-related variability. (C,D) Illustrate the temporal similarity of the networks’ time-course before (red)

and after (green) removing task-related variability. The time course of the task is depicted in black. While removing task-related variability significantly alters the

time-course of the visual network, it has almost no effect on the time-course of the DMN.

FIGURE 4 | Illustration of the significance of the alteration in the spatial (green) and temporal (red) characteristics of the visual network and DMN along with their null

distributions (light green and light red).

the time-course of the task, whereas the time-course of the
IC that spatially corresponded to deactivated regions (DMN)
were not correlated with the time-course of the task. In other
words, while the fMRI signal in DMN regions was correlated
negatively with the task timing, the IC extracted from the
same regions using FC analysis was not temporally correlated
with the task. This suggested a disassociation between the task-
evoked negative BOLD response and an FC network in the
DMN regions. To quantitatively examine this disassociation, we
then performed subject-wise FC analyses by applying an ICA to
the original tb-fMRI data as well as residualized tb-fMRI data
with respect to all task-related variability. We demonstrated that
removing task-related variability from fMRI data significantly
altered spatial and temporal characteristics of the visual network,

which corresponded to the activated regions, whereas both spatial
and temporal characteristics of the DMN, which corresponded to
deactivated regions, remained intact. This finding demonstrates
that task-evoked negative BOLD response in the DMN regions
does not alter its intrinsic FC. To the best of our knowledge,
this disassociation between the negative BOLD response and
FC in the DMN has not been shown previously. This finding
becomes evenmore interesting when compared to its counterpart
in the activated regions (primary visual cortex), where task
performance significantly altered both spatial and temporal
characteristics of the FC network.

Current studies investigating the relationship between task-
evoked BOLD response and rs-FC networks indicate a significant
overlap between the two networks (Toro et al., 2008; Smith
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et al., 2009; Power et al., 2011; Crossley et al., 2013; Di
et al., 2013). However, the effect of task performance on the
temporal characteristics of the FC networks is not completely
understood. Some studies claim a close correspondence between
rs-FC and tb-FC networks (Greicius et al., 2003; Fair et al.,
2007; Fox and Raichle, 2007) to the degree that they even
dismiss the need for tb-fMRI studies to map the functional
organization of the brain (Fair et al., 2007). Other studies,
however, report subtle alteration in the coherence of within
as well as across FC networks due to task performance (Cole
et al., 2014; Gerchen et al., 2014; Krienen et al., 2014; Spadone
et al., 2015; Gratton et al., 2016; Kaufmann et al., 2017). Our
findings suggest that depending on the positivity or negativity
of the BOLD response, different mechanisms may underlie
the relationship between the task-evoked BOLD response and
the overlapping FC network. This is an important finding
because one of the most studied FC networks, the DMN, is
also the most commonly-reported site of the negative BOLD
response.

Another important yet unanswered question in the field is
whether task-evoked BOLD response and FC network are both
manifestations of the same neurophysiological process or each
represent a distinct process. Some studies have hypothesized
that brain activity is comprised of two separate components:
spontaneous and task-evoked activities (Arieli et al., 1996; Fox
et al., 2006). This has been shown by electro-encephalography
(EEG) (Scherrer, 1976; Mayhew et al., 2013), electrophysiological
recording (Arieli et al., 1996) and recently with fMRI (Fox et al.,
2006). Translating such a hypothesis to fMRI means that FC
networks are representative of the spontaneous activity, and
task-evoked BOLD response is thought to represent task-related
activity (Fox et al., 2006). In the present study, the disassociation
between task-evoked BOLD response and FC clearly support this
hypothesis for the DMN; however, our findings in the visual
network contradict this hypothesis. Here we show that visual
network FC fluctuation, as a measurement of its spontaneous
activity, is correlated with the time-course of the task, suggesting
it cannot purely be a measurement of spontaneous brain activity.
One possibility that might explain this disagreement in the visual
network is that the spatial ICA method that we used to extract
FC networks, which is the most commonly used method in the
field, is not suitable for extracting spatially overlapping networks,
as has been reported previously (Calhoun et al., 2001; Smith et al.,
2012). By definition, the spatial ICAmethod searches for spatially
independent components in the fMRI data. Further examination
with temporal or spatio-temporal ICA techniques is required to
test such a possibility. This issue with spatial ICA seems to be
less disparaging with the negative BOLD response in the DMN
regions, since the hemodynamic response for negative BOLD
seems to be different for each node of the DMN (Lustig et al.,
2003). While GLM analysis is less sensitive to such variations in
the BOLD response, spatial ICA tends to detect those variations
and effectively separate them from the FC fluctuation. Therefore,
the extracted time-course for the DMN is not correlated with
the task time-course. Comprehensive simulation is needed to test
this possibility on synthesized fMRI data, in order to determine
whether temporal or spatio-temporal ICA methodology is more

appropriate for separating spatially overlapping networks in real
fMRI data.

One methodological challenge in extracting the FC networks
is the parcellation scheme used in the pre-processing of the
fMRI data. Many different parcellations of the human brain
have been utilized in studies investigating FC networks (Fischl
et al., 2004; Power et al., 2011; Yeo et al., 2011; Craddock
et al., 2012; Shirer et al., 2012; Wig et al., 2014; Glasser et al.,
2016). These parcellations are not only fundamentally different
in their underlying segmentation/registration techniques, they
also differ in their parcel sizes, numbers, and shapes. These
differences make the comparison of the results of different
studies a challenging process. To overcome this issue we used
ICA to automatically extract the FC networks without any
presumption on their size and shape. The number of ICs was
also extracted automatically (Minka, 2000). The only problematic
pre-processing step associated with group ICA technique is its
requirement for spatial normalization. In fact, our initial attempt
to use group ICA produced inconclusive results for DMN. While
removing task-related variability had a subtle alteration in the
temporal time-course of the network (Pcc = 0.90), the spatial
pattern of the network changed drastically (Pcc = 0.69, or Dice
= 0.52 for voxels with z ≥ 3), suggesting a significant task-
based alteration in the spatial pattern of the DMN (see the
null distribution in Figure 4). Considering the relatively stable
temporal time-course of the DMN, we suspected that the drop
in the spatial correlation could be a result of inaccuracy in the
spatial normalization process. We have shown previously that
spatial normalization accuracy using a state of the art non-linear
registrationmethod is at 53% for cortical regions (Razlighi, 2016).
Therefore, we switched to subject-wise ICA and performed the
rest of the study in subject native space. While the subject-
wise ICA circumvented the need for spatial normalization, it
required the tedious process of manual identification of different
FC networks, which for some subjects it could be challenging.
Fortunately, we were able to identify all visual networks and,
except for one participant, we were able to identify the DMN
in all subjects as well. As we have demonstrated, repeating the
analysis in the subjects’ native space showed that task-evoked
BOLD response had no effect on the FC of the DMN. This
finding suggests that the error introduced by substandard spatial
normalization could potentially be larger than the effect of task
performance on the FC networks. Thus extra caution should
be warranted when investigating small alterations in the FC
networks.

There is a consensus in the field that functional connectivity
fluctuations are concentrated in the lower frequency range
(<0.1Hz); however, the frequency spectrum of the task-evoked
negative BOLD response has not been fully investigated. Most
of the existing research on the negative BOLD response assumes
the same positive BOLD response for negative BOLD as well, yet
there is evidence that each node in the DMN has a unique BOLD
response with higher frequency components (Lustig et al., 2003;
Hayden et al., 2009). Therefore, we tried to increase the sampling
rate (TR) of our fMRI data as much as possible to capture the
higher frequency components in the negative BOLD response.
We first reduced the TE to 20ms, which is beneficial in alleviating
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the signal drop-off in the medial pre-frontal regions (one of the
main nodes in the DMN), and then increased the slice thickness
to 5.5mm which is beneficial for improving signal to noise
ratio (SNR) in fMRI time-series. By increasing the SNR, we also
expected to improve our detection power for the negative BOLD
response, since it is a weaker signal in comparison to the positive
BOLD response. Nonetheless, we used a spatial smoothing kernel
with FWHM = 5 mm in the pre-processing pipeline which
theoretically has the same effect on the SNR for smaller voxel
sizes. Having said that, we emphasize that a replication of
our results, particularly the spatial similarities of the functional
connectivity networks, seems to be warranted in the future with
faster sampling rate and higher spatial resolution, which is now
available with multi-band image acquisition techniques (Breuer
et al., 2005; Setsompop et al., 2012).

Most recent studies investigating the effect of task
performance on FC networks throughout the whole brain
report only subtle alterations in their FC strength (Cole
et al., 2014; Krienen et al., 2014; Gratton et al., 2016). These
studies usually assess the stability of the FC networks by
comparing the correlation matrices obtained for rs-fMRI
data and the task-variability-removed tb-fMRI data. In other
words, they investigate any task-related alteration in the second
order statistical moment, while we assessed the task-related
alteration in the time-course of the shared variance among
actual MR signals which is given by ICA. While these two
methods might seem to target different characteristics of
the FC networks, we should emphasize that the correlation
coefficient is directly related to the standard deviation of
the time-course of the shared variance. Thus, alteration in
the correlation coefficient is not possible without changing
the time-course of the shared variance. Furthermore, the

significance of the subtle change in the correlation matrix
has been determined by parametric statistics in the existing
studies. However, what is not reported in these studies is the
subtle changes between the correlation matrices obtained from

two repeated rs-fMRI scans. A permutation between repeated
rs-fMRI scans can be used to generate the null distribution to
assess the significance of the observed subtle changes in these
studies. Therefore, in the current study, we have generated the
null distribution by permuting the time-course of the tasks
across different subjects, making sure there is no correlation
between the time-course of the task for different subjects.

Essentially, we examined the effect of removing an unrelated
time-course from the fMRI data and quantified the effect of
such alteration in the extracted functional networks. A simple
pair-wise student t-test determined that the observed alteration
in the visual network was a significant change, whereas the
detected subtle changes in the DMN were just an effect of
natural variability and artifacts in the fMRI data processing
pipeline.

CONCLUSION

The evidence presented in this work clearly establishes a
disassociation between the DMN functional connectivity and
its task-evoked negative BOLD response. This finding becomes
more interesting when compared with its counterpart in the task-
evoked positive BOLD response. Task performance modulated
the time-course of the FC network when it is extracted
from regions with positive BOLD response; suggesting that
depending on the BOLD response being positive or negative,
the mechanism underling the relationship between BOLD
response and functional connectivity may differ significantly.
We conclude that the task-evoked negative BOLD response
in the DMN regions is a separate and distinct measurement
from the DMN regions, which is fundamentally different from
its functional connectivity. Therefore, it could be considered
as a separate imaging biomarker that can be utilized in
studies investigating the relationship between the brain and
cognition.
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